
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Framework for dependency
analysis of software artifacts

Plzeň 2023 Miroslav Krýsl

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2022/2023

ZADÁNÍ DIPLOMOVÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Bc. Miroslav KRÝSL
Osobní číslo: A20N0092P
Studijní program: N3902 Inženýrská informatika
Studijní obor: Softwarové inženýrství
Téma práce: Framework pro analýzu závislostí softwarových artefaktů
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s principy komponentově orientovaných softwarových systémů, způsoby reprezentace

a analýzy grafových dat.
2. Seznamte se s metodami a nástroji používanými pro statickou analýzu komponent a jejich závislostí

na Katedře informatiky a výpočetní techniky FAV ZČU.
3. Analyzujte možnosti rozšíření těchto nástrojů s důrazem na podporu zpracování rozsáhlých dato-

vých sad a podporu vývoje experimentů v různých programovacích jazycích.
4. Navrhněte a implementujte sadu rozšíření a demonstrujte jejich užití implementací experimentu

založeného na některé z metod z bodu 2.
5. Ověřte funkčnost a kvalitu vytvořených nástrojů, kriticky zhodnoťte jejich použití a výsledky prove-

dených analýz.

Rozsah diplomové práce: doporuč. 50 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování diplomové práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

dodá vedoucí diplomové práce

Vedoucí diplomové práce: Ing. Jakub Daněk
Katedra informatiky a výpočetní techniky

Datum zadání diplomové práce: 9. září 2022
Termín odevzdání diplomové práce: 18. května 2023

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 11. října 2022

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 22nd June 2023

Miroslav Krýsl

Abstract

This thesis aims to familiarize with the component-based systems, graph
data representation and analysis and with existing methods and tools for
static analysis of component-based systems which are being developed at
the Department of Computer Science at the University of West Bohemia in
Pilsen, Czech Republic. Based on the findings, the result of this thesis is
a framework design and implementation with emphasis on support for de-
velopment in multiple programming languages and on the ability to process
large datasets. The created framework then can serve to support the research
of the component-based systems. The author of this thesis proposes gener-
alization and extension of the framework for software artifacts dependency
analysis which has been created as a part of M. Hotovec’s master’s thesis.
The framework data storage model has also been analyzed with emphasis
on graph databases. ArangoDB database has been eventually chosen as a
storage solution and a core library in Java has been implemented to allow
the development of framework tools. The resulting design decisions allows
the framework to be used in broader range of use cases such as components
compatibility extraction and verification, which has been demonstrated by
replicating this functionality in a framework tool created as a part of this
thesis.

Abstrakt

Cílem této práce je seznámit se s komponentově orientovanými systémy,
s reprezentací a analýzou grafových dat a s existujícími metodami a ná-
stroji pro statickou analýzu komponentově orientovaných systémů, které
jsou vyvíjeny na Katedře informatiky a výpočetní techniky Západočeské
univerzity v Plzni. Na základě zjištěných poznatků je výsledkem této práce
návrh a implementace frameworku s důrazem na podporu vývoje ve více
programovacích jazycích a na schopnost zpracovávat velké datové sady. Vy-
tvořený framework pak může sloužit pro podporu výzkumu komponentově
orientovaných systémů. Autor této práce navrhuje zobecnění a rozšíření fra-
meworku pro analýzu závislostí softwarových artefaktů, který byl vytvořen
v rámci diplomové práce M. Hotovce. Model ukládání dat frameworku byl
rovněž analyzován s důrazem na grafové databáze. Jako řešení pro ukládání
dat byla nakonec zvolena databáze ArangoDB. Dále byla implementována
knihovna s jádrem frameworku v jazyce Java, které umožňuje vývoj nástrojů
frameworku. Výsledná návrhová rozhodnutí umožňují využití frameworku v
širší škále případů použití, jako je například extrakce a verifikace kompa-
tibility komponent, což bylo demonstrováno replikací této funkcionality v
nástroji frameworku vytvořeném v rámci této práce.

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Ing.
Jakub Daňek, for his invaluable guidance and support throughout my mas-
ter’s program and elaboration of this thesis.

I am grateful to my colleagues and the management of Yoso Czech s.r.o
for support and for providing me with a pleasant working environment to
work on this thesis.

I would also like to thank my friends, my family and especially my fiancée
for their love and support during this process. Without them, this journey
would not have been possible.

Contents

1 Itroduction 11

2 Component-based software systems 13
2.1 Software component . 13
2.2 Interface . 14
2.3 Contract . 14
2.4 Component model . 15
2.5 Component framework . 16
2.6 Composition . 16

3 Graph data representation and analysis 18
3.1 Graph theory fundamental terms 18

3.1.1 Graph . 18
3.1.2 Adjacency . 20
3.1.3 Vertex degree . 20
3.1.4 Subgraph . 20
3.1.5 Walk, trail, path and cycle 20
3.1.6 Connectivity . 21
3.1.7 Graph representation 21

3.2 Graph data management . 23
3.2.1 Graph data models 24
3.2.2 Graph data analysis 25
3.2.3 Graph databases . 25
3.2.4 Graph-processing frameworks 26

4 Tools for static analysis of components 27
4.1 CRCE . 27

4.1.1 Metadata . 28
4.2 JaCC . 30
4.3 OBCC . 30
4.4 Dependency analysis of software artifacts 31

4.4.1 Common JSON data model 31
4.4.2 Tooling concepts . 35
4.4.3 Parsers . 35

8

5 Framework design analysis 37
5.1 Framework concept . 37
5.2 Common data model . 38

5.2.1 Data model generalization 39

6 Framework data storage model analysis 42
6.1 Inter-tool data transfer analysis 42
6.2 Data storage types analysis 43

6.2.1 By implementation origin 44
6.2.2 By usage scope . 45
6.2.3 By data location . 46

6.3 Data storage solutions . 47
6.3.1 Process memory storage 48
6.3.2 File-based storage . 48
6.3.3 Database storage . 49

6.4 Graph databases . 52
6.4.1 Neo4j . 53
6.4.2 ArangoDB . 53
6.4.3 OrientDB . 53
6.4.4 Summary of graph databases 54

6.5 Analysis conclusion . 55
6.6 Framework data management 56

6.6.1 ArangoDB features 57
6.6.2 Intermediate data transfer format 59
6.6.3 Database reference passing 60

7 Framework implementation 62
7.1 Framework core Java library 62

7.1.1 Domain classes . 62
7.1.2 Serialization and deserialization 64
7.1.3 DAO . 65

7.2 Framework tools . 65
7.2.1 Data Importer . 65
7.2.2 Java Compatibility Extractor 67

8 Testing 70
8.1 Performance . 71
8.2 Test scenario . 71

8.2.1 Test results . 72
8.2.2 Single-pair extraction duration 72

9

8.2.3 Previous revisions extraction duration 73
8.2.4 Total extraction duration 74

8.3 Test conclusion . 74

9 Conclusion 75

Bibliography 77

List of Abreviations 79

List of Figures 80

List of Tables 81

List of Listings 82

Appendices 83

A. OpenAPI intermediate JSON format specification 84

10

1 Itroduction

Component-based development emphasizes the creation of modular software
using reusable components. Each component functions independently and
communicates with others through defined interfaces. This design approach
enables the separation of functionality into smaller units, enhancing code re-
usability. Components can be integrated and shared across multiple different
projects, promoting modularity and reducing maintenance costs.

Essential part of a component’s development lifecycle are modifications
of its functionality complemented by its interface modifications. Incorrect
usage of incompatible components versions could lead to a break-down of the
whole system. This leads to a need for a robust instrument for components
versioning and tracking of their mutual compatibility to ensure their smooth
composition and integration.

Researchers at the Department of Computer Science at the University of
West Bohemia in Pilsen, Czech Republic, are working on tools for automatic
verification of component compatibility specifically targeting the OSGi com-
ponent framework. They introduced the project of experimental Component
Repository supporting Compatibility Evaluation (CRCE) to provide means
of compatibility information extraction and storage for later components
compatibility verification.

M. Hotovec has presented foundations for a modular framework intended
for dependency analysis of software artifacts in his thesis[1]. The main idea
is to split rather complex and diverse features of a single monolithic system
into multiple individual tools, each focusing on a simple task.

This thesis aims to familiarize with the component-based systems, graph
data representation and analysis and with the mentioned existing methods
and tools for static analysis of component-based systems. Based on the find-
ings, the result of this thesis will be a framework design and implementation
with emphasis on support for development in multiple programming lan-
guages and on the ability to process large datasets. The created framework
then can serve to support the research of the component-based systems. The
author of this thesis proposes generalization and extension of the modular
framework created as a part of M. Hotovec’s master’s thesis. The aim is to
provide support for broader and more generic use cases including not only
software artifacts dependency analysis, but such use cases as the compatib-
ility extraction and verification introduced by CRCE.

The first two chapters of this thesis are devoted to the introduction into

11

component-based software systems (chapter 2) and graph data representa-
tion and analysis (chapter 3). The following chapter 4 summarizes the tools
and methods which are being researched and developed at the Department
of Computer Science at the University of West Bohemia. The chapter 5
deals with the framework design analysis while proposing generalizations
and changes. The next chapter 6 deals with the framework storage model
analysis to be able to support large datasets processing. The two penultim-
ate chapters present the implementation part of this thesis – the implement-
ation of a core Java library and two framework tools (chapter 7), and how
the framework design and implementation have been verified (chapter 8).
The final thesis conclusion is in the last chapter 9.

12

2 Component-based software
systems

This chapter is based on the work of F. Bachman et al. [2].
A component-based system is a software system that is designed and built

using a component-based design strategy including products and concepts
supporting this strategy. The system is composed of individual software
components that are executed on physical or logical devices.

Components in a component-based system implement one or more in-
terfaces and satisfy contracts. These contracts ensure that independently
developed components follow certain rules for predictable interactions and
can be deployed into standardized environments.

The motivation behind a component-based system lies in the following
factors.

1. Predictability is achieved through uniform design rules enforced across
components, allowing for the prediction of system properties such as
scalability and security.

2. Components provide flexibility, as they can be independently developed
and deployed without unexpected interactions.

3. Component model facilitate the deployment of independently developed
components into a common standardized environment, ensuring pre-
dictable interactions and avoiding resource contention.

4. Reusing existing components and making key architectural decisions
upfront (they are part of the component model and framework) allows
the system’s time-to-market reduction.

2.1 Software component
The concept of a software component can vary depending on different per-
spectives. It can be seen as a reusable entity, a commercial off-the-shelf
(COTS) product, a unit of project management, or a design abstraction.

In the referenced work [2], the component is defined as follows.
A component is:

• an opaque implementation of functionality

13

• subject to third-party composition

• conforming with a component model

Components are capable of being composed by third parties thanks to
their opaqueness, which allows for abstraction and information hiding. They
can be used independently of the tools or knowledge possessed by the com-
ponent provider. Components must also adhere to specific rules that define
how components can interact and comply with architectural constraints.

2.2 Interface
Interfaces are crucial for integrating components into a common environ-
ment. They provide a mechanism for controlling dependencies between com-
ponents. An interface acts as a specification of the properties that clients can
rely on when interacting with a component, while other properties remain
hidden.

On of the classification schemes categorizes properties into four kinds.

syntactic – conventional APIs, interface specifications written in program-
ming languages. These are the signatures of services the components provide
– the types and order of arguments to the service and the manner of return-
ing results and their types.

behavioral – define the outcome of operations, for example, by defining
pre-conditions and corresponding post-conditions.

synchronization – deal with the components synchronization aspects dis-
tributed and concurrent systems.

quality of service – deal with the qualitative attributes, such as response
delay, precision and portability.

While the methods for specifying syntactic properties are commonly
available in the vast majority of programming languages, the ways of ex-
pressing the other three kinds of properties remain limited.

2.3 Contract
Contracts establish mutual liabilities and agreements between components
and their clients – the dependencies and expectations that both can rely

14

upon for effective interaction. Contracts can range from simple, single-
component interactions to complex patterns involving multiple components
and multiple invocations. They can also specify both functional and beha-
vioral properties of components and their interactions.

Contracts can be seen from two perspectives: component contracts and
interaction contracts.

Component contracts – focus on individual components and describe
the services they provide along with any additional properties and condi-
tions necessary for proper functioning. These contracts go further than the
interfaces, as they involve implementation-specific details and requirements
on the environment and clients.

Interaction contracts – outline the patterns of interaction among mul-
tiple components in the system.

Overall, contracts play a crucial role as they formalize the dependencies,
requirements, and interaction patterns between components, thus ensuring
effective communication and reliable system behavior.

2.4 Component model
The purpose of component models is to enable uniform composition, ensure
appropriate quality attributes, and facilitate the deployment of components
and applications.

Component models aim to enable interaction between components by
standardizing a way to specify each component’s requirements and capab-
ilities. They also contribute to achieving desired quality attributes in a
system by standardizing the types of components used and their patterns of
interaction (the architectural style).

The deployment process is addressed by providing standard compose-
time and runtime infrastructure by concrete component model implementa-
tion. This simplifies the deployment lifecycle starting from the development,
through composition environment, and to the final production environment.

Component models impose standards regarding components in the fol-
lowing areas:

1. Component types: a component’s type is defined by the interfaces
it implements.

15

2. Interaction schemes: specification how components are located,
their lifecycle, topology constraints, the means of communication used
and, for example, how security and transactions are achieved.

3. Resource binding: management of available resources and how their
provision to components.

An example of a component model is OSGi.

2.5 Component framework
Component frameworks generally provide coordination mechanisms that en-
force a specific model of component interactions. They manage the compon-
ent lifecycle, controlling resources and facilitating communication between
components.

An example of a component framework is Felix which is an implement-
ation of OSGi component model.

2.6 Composition
In component-based development, systems are assembled through composi-
tion rather than integration. Composition is a process of combining compon-
ents to enable interactions defined by the component model. It is essential
for a component model to define contracts for compositions.

The major classes of compositions are:

Component deployment within framework – components must be
deployed into frameworks prior to be composed or executed. The compos-
ition contract describes the interface that components must implement in
order to allow the framework to manage their lifecycle and resources.

Framework deployment within framework – frameworks may be de-
ployed into other, higher order frameworks. It has an analogical composition
contract to component deployment.

Simple composition – components deployed within the same framework
can be composed. The composition contract specifies the application-specific
functionality.

16

Heterogeneous Composition – components be composed also within
multiple frameworks. In such case, bridging contracts between the frame-
work environments are needed in addition to composition contracts.

Framework extension – frameworks itself may be treated as components
and be composed (extended) with other components. These components are
often called “plug-ins”. The plu-gin contract specifies the means to extend
the framework behavior.

Component assembly – components can be sub-assembled (nested), thus
the composition contract involves only the top-level components.

17

3 Graph data representation
and analysis

Graphs serve as powerful models for representing and analyzing complex
relationships and structures in various domains, ranging from social networks
to transportation systems. The discipline dealing with graphs is called graph
theory.

One of the significant domains in the context of software engineering
is the analysis of software components and their dependencies. Software
components and their mutual relations naturally form graph-like structures.
Graph algorithms and visualization tools can serve as a powerful means to
perform a comprehensive analysis for this domain.

This chapter is devoted to the ways of representing, managing and ana-
lyzing graph data. In the first section (3.1), multiple fundamental terms
of graph theory are outlined, as well as basic data structures for represent-
ing graphs. The section that follows deals with the graph data storage and
management (3.2).

3.1 Graph theory fundamental terms
This section introduces fundamental terms from the graph theory. Inform-
ation in this section is based on the work of Md. S. Rahman [3] (where not
stated otherwise).

3.1.1 Graph
A graph G is a tuple consisting of a finite set V of vertices (they can be
called nodes in different terminology) and a finite set E of edges. Each edge
uv (or ek) is a pair of vertices u and v where both u and v belong to the
set of graph vertices. These two vertices associated with an edge are called
the endpoints (or end-vertices) of the edge. The set of vertices of a graph
G is often denoted as V (G) and the set of edges as E(G). The number of
vertices |V (G)| is denoted as n, number of edges |E(G)| as m.

Graphical depiction of a graph is usually realized by representing each
vertex by a point or a small circle and each edge by a line segment or a curve
between its two end-vertices.

18

When the pair of edge vertices is unordered, the graph is called undir-
ected. The edge is in this case often denoted as (u, v). An example of an
undirected graph is on the figure 3.1a.

When the pair of edge vertices u and v is ordered, the graph is called
directed. The edge is in this case often denoted as {u, v}. The vertex u is
called the tail (or start, source) of the edge uv and the v is called the head
(or end, target) of the edge uv. On a graphical representation, the edge
direction is usually depicted using an arrow pointing from the start vertex
to the end vertex. An example of a directed graph is on the figure 3.1b.

1

2

3

4

(a) Undirected graph.

1

2

3

4

(b) Directed graph.

Figure 3.1: Examples of simple graphs.

A loop is an edge whose end-vertices are the same (edges (v3, v3) and
{v3, v3} on the figures 3.2b and 3.2a respectively).

Multiple edges are edges with the same pair of end-vertices (edges {v1, v2}
and (v1, v2) on the figures 3.2b and 3.2a respectively).

A graph is called simple graph if it does not have any loop or multiple
edge, otherwise, it is called a multigraph.

Examples of simple graphs are on the figure 3.1, multigraphs on the
figure 3.2.

1

2

3

4

(a) Undirected graph.

1

2

3

4

(b) Directed graph.

Figure 3.2: Examples of multigraphs.

A graph D is called the underlying graph of graph D if D is constructed
from D such that an edge (u, v) belongs to D if and only if {u, v} or {v, u}
or both belong to D.

19

A directed graph D is called corresponding to G if D is constructed from
G such that an edge {u, v} belong to D if and only if (u, v) (or alternatively
written (v, u) belongs to G.

A directed graph obtained from an undirected graph G by replacing each
edge (u, v) belonging to G by a directed edge uv or vu, but not both is called
an orientation of G.

3.1.2 Adjacency
For every edge uv in graph G, the two vertices u and v are said to be adjacent
in G and the vertex v is called a neighbor of vertex u. The edge uv is said
to be incident to the vertices u and v. In undirected graph, the adjacency
applies both directions, thus the vertex u is also a neighbor of v in G.

For example, on the undirected graph on the figure 3.2a, adjacent vertices
of the vertex v4 are v1 and v3. On the directed graph on the figure 3.2b,
adjacent vertex of the vertex v4 is only v1.

3.1.3 Vertex degree
The degree of a vertex v in an undirected graph G, is the number of edges
incident to v. Each loop is counted twice for a vertex v. The degree of the
vertex v is denoted as deg(v).

Regarding the directed graphs, indegree of a vertex v in a directed graph
is the number of edges terminating at v, and the outdegree of v is the number
of edges leaving v. The degree of v is then the sum of its indegree and
outdegree.

For example, on the undirected graph on the figure 3.2a, the value for
vertex v3 is deg(v3) = 4. On the directed graph on the figure 3.2b, the values
for vertex v3 are indeg(v3) = 2, outdeg(v3) = 2 and deg(v3) = 4.

3.1.4 Subgraph
A subgraph of a graph G is a graph G′, such that the set of vertices V (G′)
is a subset of V (G) and set of edges E(G′) is a subset of E(G).

For example, on the figure 3.3, the graph G′ is a subgraph of G.

3.1.5 Walk, trail, path and cycle
A walk in a graph G is a nonempty sequence W = v0, e1, v1, . . . , vk−1, ek, vk

consisting of alternating vertices and edges of graph G where vi and vi+1 are
end-vertices of the edge ei. The vertices v0 and vk are called the end-vertices

20

1

2

3

4

(a) A graph G.

1

2

4

(b) A graph G′ – subgraph of G.

Figure 3.3: Example of graph and its subgraph.

of W , the others are called internal vertices. The number k is the length of
the walk W , which corresponds to the number of edges on the walk.

A trail of a graph G is a walk in G with no repeated edges. A trail with
the end-vertices being the same is called a circuit.

A path of a graph G is a walk in G with no repeated vertex, except
end-vertices. A path with the end-vertices being the same is called a cycle.

3.1.6 Connectivity
A vertex u is said to be reachable from a vertex v, if there is a path from v

to u.
An undirected graph G is said to be connected if every pair of vertices

is reachable from each other. A directed graph G is said to be weakly con-
nected or connected if its underlying graph is connected. In addition, a
directed graph, where every pair of vertices is reachable from each other,
is called strongly connected. Otherwise, both undirected and directed, are
called disconnected.

3.1.7 Graph representation
The first – graphical – representation has been outlined in the previous
sections. Although convenient for visualization, the graphical representation
is not suitable for storage and later processing in a computer.

There are generally three main approaches how to represent a graph in
a computer. These are adjacency matrix, incidence matrix and adjacency
list.

Adjacency matrix

The adjacency matrix A(G) of graph G is a matrix A(G) = [aij] with di-
mensions n × n where aij is the number of edges between the two vertices vi

and vj. In other words, every row and every column corresponds to a single

21

vertex. The corresponding cell then contains the number of edges between
these two vertices. An example of a graph and its corresponding adjacency
matrix is on the figure 3.4.

Testing for vertices adjacency requires constant time for the adjacency
matrix. Scanning for neighbors has however O(n) time complexity.

This representation is suitable for representing dense graphs, i.e., graphs
with a relatively large number of edges between most of the vertices. For
sparse graphs, it wastes a lot of memory due to most of the values in a
matrix being zero.

Incidence matrix

The incidence matrix I(G) of graph G is a matrix I(G) = [aij] with dimen-
sions n × m. For undirected graphs, aij is 1 if the edge ej is incident to the
vertex vi and 0 otherwise. For directed graphs, aij is −1 if the edge ej leaves
the vertex vi, 1 if the edge enters the vertex, and 0 otherwise. An example
of a graph and its corresponding incidence matrix is on the figure 3.4.

In other words, every row corresponds to a single vertex and every column
to a single edge. The corresponding cell contains the information whether
this vertex is an end-vertex of the edge, or alternatively for directed graphs,
whether the edge leaves or enters the vertex.

This representation is suitable for use cases, in which it is important
to know whether a vertex is incident to an edge or not in constant time.
Otherwise, it is not economical, especially for a graph which contains a
relatively high number of edges compared to n and for use cases, where
the performance of neighbors scanning is also important, since the time
complexity is similarly to the adjacency matrix also O(n).

Adjacency list

The adjacency list Adj(G) of a graph G is an array of n lists. There is a
list for every vertex v of graph G and each of these lists contains a record
for each neighbor of the corresponding v. An example of a graph and its
corresponding adjacency list is on the figure 3.4.

Both, checking adjacency of vertices and scanning for neighbors, have
time complexity O(deg(v)).

This representation is much more economical than the adjacency mat-
rix and the incidence matrix, particularly if the number of graph edges is
relatively low.

22

1

2

3

4

e1

e2

e3e4

e5

(a) A graph G.

A(G) =

v1 v2 v3 v4

v1 0 0 1 1
v2 0 0 0 0
v3 0 1 0 1
v4 1 0 0 0

(b) Adjacency matrix of the graf G.

I(G) =

e1 e2 e3 e4 e5

v1 −1 0 0 1 −1
v2 0 1 0 0 0
v3 1 −1 −1 0 0
v4 0 0 1 −1 1

(c) Incidence matrix of the graf G.

v1

v2

v3

v4

v3 v4

v2 v4

v1

(d) Adjacency list of the graf G.

Figure 3.4: Examples of adjacency matrix, incidence matrix and adjacency
list.

Other graph representations

The three introduced graph representations are the basis for other more
advanced ones. The matrix representations can be efficiently used for math-
ematical analysis of the graphs, such as determining whether the graph is
connected in case of adjacency matrix, and counting the number of span-
ning trees in case of incidence matrix [4]. On the other hand, an adjacency
list and its modifications provide good solutions for storing large volumes of
graph-structured data [5].

The sole definition of vertices and their interconnecting edges is not suf-
ficient for most of the use cases. The vertices and edges are therefore often
accompanied by additional information [6]. This topic is further elaborated
in the following section 3.2.

3.2 Graph data management
Graph data management involves the technologies for storing, processing,
and analyzing large volumes of graph data. These technologies have seen
significant advancements in recent years. There are two main areas of focus
within graph data management. The first area is graph database models,
which involves the design of graph structure with emphasis on graph-oriented

23

operations and integrity constraints to ensure data consistency. The second
area is graph data management systems which include graph databases and
graph-processing frameworks. Graph databases are designed for persistent
data storage, while graph-processing frameworks focus on batch processing
and analysis of large graphs.[6]

The next three sections are devoted to the basic overview of graph data
models (section 3.2.1), methods for graph data analysis (section 3.2.2) and
graph databases (section 3.2.3). NoSQL graph databases and their imple-
mentations are also described more in detail in the sections 6.3.3 and 6.4.

3.2.1 Graph data models
A graph database model represents data structures as graphs, allowing data
manipulation through graph-oriented operations. Data manipulation in-
volves graph transformations and operations based on graph features such
as paths, neighborhoods, and connectivity. Graph query languages play a
significant role in defining the flavor of a database model, while integrity
constraints ensure data consistency.[6]

There are generally the following basic models.[6]

Labeled graph – a directed graph where vertices and edges are assigned
labels from a vocabulary. Vertices are labeled with types, representing a
domain of values, and edges have labels representing relations between these
types.

Hypergraph – an extension of a graph where edges are generalized as
hyperedges and can connect more than two vertices. It allows for complex
object definitions, functional dependencies, and multiple structural inherit-
ance.

Hypernode – a directed graph where vertices can themselves be graphs,
allowing nested graphs and encapsulation of information. It represents both
simple and complex objects, mappings, records, and hierarchies.

Property graph – a directed graph where vertices and edges can have
labels and properties. It allows representing metadata bound to the vertices
and edges using key/value pairs.

RDF model – The Resource Description Framework (RDF) [7] was ori-
ginally designed for a metadata representation. The ability to interconnect

24

resources gives an advantage of an extensible way using graph-like structure
for data. The RDF data model structures can be viewed as triples represent-
ing relationships between subjects, predicates, and objects, or as a general
representation of a graph where edges are also considered vertices.

3.2.2 Graph data analysis
Graph data manipulation and analysis can be expressed by graph operations
and graph transformations based on features like neighborhood, paths and
graph patterns. Another approach is to enclose all operations into a graph
query language. An examples of such languages are SPARQL – a standard
query language for RDF model, Cypher – used by Neo4j graph database,
AQL – used by ArangoDB graph database and GraphQL – for declarative
data fetching and manipulation.[6]

The queries can be classified into the following categories.[6]

Adjacency queries – determine vertex/edge relationships in a graph.
They are used to find neighbors of a vertex, check adjacency between vertices
or to check incidence of an edge and a vertex.

Pattern matching queries – involve finding subgraphs that match a
given graph pattern. It can involve complex patterns, semantic matching
or approximate matching. These types of queries are important in various
domains like pattern recognition and social network analysis.

Reachability queries – determine whether a path connects two vertices
in a graph database. They serve as the foundation for other graph queries,
such as calculating the shortest-path distance in road networks.

Analytical queries – analytical queries measure and aggregate quantit-
ative and topological graph features. Examples include calculating vertices
degrees, path lengths, and applying complex algorithms for graph analysis
such as PageRank.

3.2.3 Graph databases
Graph databases are specialized systems for managing graph-like data. They
have a long history, but recent technological advancements have made prac-
tical systems possible. Graph databases include major components, such as

25

storage engines, database languages, indexes, query optimizers and transac-
tion support.

They can be classified into two categories – native or nonnative – depend-
ing on their internal implementation. Native graph databases utilize data
structures and indexes built specifically for storing graph-like data, while
nonnative graph databases use other database structures supplemented by
interfaces for graph operation queries. Examples of native graph databases
are Neo4j and AllegroGraph, examples of nonnative are ArangoDB and Ori-
entDB.[6]

Although the native graph databases may perform better for graph oper-
ations, it is not always a rule. Example could be benchmark comparison of
ArangoDB and Neo4j where ArangoDB outperformed Neo4j in both memory
comsuption and processing time.[8]

Graph databases are also described more in detail in the section 6.3.3
and a comparison of three of them is in section 6.4.

Special case of databases which can be used for managing graph data is
RDF databases. Data in RDF is a directed graph composed of triple state-
ments, where each statement is a triple object-predicate-subject represented
by 1) a subject (a start vertice), 2) a predicate connecting the subject with
the object (an edge), and 3) object (end vertice), thus forming a graph-like
structure. SPARQL is used as a standard query language. Examples include
Jena, Virtuoso, and Blazegraph.[6]

3.2.4 Graph-processing frameworks
Graph databases are primarily used for efficient storage and retrieval of
graph data, while a graph-processing frameworks are designed for performing
intensive computations and analysis on graph data, however, the function-
ality of both can overlap. Graph-processing frameworks utilize in-memory
batch processing, distributed and parallel strategies. Examples of such sys-
tems are Hadoop and MapReduce which are adapted for graph processing,
while Pregel or Apache Giraph are graph-specific platforms.[6]

26

4 Tools for static analysis of
components

There are multiple existing methods and tools used for static analysis of
components and their dependencies which are developed at the Department
of Computer Science and Engineering Faculty of Applied Sciences, Univer-
sity of West Bohemia. They are described as a part of this work in the
following sections.

The tools include CRCE – an experimental repository system used for
research of component-based systems (section 4.1), JaCC – a Java library
for extraction and comparison of Java types using bytecode inspection (sec-
tion 4.2), OBCC – a Java library for checking compatibility of OSGi bundles
(section 4.3), and the last is M. Hotovec’s master’s thesis work on modular
framework for dependency analysis (section 4.4).

4.1 CRCE
The Component Repository and Compatibility Evaluation (CRCE) is an
experimental repository system. It has been designed to support research
into component-based and modular systems undertaken by ReliSA research
group at the Faculty of Applied Sciences, University of West Bohemia. The
source code and information are available at GitHub [9]. The idea behind
the CRCE project is described in detail in [10].

CRCE manages various types of resources, including component distri-
bution packages and metadata files that describe component properties and
their relations. Additionally, CRCE handles auxiliary information called
“results”, which are generated by indexing and verification operations. These
results include detailed reports of tests performed, configuration properties,
logs of simulation runs, and component interface comparison results. The
volume of results can be substantial. Furthermore, a single result resource
can be related to multiple components and their properties.

The results often originate from external tools invoked by CRCE verific-
ation plugins. These plugins include OSGi Bundle Compatibility Checker
(OBCC) which is a compatibility verification tool implementing type-based
compatibility checks of OSGi bundles and packages. It checks compatibility
in terms of interface and method signatures and automatically converts the

27

results to version numbers that strictly follow the OSGi semantic versioning
scheme. The compatibility verification functionality has been implemented
into CRCE as a part of the J. Daňek’s work in his master’s thesis [11].

CRCE offers advantages over other solutions in terms of performance
and analysis costs. Key reasons are:

Pre-computed results – CRCE stores and retrieves compatibility res-
ults, eliminating the need for repeated compatibility checks. This improves
performance by reducing computational overhead.

Metadata-based analysis – CRCE uses metadata storage to provide
summarized and detailed component information. This reduces analysis
costs by avoiding repeated analysis of components.

Credibility and verification – CRCE’s results provide detailed inform-
ation, enhancing credibility and enabling informed decision-making.

Scalability and resource constraints – CRCE is designed for resource-
constrained devices by utilizing pre-computed results.

CRCE includes a web interface for interacting with the repository, brows-
ing its contents, and querying information. It also provides REST API for
applications.

4.1.1 Metadata
Another CRCE related article [12] comprehensibly discusses the metadata
structures and compatibility verification in CRCE. The metadata structure
is based on OSGi Bundle Repository (OBR) requirements and capabilit-
ies, allowing the description of various interface features and properties. It
follows a generic structure that allows it to represent various components
beyond a specific component model. The generic structure may be cumber-
some to work with, but it enables CRCE to support different component
models without modifying the data structure. It comprises five core ele-
ments: Resource, Capability, Requirement, Filter, and Property. A diagram
of these metadata elements is on the figure 4.1;

Resource – represents auxiliary information, data, or assets that are man-
aged and associated with a component in the repository. Resource is an
additional piece of information created during indexing, verification, and

28

analysis operations. The data associated with a resource are divided into
capabilities, requirements, and properties.

Capability – represents a characteristic or feature of a component that
describes its ability to perform a certain function or provide a specific service.
A capability itself can be described by its properties, its own requirements
and possible child capabilities, thus forming a tree like structure.

Requirement – represents a specification or condition that a component
needs – prerequisites that must be fulfilled – in order to function properly
or interact with other components. A requirement itself can be described by
its possible child requirements, thus also forming a tree like structure.

Property – represents to a characteristic, attribute, or feature associated
with an entity.

Attribute – attributes are the actual lowest level bearers of information
about entities. They can be textual, numerical, boolean, enumerated val-
ues, or even complex data structures. All entities – resources, capabilities,
requirements and properties can directly provide information about them-
selves using attributes.

Figure 4.1: Core elements of the CRCE metadata model (taken from [12])

This metadata is accessible internally for CRCE modules by using metadata
API or by previously mentioned REST API.

In the context of compatibility verification, the metadata hierarchical
structure is used to represent compatibility information at various levels,
such as individual features, aggregates (packages or the whole component),

29

and their relationships. It provides a systematic way to capture and analyze
differences between different versions of components.

4.2 JaCC
The Java Class Comparator (JaCC) is a Java library developed at the De-
partment of Computer Science, the University of West Bohemia. Informa-
tion about the JaCC library is taken from the work [11].

JaCC offers a capability to extract Java type information representa-
tion and perform type comparison on the extracted data. This is achieved
through Java bytecode inspection, allowing the retrieval of type represent-
ation. The process of reconstructing a component’s complete public API
from its binary form is extensively detailed in [13].

The workflow of JaCC involves a recursive approach, starting from the
top level (package) and progressing down to the lowest levels (field types,
method arguments, etc.). At the lowest levels, the resulting difference class
for each element is obtained through direct comparison. At higher levels,
the difference is computed as an aggregation from the element’s children.

To address the limitations of the Reflection API, the library presents its
own Java type system representation, which closely resembles the classes
provided by the java.lang.reflect package. This custom representation
was introduced to enable compatibility checks, allowing the acquisition of the
representation through means other than the classloader, such as bytecode
inspection.

4.3 OBCC
The OSGi Bundle Compatibility Checker (OBCC) is also a Java library
developed at the Department of Computer Science, the University of West
Bohemia. Information about the OBCC library is taken from the work [11].

OBCC offers a capability to check the compatibility of OSGi bundles
based on subtype relations. It serves as a foundation for tools focused on
automated versioning and safe component updates.

Internally, it uses the JaCC library for loading OSGI bundles, extract-
ing Java type representation from bytecode, and to perform compatibility
checks.

30

4.4 Dependency analysis of software artifacts
In his master’s thesis work [1], M. Hotovec proposed and implemented a
foundation of a framework for dependency analysis of software artifacts.
The two basic ideas of the framework design are:

1. The framework is modular – it consists of multiple tools that operate
independently.

2. Framework tools are able to generate datasets, to contribute to existing
ones or to infer outcomes based on a dataset state.

3. The dataset data model is standardized for all tools and can be rep-
resented by a standardized intermediate format.

4. The framework workflow consists of chaining multiple tools in a row.
Each tool contributes to the desired result by modifying the dataset
and handing it over to the next tool in the pipeline.

5. The tools are not restricted to using a specific programming language.

4.4.1 Common JSON data model
One of the requirements for the framework is that it must be modular with
support for multiple programming languages. The individual framework
tools can depend on the results made by the preceding ones. They also
must be able to contribute to the common objective by adding their own
results to the dataset and pass it to the following tools. This results in the
necessity for a common, language-independent data representation which
must be followed by all the framework tools.

As a part of the author’s work, a common JSON format has been de-
signed for the purpose of intermediate data representation. A diagram of the
format’s data model is on diagram 4.2, which is taken from the referenced
work. The main data objects are described further on in this section.

31

DependencyItem

+ Id: String

+ Name: String

+ Version: String

+ RegistryType: String

+ Authors: IList<String>

+ License: String

+ LicenseLink: String

+ Summary: String

+ Description: String

+ Link: String

+ PackageDownloadLink: String

+ SourceCodeLink: String

+ AnnotationInfo: IList<AnnotationinfoItem>

+ CustomAttributes: IDictionary<string, object>

+ Dependencies: IList<DependencyEdge>

SolutionItem

+ Name: String

+ Language: String

+ Path: String

+ Projects: IList<ProjectEdge>

ProjectItem

+ Name: String

+ Language: String

+ LanguageVersion: String

+ Path: String

+ Dependencies: IList<DependencyEdge>

DataSerializationWrapper

+ Version: String

+ DataType: String

+ Data: Object

ProjectEdge

+ Parent: ProjectItem

+ Link: ProjectItem

GraphEdge<T>

+ CustomAttributes: IDictionary<string, object>

+ AnnotationInfo: IList<AnnotationinfoItem>

+ Parent: T

+ Link: T

AnnotationInfoItem

+ AnalyzerName: String

+ AnalyzerVersion: Version

+ AnalyzerCondition: String

+ InformationType: AnnotationInfoItem.InformationLevel

+ Text: String

<<Enumeration>>
AnnotationInfoItem.InformationLevel

Info

Warn

Err

None

DepdendencyEdge

+ RequiredVersionsText: String

+ VersionsLimit: IList<VersionLimit>

+ Parent: DependencyItem

+ Link: DependencyItem

VersionLimit

+ RequiredVersion: String

+ CustomLimitSymbol: String

+ LimitSymbol: VersionLimit.OperatorType

<<Enumeration>>
VersionLimit.OperatorType

GreaterOrEqual

Greater

LowerOrEqual

Lower

Equal

NotEqual

Compatible

Custom

Undefined

Figure 4.2: Data model of the universal JSON data format (taken from [1]).
32

Following core types of objects are introduced for the JSON format. All
of them have predefined set of attributes, which are listed in the mentioned
diagram 4.2.

Data wrapper – the top level wrapper object with field dedicated for the
format version information, type of the contained data, and the data itself.
(Depicted as DataSerializationWrapper in the diagram.) The determination
of the contained data type is realized using the attribute DataType which is
the type’s textual representation in the used programming language. This
solution makes it difficult to ensure the data format compatibility among
multiple programming languages. This issue is addressed further in the
section 5.2.

Dependency – a representation of a single software package. (Depend-
encyItem in the diagram.)

Dependency edge – a representation of a single dependency relation
between two packages or between a project and a package. (DependencyEdge
in the diagram.)

Project – a representation of a project – a collection of jointly developed
software artifacts. (ProjectItem in the diagram.)

Project edge – an association of a project with a solution. (ProjectEdge
in the diagram.)

Solution – a representation of a solution – a collection of jointly developed
projects. (SolutionItem in the diagram.)

Other data objects like annotations (AnnotationInfoItem in the diagram)
and versioning limits are also available. An important feature of the data
format is a possibility to include non-predefined attributes in a special attrib-
ute CustomAttribute. This gives freedom for the framework tools to include
arbitrary data in the dataset.

An example of a serialized dataset is in the listing 1. The example con-
sists of one dependency with ID pipgrip which itself has a single dependency
with ID anytree. Some fields and sub-dependencies have been omitted for
brevity.

The complete description of the format is available in chapter 6 of the
referenced thesis.

33

{
"$id": "1",
"Version": "0.1.0.0",
"DataType": "System.Collections.Generic.List`1[Janus.Core.Models.DependencyItem]",
"Data": [

{
"$id": "2",
"Id": "pipgrip",
"Name": "pipgrip",
"Version": "0.1.0",
"RegistryType": "PyPI",
"Authors": [

"ddelange"
],
"License": "BSD-3-Clause",
"Summary": "Composable command line interface toolkit",
"Link": "https://pypi.org/project/pipgrip/0.1.0/",
"AnnotationInfo": [],
"CustomAttributes": {

"$id": "3"
},
"Dependencies": [

{
"$id": "4",
"AnnotationInfo": [],
"CustomAttributes": {

"$id": "5"
},
"Parent": {

"$ref": "2"
},
"Link": {

"$id": "6",
"Id": "anytree",
"Name": "anytree",
"Version": "2.8.0",
"RegistryType": "PyPI",
"Authors": [

"c0fec0de"
],
"License": "Apache 2.0",
"Summary": "Powerful and Lightweight Python Tree Data Structure..",
"AnnotationInfo": [],
"CustomAttributes": {

"$id": "7"
},
"Dependencies": []

}
}

]
}

]
}

Listing 1: Example of a dataset serialized into the universal JSON format.

34

4.4.2 Tooling concepts
As part of the original thesis [1], three main concepts have been introduced
for the framework – parsers (section 4.4.3), analyzers (section 4.4.3) and
importers/exporters (section 4.4.3).

4.4.3 Parsers
Parsers are framework tools used to create a dependency graph by query-
ing software artifacts repositories, such as Maven Central Repository1, Py-
thon Package Index2 or NuGET3, and obtaining metadata about depend-
encies. The output is a dependency graph represented in the universal data
model. In addition to the information about dependency relations, arbitrary
metadata about dependencies, dependency edges or the artifact repository
itself can be obtained and saved.

The author of the work has implemented two parsers. The first one is
PyPI parser – which parses dependency information for a given package
from Python Package Index (PyPI), a repository for python artifacts. The
second one is NuGet parser – which likewise parses dependency information,
but from NuGet, a package manager for .NET platform.

Analyzers

Analyzers are framework tools designed to analyze a dependency graph pro-
duced by parsers and provide analysis results. The output of analyzers is
an annotated dependency graph, where the annotations of relevant elements
provide information about the analysis results. The result can be further
processed by other analyzers by exporting the modified dataset into the
universal data model.

Some analyzers may not be able to use the universal data format due
to their nature. To this category belong, for example, the analyzers which
collect and print metrics.

The author of the work has implemented several analyzers. These analyz-
ers include Circular Dependency analyzer – for detecting circular dependen-
cies in a dependency graph, Version Conflict analyzer – for detecting version
conflicts, Key Value analyzer – for filtering dependencies by attribute value
and Counter analyzer – for counting annotated dependencies.

1https://mvnrepository.com/repos/central
2https://pypi.org
3https://www.nuget.org

35

https://mvnrepository.com/repos/central
https://pypi.org
https://www.nuget.org

Importers and Exporters

To be able to hand over the dataset created/modified by parsers and analyz-
ers to other tools, the dataset needs to be transformed into an intermediate
format. Moreover, the framework tools may provide a capability to export
the dataset into various specialized formats, for example, a graph descrip-
tion language or a simple text with better human readability. Converting
the data to these formats may cause an information loss, but that is accept-
able for use cases which require to extract or visualize only a subset of the
whole dataset. Importers and exporters serve exactly for this purpose. Im-
porters import the data from an intermediate format, exporters convert the
tools individual data representation into an intermediate format or another
representation.

They must not be confused with framework tools, they more like a lib-
raries, components or services inside every tool for handling the required
data transformation functionality.

The author of the work has implemented importers for the common
JSON data model (section 4.4.1), DOT format for graph representation,
and a simple textual format where the dependencies are individually listed
each on one line.

36

5 Framework design analysis

A lot of work has already been done in the field of software dependency
analysis at the University of West Bohemia as described in the previous
section 4. This thesis aims to build upon that work and create foundations
for a universal software dependency analysis framework (SDAF).

The first section 5.1 is devoted to the overall framework concept and
the next section 5.2 outlines the common data model. The analysis of the
framework data storage model is quite complex, so a separate chapter 6 is
devoted to this topic.

5.1 Framework concept
The overall framework concept is based on the work of M. Hotovec[1] and it
is practically unchanged. His concept is already described in this thesis in
the section 4.4. To recap:

1. The framework is modular – it consists of multiple tools that operate
independently.

2. Framework tools are able to generate datasets, to contribute to existing
ones or to infer outcomes based on a dataset state.

3. The dataset data model is standardized for all tools and can be rep-
resented by a standardized intermediate format.

4. The framework workflow consists of chaining multiple tools in a row.
Each tool contributes to the desired result by modifying the dataset
and handing it over to the next tool in the pipeline.

5. The tools are not restricted to using a specific programming language.

As part of his work, the framework tools have been divided into two
categories – parsers (this thesis section 4.4.3) and analyzers (this thesis sec-
tion 4.4.3). The author of this thesis decided not to differentiate between
various types of tools as the definition from the point 2 is sufficient, and
framework tools can have much more responsibilities than the ones outlined
for parsers and analyzers.

The diagram of the execution pipeline flow within the framework is visu-
alized on the figure 5.1.

37

Processing pipeline

Data storage
/

data representation

Tool Tool

Storage
reference

/
serialized
dataset

Tool

Storage
reference

/
serialized
dataset

......

Figure 5.1: The framework execution pipeline.

5.2 Common data model
In his work [1], M. Hotovec has proposed a data model for the purpose of
software dependency analysis. The data model is briefly described in this
thesis in the section 4.4.1. In short, the two main types of data objects are
dependencies and dependency edges. A dependency represents a software
package – a jointly developed, versioned, published and deployed collection
of software resources. This software package definition is equivalent to the
definition used by package managers such as Pip for Python or NuGet for
.NET platform, for which the data model has been designed primarily. In
the graph terminology, a dependency can be interpreted as a vertex. A
dependency edge is a representation of the one-way relation between two
dependencies – the first one needs the second one (to be successfully com-
piled, deployed, or another type of the relation which can be identified as
a need). It can also be used as a relation of a dependency association with
a project (discussed later in this paragraph). In the graph terminology, a
dependency edge can be interpreted as an edge in a directed graph. The two
other, vertex-like data object types are a project, which serves basically as a
container for a set of dependencies, and a solution, which serves a container
for a set of projects. One other, edge-like data object type is a project edge,
which represents a relation of project association with a solution.

The proposed data model also includes predefined data attributes for
the data objects. These were designed on the research, which is part of the
same work, about common metadata information provided by the mentioned
package managers.

The data model intermediate format clearly defines a way, how to include
arbitrary types of data with unconstrained structure in the top-level data

38

wrapper object. The framework tools then have freedom of choice what data
types they support. The determination of the contained data type is, how-
ever, realized using the data wrapper attribute DataType which is the type’s
textual representation in the used programming language and therefore the
solution it is tightly coupled to this language. It can be difficult to ensure
the data format compatibility among multiple programming languages.

Although the data model conforms to the use cases for analysis of soft-
ware packages dependency graph, the focus on these use cases causes the
model to be insufficient for broader use cases. The example of such use
case is CRCE project (described in the section 4.1) which deals with soft-
ware components compatibility evaluation. Among others, the CRCE data
model deals with a number of different types of data objects, for example,
the compatibility information which is a relation between two components.
This compatibility information can be comprised from a large volume of hier-
archical metadata. The proposed data model can handle such information
by mapping the different types of data objects to the types defined by the
format, and by storing the additional data into the attribute CustomAttributes
(mentioned in the section 4.4). This is impractical, as the semantic meaning
of the original object type is “bent” to fit another use case and the attributes
with relevant information are “stuffed” in a single top-level attribute. The
mapping mechanism is, however, used for the purpose of intermediate data
transfer format. The intermediate data format is further elaborated in the
section 6.6.2.

5.2.1 Data model generalization
Due to the presented reasons, the author of this thesis proposes a gener-
alization of this data model to be truly universal. The generalization of
dependency, project and solution is called an artifact, and the generaliza-
tion of dependency edge and project edge is called a relation.

Artifact – a graph vertex. It represents a collection of information that
is treated as a whole. It can be a representation of various concepts, for
example, a software package, component, or a project.

Relation – a graph edge. It represents a relation between two artifacts,
accompanied by a collection of information. It can be a representation of
any relation kind which is sensible for the given context. It can vary from
a dependency relation or compatibility relation with a large volume of as-
sociated information (metadata), to simple relations like membership of a

39

package in a project.

Both of the two object types artifact and relation can be further differ-
entiated by the concrete type of the concepts they represent. The type is
specified using a textual name of the type. The default type for artifact
is “artifact” and for relation is “relation”. The resulting graph created
from individual artifacts and relations can be very complex and contain a
large amount of interconnected information. Example of how this graph
structure may look like is on the figure 5.2.

artifact
core.id: console-api

core.version: 2.0.0

core.id: quote-printer

core.version: 1.0.0

artifact

dependency
dep.version-limit: =2.0.0

...

compatibility
compatibility.diff: GEN

...

artifact
core.id: console-api

core.version: 1.0.0

artifact
core.id: console-api

core.version: 1.5.0

compatibility
compatibility.diff: DEL

...

Figure 5.2: The example of the framework dataset graph structure.

The information which the artifacts and relations possess is not limited to
the predefined attributes. The attributes form a hierarchical structure and
each attribute or a subtree of attributes can be referenced using a predefined
namespace. The namespace can be language-specific, tool-specific any other
depending on the use case.

Since M. Hotovec already identified the most commonly used attributes,
they form the core namespace. The prefix (or the first name of the hierarchy)
of the core namespace is simple “core”.

M. Hotovec performed an analysis of a suitable data format for the in-
formation representation [1, section 3.1 and chapter 6]. Based on his ana-
lysis, he chose JSON data format as it provides sufficient means to store
any type of structured data using number attributes, text attributes, etc.,
and compound data types like arrays and objects. The author of this thesis
decided to use the same approach and represents the artifacts and relations
information using the JSON or JSON-like format. Example of such repres-
entation is on the listing 2.

40

{
"core": {

"id": "asm-all-repackaged",
"version": "1.1.13"

},
"java": {

"file": {
"jar": "/dip/experiment/data/asm-all-repackaged/1.1.13/asm-all-repackaged-1.1.13.jar"

}
}

}

Listing 2: Example of an artifact data representation.

41

6 Framework data storage
model analysis

The design of the dependency analysis framework must be able to support
development in multiple programming languages and also consider the pos-
sibility of processing large data sets. This affects the two main framework
concepts, which serve as a medium for direct communication/cooperation
between individual framework tools. The two concepts are:

• inter-tool data transfer,

• data storage and access.

This chapter deals with an analysis of the possible framework design
decisions involving these two concepts.

6.1 Inter-tool data transfer analysis
The form of data transfer between individual tools can have a very large
effect on the resulting performance. There are generally the following two
main ways to transfer the whole dataset.

• Serializing and deserializing the dataset before and after tool logic
execution respectively (figure 6.1a).

• Using external storage provider (independent of the framework tools)
shared between the individual tools (figure 6.1b).

The first case is the one proposed in the original framework design [1],
where the process of data transfer is following. When a tool is done with its
processing logic, it fully writes the dataset into its output, and the following
tool in the pipeline reads it from its output. Input/output can be either a
file or STDIN/STDOUT. The intermediate data representation can be any-
thing like an originally proposed standardized JSON document, DOT graph
representation or plain text. While working with small data set or chaining
reasonably small number of tools, the performance cost of the fully serial-
izing/deserializing the data might be negligible compared to the perform-
ance cost of the tool logic itself. For larger datasets or multi-tool chaining,

42

Tool Tool
Intermediate

data
representation

File or
STDOUT + STDIN

(a) Inter-tool data transfer using whole dataset serialization and deserialization.

External data
storage provider

Tool ToolStorage
reference

(b) Inter-tool data transfer using external storage provider.

Figure 6.1: Inter-tool data transfer approaches.

the data transfer process can become a serious bottleneck of the execution
pipeline. There is also a memory constraint aside from the time costs. When
not using any external storage provider or temporary disk storage, the data-
set size is limited by the size of the computer’s main memory

The second way of data transfer solves the problems of the first one. The
dataset is stored using an external provider independent of the individual
framework tools. The framework tools can therefore just pass a reference to
the used storage instead of full (de)serialization of the dataset. Individual
tools do not have to completely load the whole dataset, but they can access
only the smallest subset of data which they need for immediate use.

As has been said in this chapter introduction, the choice of the data
transfer way is tightly coupled with the choice of the storage solution. When
adopting the first solution i.e. serializing and deserializing the whole data-
set, any type of storage can be used depending on the needs of individual
tools. For the second solution, a multi-tool storage with standardized data
structure specification has to be implemented or used.

6.2 Data storage types analysis
Both problems – how to store data and how to transfer it between tools
– are tightly coupled. In some cases, the storage itself could be used as a

43

mean to transfer the data. The chosen storage solution then could affect the
possibilities for the data transfer.

This section analyzes the possible types of data storage. For the frame-
work purposes, the types can be categorized into groups by three individual
criteria. A subsection is dedicated to each criterion and respective advant-
ages and disadvantages of each storage type.

6.2.1 By implementation origin
One of the criteria by which the storage can be categorized is the imple-
mentation origin. The possible categories are:

• Custom implementation

• Existing third-party solution

By using a custom implementation the storage can be tailored exactly
for the specific use case. However, the more specialized the implementation
is, the more difficult it will be to reuse it (and possibly modify) for other
tools. Also, it would be cumbersome or even impossible to reuse it for
other programming languages. It could be made in a more generic manner,
but it would require a lot of work for development and testing, and the
requirements for the tools developed in the future may not always be known.
Other requirements like support for large amount of data, concurrent access,
optimizations (data size in memory, searching, indexes) could then be non-
trivial to implement. There is also a possibility that the required custom
solution will be just ‘reinventing the wheel‘.

On the other hand, using an existing third party solution would overcome
the mentioned problems. There are a lot of projects providing robust storage
solutions which are years-proven and have a large community of developers
and users. Most of them support multiple programming languages, optim-
izations like compression and indexes, a query language for efficient data
retrieval, etc. Possible third party solutions are described in the section 6.3.

The advantages and disadvantages are summarized in the tables 6.1
and 6.2.

44

Custom implementation

Advantages Disadvantages

• Optimal for single-tool adhoc
usage

• Smaller development effort for
simple use cases

• Complex implementation for
multi-tool usage

• Bigger development effort for
complex use case requirements

Table 6.1: Advantages and disadvantages of custom storage implementation

Third-party solution

Advantages Disadvantages

• Ready to use
• Standardized ecosystem
• Multi-language support
• Multi-tool usage support

• May be non-optimal for some
use cases

Table 6.2: Advantages and disadvantages of third-party storage solution

6.2.2 By usage scope
One of the criteria by which the storage can be categorized is the usage
scope in terms of whether the storage will be used in a single tool or reused
by multiple tools. The possible categories are:

• Single-tool usage

• Multi-tool usage

Leaving the responsibility to create/use a dedicated storage solution on
the developers of each tool allows the framework to be truly versatile. Every
tool could have different requirements which can be fulfilled by using a stor-
age solution optimal for a specific use case. This, however, leads to an
additional development effort which needs to be done for every tool. A
non-standardized solution (within the framework) additionally requires the
whole dataset to be transferred/transformed between individual tools in the
execution pipeline. Problems which arise from that are described in the
section dealing with problems of data transfer (section 6.1.

Standardizing a single storage solution (or set of solutions) within the
framework gives an advantage to reuse data structure specifications and data

45

access libraries developed for the framework. It comes with the downside
that not all possible use-cases can be efficiently applied with the chosen
solution. The custom solution design or the choice of a third party solution
must be reasoned with taking all possible use-cases into account.

The advantages and disadvantages are summarized in the tables 6.5
and 6.6.

Single-tool

Advantages Disadvantages

• Optimal solution for single use
cases

• Bigger development effort
• Duplication of data access logic
• Need of a full data

transfer/transformation
between individual tools

Table 6.3: Advantages and disadvantages of single-tool storage solution.

Multi-tool
Advantages Disadvantages

• Reuse of data structure
specifications and data access
libraries

• Inter-tool data transfer may be
without cost

• May be non-optimal for some
use cases

Table 6.4: Advantages and disadvantages of multi-tool storage solution.

6.2.3 By data location
The last criterion for categorizing the data storage types is the data location.
From the perspective of the individual tools, the storage can be categorized
into two following groups.

• In-memory (with computer main memory as primary location)

• On-disk (with computer secondary memory as primary location)

In-memory data storages store the data exclusively in the volatile primary
computer memory. Some implementations may use secondary memory as a
persistent backup.

46

On-disk storages store the data in the non-volatile secondary computer
memory – on a disk or other persistent media. Similar to in-memory stor-
ages, their storage location is not exclusively limited to secondary memory,
but they can maintain a cache located in the main memory consisting of
preloaded data, indexes or other information.

The main trait distinguishing the in-memory data storages from the on-
disk data storage is that the whole dataset must fit into the main memory
which can have generally smaller capacity than the secondary. Another trait
of the in-memory storage is that the access to it is generally faster than to
the on-disk storage [14].

The advantages and disadvantages are summarized in the tables 6.5
and 6.6.

In-memory

Advantages Disadvantages

• Faster data access. • Limited capacity
• Non-persistent in some cases.

Table 6.5: Advantages and disadvantages of in-memory storage solution.

On-disk
Advantages Disadvantages

• Always persistent
• Generally large capacity

• Slower data access
• May require an additional

software

Table 6.6: Advantages and disadvantages of on-disk storage solution.

6.3 Data storage solutions
Multiple data storage solutions are possible for the framework. Each of them
is categorized into groups by using the criteria introduced in the previous
section 6.3. The advantages and disadvantages of these groups are already
mentioned in the same section. This chapter summarizes the data storage
solutions and their respective solutions for inter-tool data transfer.

47

Tool Tool
Intermediate

data
representation

In-memory
data

represenation

In-memory
data

represenation

Figure 6.2: Process in-memory data storage solution.

6.3.1 Process memory storage
The simplest solution is to let the developers of each tool create their own
data representation using the programming language constructs (or other
structures). This data representation is located solely in the process memory.
This approach belongs to the groups of custom implemented and in-memory
solutions. As mentioned in the advantages of these groups, the implementa-
tion for simple use cases can be straightforward and optimal. However, using
this approach requires the dataset to be fully deserialized into standardized
intermediate representation for the purposes of the inter-tool transfer.

A graphical depiction of this approach is on the figure 6.2.

6.3.2 File-based storage
File-based storage belongs to the groups of on-disk and multi-tool solutions.
By defining a standardized file schema or using the existing file formats like
JSON or XML, the same data storage can be reused by multiple tools just
by passing a reference to the file/directory. Therefore, it can be used directly
as a mean to transfer the dataset between tools. The storage is persistent
and independent of the individual tools and programming languages.

This solution has already been introduced in the original framework
design [1], where the whole dataset is being serialized to a JSON format
and optionally stored as a single file. It is a valid and simple solution,
especially for small dataset and simple use cases. However, the serializa-
tion and deserialization of a single file can easily become too much resource
demanding for bigger datasets. Also, special use cases like searching, in-
serting and updating can be non-trivial to be efficiently implemented, even
when the dataset is split and organized into multiple files. Nevertheless,
this approach has been already implemented by several projects providing a
complete database storage solutions. These are summarized in the following
section 6.3.3.

48

Tool ToolStorage
reference

File
File
File

Figure 6.3: File-based data storage solution.

Tool ToolStorage
reference

Database
system

Figure 6.4: Database data storage solution.

6.3.3 Database storage
This section is devoted to a storage solutions using database systems. All
information about relational and NoSQL databases is taken from the book
“SQL & NoSQL Databases” [15].

A database system is a software that allows for the storage, organization,
and retrieval of data. A database management system (DBMS) is software
used to describe, store, and query data independently of specific applications.
It includes a storage component for organized data and a management com-
ponent for querying and manipulating data. DBMS also manages access and
editing permissions for users.[15]

Relational databases are commonly used, but real-time web-based ser-
vices and big data present challenges that may require NoSQL approaches.

From the framework perspective, a solution using a database storage
belongs to groups of multi-tool and third-party solutions. It would require
to adapt/map the framework data model to the data model provided by
the chosen database system. However, the database system would manage
features such as data consistency, relational integrity, transactional access,
data organization and query optimization.

A graphical depiction of this approach is on the figure 6.4.

49

Relational database storage

A relational database is a structured collection of data organized and presen-
ted in tabular form. The data is stored in tables, where each table represents
a specific entity or concept. Tables consist of rows and columns. Each row
represents a unique record, while each column represents a specific piece of
information associated with the records.

The tables in a relational database are interconnected through relation-
ships, which define how the data in one table is related to the data in another
table. This allows for efficient retrieval and manipulation of data based on
these relationships.

Structured Query Language (SQL) is the primary language used to inter-
act with relational databases. It provides a way to query, manipulate, and
manage the data stored in the tables. SQL allows users to retrieve specific
data based on conditions, perform calculations, join tables together, and
more.

SQL databases emphasize ACID (Atomicity, Consistency, Isolation, Dur-
ability) properties to ensure data integrity, transactional consistency, and
reliability. They traditionally also allow vertical scaling by upgrading hard-
ware resources such as CPU, RAM, or storage. Some SQL databases also
support horizontal scaling through sharding or replication.

Relational databases are widely used in systems that require centralized,
structured, and persistent data storage.[15]

Example of relational databases are MySQL, PostgreSQL or Oracle Data-
base.

NoSQL databases storage

NoSQL (Not Only SQL) database management systems provide a non-
relational approach to data storage and retrieval. They have been developed
to address the limitations of SQL databases in terms of scalability, perform-
ance, and handling unstructured or semi-structured data.

There are multiple differences between SQL and NoSQL database man-
agement systems, although they are not strict, and in some cases the bound-
aries are blurred. The key differences of NoSQL databases are:

1. Instead of relational data model, they employ various other models
such as key-value, document, columnar, and graph.

2. They are schema-less or have a flexible schema.

50

3. They are designed for horizontal scalability, allowing them to distribute
data across multiple servers and split the traffic load.

4. Other query language, specific to the corresponding data model, is
used instead of SQL.

5. NoSQL databases often relax some ACID properties to achieve better
scalability and performance. They follow BASE (Basically Available,
Soft state, Eventual consistency) model which prioritizes availability,
partition tolerance, and eventual consistency over strict consistency.

NoSQL databases are well-suited for systems which deal with large volumes
of unstructured or semi-structured data, real-time applications or other ap-
plications with data structure which does not map well to the relational
model.

The NoSQL databases model can be categorized into the following four
groups: key-value store, column store, document store and graph database.
A single database can support multiple of these models.[15]

Key-value store Key-value stores store data as pairs of keys and associ-
ated values. Each key corresponds to a specific value in the database. By
specifying a key, the corresponding value can be retrieved from the database.

Key-value stores are popular due to their scalability for large amounts of
data. The absence of checking referential integrity allows fast and efficient
reading and writing. In-memory databases further enhance processing speed
by buffering key-value pairs in the main memory. Key-value stores offer
schema flexibility, as they do not require pre-defined schemas and can store
data under arbitrary keys. However, the lack of a structured schema can
present challenges in data management.[15]

Examples of key-value stores are Amazon DynamoDB or Redis.

Column store In column stores, data is stored in columns instead of rows.
Storing data in relational tables per column instead of per row has proven
to be more efficient for read operations. This structure allows for efficient
data compression and high query performance, especially for analytical and
aggregative operations. Similar to key-value stores, the data can be accessed
by keys. Within the key there is another structure, dividing the row into
several columns, which are also addressed with keys. The storage unit ad-
dressed with a certain combination of row key and column key is called a
cell. The columns itself are grouped into column families which are used as
units for access control.

51

Column stores are well-suited for read-intensive applications. While they
provide fast query performance, they may have slower write operations due
to the need for data reorganization and compression.[15]

Examples of column store databases are Apache Cassandra, Amazon
Redshift or Google BigQuery.

Document store Document stores function as key-value stores, where the
values are called documents and each key represents a document ID. These
documents have their own internal structure, typically represented in JSON
format, consisting of attribute-value pairs that can recursively contain ad-
ditional pairs. The structure is schema-free – there is no need to define a
schema before inserting data. Instead, the user or processing application
takes on the responsibility of schema management. While this offers flex-
ibility in storing diverse data types, it also lacks referential integrity and
normalization.

They are highly scalable and excel in processing large amounts of het-
erogeneous data, where constant data consistency is not essential.[15]

Examples of document store databases are MongoDB or CouchDB.

Graph databases Graph databases represent data and schemas as graphs
or graph-like structures. Data manipulations in graph databases involve
graph transformations that address typical graph properties such as paths,
adjacency, and subgraphs. Integrity constraints are supported to ensure data
consistency, with consistency defined in relation to graph structures and
referential integrity of edges. Graph databases excel when data is organized
in networks, focusing on the connections between records. They offer the
advantage of index-free adjacency, allowing for quick retrieval of neighboring
vertices without considering all edges. Indexes, such as balanced trees (B-
trees), are used to ensure efficient access to vertices and edges based on their
properties. The graph database can utilize its own graph as an index, which
is advantageous for query performance.[15]

Examples of graph databases are Neo4j, ArangoDB or OrientDB. The
main consideration was to use a graph database as a storage solution. Ex-
isting graph databases are therefore described further on in section 6.4.

6.4 Graph databases
All analyzed storage solutions are possible to use for the framework. How-
ever, a graph database is the most advantageous solution. The reasons are

52

summarized in the storage analysis conclusion (section 6.5).
Three main graph database candidates have been considered for the

framework: Neo4j, ArangoDB and OrientDB.

6.4.1 Neo4j
Neo4j is an open-source graph database implemented in Java. It uses a prop-
erty graph model – vertices can be connected by relations, both can carry
additional information called properties. It is highly regarded as the most
popular and widely used graph database globally. It uses a Cypher query
language with SQL-like syntax. Neo4j provides features like flexible schema,
scalability, reliability, drivers support in multiple programming languages
and high performance.[16]

Whilst the Neo4j offers a flexible data schema, the objects are structured
as a flat JSON document i.e., the first level properties can not be another
JSON document [17]. Although the complex data structures can be serial-
ized as a JSON and be represented as text fields, this introduces a limitation
for framework data model.

6.4.2 ArangoDB
ArangoDB is a multi-model open-source database system implemented in
C++. It supports storing data as key/value pairs, documents, and graphs,
all accessible through its own query language – AQL. ArangoDB offers sim-
plified performance scaling, increased flexibility, fault tolerance, a large stor-
age memory, and cost advantages compared to other databases.[16]

Flexible document schema is well-suited for the framework the rich-
structured data model as it allows objects to be stored as JSON objects
without any structural restrictions. The big advantage is also the fact that
the storage engine is aware of this structuring. As a result, there is, among
others, a possibility to create indexes for nested fields or combination of
fields.[18]

6.4.3 OrientDB
OrientDB is a multi-model open-source database system supporting docu-
ments, graphs, key/value, and objects. It is implemented in Java. It offers
transactional support and distributed architecture with replication. Ori-
entDB allows manipulation of the database using Java, SQL, or Gremlin.
It supports various modes including schema-less, full and mixed. Similar to

53

ArangoDB, its flexible document schema is eligible for the framework data
model.[16]

6.4.4 Summary of graph databases
ArangoDB stands out as a multi-model database supporting multiple data
models, while Neo4j and OrientDB have a primary focus on graph databases.
Neo4j is specifically designed for graph data, emphasizing relationships, and
has a rich set of graph-specific features. ArangoDB provides its own AQL
query language, Neo4j uses the Cypher query language, and OrientDB sup-
ports SQL, Java, and Gremlin. Neo4j has a larger and more active graph
community worldwide compared to ArangoDB and OrientDB.[16]

According to the benchmark test [8] which monitored processing time
and memory consumption for common data access operations as well as
graph-related operations, from the three candidate databases, ArangoDB
performed the best in all tasks such as reading, writing, finding neighboring
vertices and finding the shortest path in a graph. OrientDB has the worst
time results among all tested databases, while Neo4j has the highest memory
consumption. Other tested databases were MongoDB and PostgreSQL.

The table 6.7 summarizes described features and differences.

54

Neo4j OrientDB ArangoDB

Implementation
language Java Java C++,

JavaScript

Query Language Cypher
SQL,

Gremlin,
. . .

AQL

Database model graph
graph,

document,
key-value

graph,
document,
key-value,

object

Data schema schema-less,
flexible

schema-less,
flexible

schema-less,
flexible

Data modeling limited,
flat document

full JSON
document

full JSON
document

Drivers support multi-language multi-language multi-language

Community,
(free) edition yes yes yes

Overall performance good worse the best

Table 6.7: Features and difference of graph databases Neo4j, OrientDB and
ArangoDB.

6.5 Analysis conclusion
The analysis has shown that multiple solutions are viable for the framework
data storage and data transfer.

It has been decided to use a third-party NoSQL graph database. The
major decisive factors were following.

1. The framework must support processing large amounts of data. A
database solution offers a way for individual framework tools to oper-
ate only on the required data without a need to load the whole data
model into memory. Also, the database itself can serve as medium to

55

transfer the dataset between multiple independent framework tools;
this approach is practically cost-free.

2. Since a database system is independent of the framework tools, it
allows for easy use of multiple programming languages.

3. Due to the graph-like nature of the framework data model, a NoSQL
graph database has been shown as the most eligible solution. Graph
databases also support efficient implementation for typical graph op-
erations like graph search.

4. Schema-free nature of graph databases corresponds to the flexibility of
the framework data model entity attributes.

5. Implementing an own database solution has turned out to be mean-
ingless, since there exist multiple mature and full-fledged database
solutions.

ArangoDB has been chosen eventually from the three graph database
candidates. The main reason was support for flexible and rich-structured
data schema. OrientDB would be, however, an equally suitable choice.

In addition to a graph database solution, it has been decided to also
support the originally proposed JSON data format [1] for intermediate data
representation. Framework tools will therefore have freedom of choice to
support either the database data storage solution, its own solution or both.
The mentioned intermediate data format can continue to serve its original
purpose – transferring data between framework tools – and also act as a
medium for exporting and importing the data from and into the database
respectively.

6.6 Framework data management
ArangoDB has been chosen as the main storage solution. It has also been
decided to support the JSON intermediate data transfer format as a com-
plementary way to transfer data between tools or for exporting/importing
data from/into a database. The developers of the framework tools then can
choose whether the tool will support the intermediate format, since some
features provided by the graph databases could be complicated to mimic
using a custom in memory representation.

The following section 6.6.1 contains a brief description of the ArangoDB
features, and how they are used within the framework, the section 6.6.2

56

describes the usage of the intermediate data format and the last section 6.6.3
describes the way to pass database reference between framework tools.

6.6.1 ArangoDB features
ArnagoDB is an opensource NoSQL graph database. It supports multiple
data store models. The first is the document store – it stores individual
records as structured JSON documents. Every record is also identifiable by
a unique key – therefore, it can be used as a key value store. To support
the graph database functionality, ArangoDB adds a layer on-top of the base
document store for efficient implementation of graph structure and opera-
tions [5].

Collections

Collections allow to store documents and can be used to group together
records of similar types. Documents stored in the same collection do not
have to have the same data structure. Each collection is identifiable by its
unique name.[18]

ArangoDB has two types of collections – vertex collections and edge
collections. Documents in both of them are identifiable by a textual key
(attribute _key in the document) which is unique within the parent collec-
tion. Another way to identify a document is by its ID (attribute _id in the
document) which is composed of the parent collection name, a slash charac-
ter, and the document key (for example, “artifacts/artifact_10”). IDs are
unique across the whole database.[18]

Vertex collections are for vertex-like documents. Edge collections are
used to store directed connections between vertices in a graph. The docu-
ments inside edge collections have two additional special attributes _from
and _to to reference start and end vertex documents by their ID.[18]

The framework data model is easily representable by the concept of Aran-
goDB collections. Artifacts correspond to documents in vertex collections
and relations to documents in edge collections. Individual types of artifacts
and relations are expressed through membership in different collections, thus
the types correspond to ArangoDB collections.

Graphs

A graph consists of vertices – documents from vertex collections and edges –
documents from edge collections. It is also possible to use a document from
edge collection as a vertex.

57

Graphs are either named or anonymous. Named graphs are fully man-
aged by ArangoDB with transactional operations and integrity checks. They
are also visible in the ArangoDB web interface. Anonymous graphs are on
the other hand defined per-query on the client side and can be used ad hoc.
The functionality for both types is the same. All graph operations, such as
traversal, are performed on these graphs.[18]

While the named graphs provide better readability and maintainability
since they can be used with multiple queries, there is a potential performance
decrease for large graphs traversing. On the other hand, anonymous graphs
can improve query performance by traversing only the specified collections.

The framework dataset can gain large volumes of data and complex graph
structure with several types of artifact and relations. It is therefore advant-
ageous to define a subgraph of the whole-database graph consisting only of
the required artifact and relation types (document collections). The oper-
ations are optimized for the specified subgraph thanks to ArangoDB graph
storage engine.

Indexes

Besides the ArangoDB built-in indexes, which cover the document attrib-
utes _key, _id, _from and _to, ArangoDB supports user-defined indexes.
ArangoDB supports multiple index types. The simple value indexes have
basic support for equality and comparison operations, sorting and filtering
and can consist of multiple attributes. Indexing of single array items is also
supported. Other types of indexes include TTL (time-to-live) index – for
automatic removal of expired data, multidimensional index – for efficient
range intersect queries, and geo index – for geospatial coordinates.[18]

Web interface

A built-in web interface is included in the ArangoDB server. It allows
the management of databases, collections, documents, users, graphs and
more. Queries can be created, edited and executed through a command
interface.[18]

One of the most valuable features is the ability to visualize and browse
graphs using a graphical interface. The example view of the graphical inter-
face is in the figure 6.5.

58

Figure 6.5: Graph visualization in ArangoDB web interface.

6.6.2 Intermediate data transfer format
As discussed in the framework data model introduction section (5.2), the
original intermediate data transfer JSON format is not sufficient to the full
coverage of possible framework use cases, it can still be used as a mean for
inter-tool data transfer.

During converting to the intermediate JSON data format, each artifact,
regardless of its type, is converted into a DependencyItem and each relation
into a DependencyEdge. All attributes from the core namespace are stored
into matching DependencyItem attributes. All other attributes are stored
as sub-attributes of the attribute CustomAttributes, while preserving the
hierarchical structure. The procedure is the same for relations. There is also
a special textual sub-attribute type inside the CustomAttributes attribute,
which preserves the type of the artifact or relation.

The original DataSerializationWrapper attribute DataType for indicating
the contained data type is omitted, and the is only one implicitly expected
data type is array of DependencyItems.

Example of the serialized dataset using the outlined algorithm is on the
listing 3.

JSON structure formalization

Since the intermediate data transfer format is standardized, it can also be
formalized using a schema description language. For JSON, there exist two
main projects dealing with this task: JSONSchema [19] and OpenAPI [20].

59

The former provides a way to formalize only the JSON structure. The
latter adds on top of the structure formalization a support for complete web
service API specification.

While the OpenAPI might seem to be too complex for the framework, it
provides a relatively simple way to define a JSON schema structure. It has as
massive support for countless programming languages and even for specific
use cases compared to JSONSchema. It provides a tool for generating data
classes or structures in the desired programming language with a lot of
customization options. Due to the presented features, OpenAPI has been
chosen in favor of JSONSchema.

The intermediate JSON format formalization can be used by the de-
velopers of the framework tools to easily generate DTO (data transfers ob-
jects) for the specific language used for the tool development.

6.6.3 Database reference passing
The passing of the database reference has been realized using a simple JSON
file with included database information. The path to the file is then passed
to the framework tools. The database reference JSON file has the structure
shown in the listing 4. In consists of the database server host name and port
number to specify the server location, username and password for access
rights, and the name of the database to be used.

60

{
"Data" : [{

"Id" : "core",
"Version" : "6.0.0",
"CustomAttributes" : {

"type" : "artifact",
"uid" : "core=6.0.0"

},
"$id" : "1"

}, {
"Id" : "core",
"Version" : "7.0.0",
"CustomAttributes" : {

"type" : "artifact",
"uid" : "core=7.0.0"

},
"Dependencies" : [{

"Parent" : {
"$ref" : "2"

},
"Link" : {

"$ref" : "1"
},
"CustomAttributes" : {

"compatibility" : {
"difference" : "DELETION"

},
"type" : "compatibility"

},
"$id" : "3"

}],
"$id" : "2"

}]
}

Listing 3: Example of a dataset serialized into intermediate data format.

{
"host": "localhost",
"port": 8529,
"user": "root",
"password": "password",
"database": "sdaf"

}

Listing 4: Example of a database reference file

61

7 Framework implementation

As a part of this thesis, the following has been implemented.

• Framework core Java library – the Java library with core domain
objects, attribute namespace, (de)serialization from/into intermedi-
ate JSON format and default implementations of DAOs (data access
objects) for simple in-memory storage and ArangoDB storage (sec-
tion 7.1).

• Framework tools:

– Data importer – simple tool for straightforward uploading of
data into framework storage (section 7.2.1).

– Java compatibility extractor – tool for extracting Java com-
ponents compatibility info (section 7.2.2).

7.1 Framework core Java library
The framework core Java library provides basic building blocks for devel-
opment of framework tools in the Java programming language. The core
library consists of core domain classes (section 7.1.1), basic intermediate
format (de)serialization functionality (section 7.1.2) and a set of basic DAOs
(data access objects) for interaction with in-memory and ArangoDB storage
(section 7.1.3).

7.1.1 Domain classes
Artifact

Class Artifact is the most basic representation of an artifact. It consists
only of an artifact type and unique ID. As discussed in the section 6.6.1, the
artifact type is mapped into an ArangoDB collection and artifact unique ID
into document’s _key attribute.

The absence of any other information associated with the artifact is in-
tentional, every other information required for a specific use case, such as
concrete attributes and adjacent relations or artifacts, can be subsequently
queried from DAOs. There is no unnecessary data being loaded. This class’s
main purpose is, therefore, to serve as a reference to an artifact and to be
used for the subsequent queries.

62

Relation

Class Relation is the most basic representation of a relation. It consists of a
relation type, unique ID and source and target (start and end) vertex (via
Artifact class). Similarly to the class Artifact, the relation type is mapped
into an ArangoDB edge collection and artifact unique ID into document’s
_key attribute. In addition, the unique IDs of the start and target arti-
facts are mapped into _from and _to attributes respectively. Also, it serves
similarly only as a reference to relation for subsequent queries.

Name

Class Name is an attribute hierarchical name consisting of a name segment
for each hierarchical level. It is used for the attribute name representation
across the whole core library.

AttributeSpec

Class AttributeSpec specification of an attribute consisting of an attribute
name and class. This class is primarily intended for the tool developers to
specify the attribute names and their data types in attribute namespaces.
The specifications can be subsequently used to query these attributes from
DAOs.

Attribute

Attribute is a representation of a single named value with an associated Java
type. It can vary from simple single values like string or number, to more
complex compound types forming a JSON-like tree structure.

It is required that attribute values can be easily serialized as JSON.
Since the core library uses Jackson internally for attributes serialization and
deserialization, all Java primitive types (including their boxed versions),
such as integer, double, string and boolean, collections, such as lists, sets
and maps are supported by default. Serialization of custom classes is also
supported with a default behavior provided by Jackson, with a possibility
to use Jackson annotations for (de)serialization customization, or even to
use polymorphism and inheritance. That is, however, not recommended,
since the JSON representation should be as less complex as possible for
good multi-language support. It is advised to use plain DTOs (data transfer
objects) for attributes representation and simple tasks. Additional logic
should be moved into domain objects, created for that purpose, wrapper
objects or services.

63

It is also presumed that the attribute classes are immutable because
the in-memory storage solution stores the exact instances without copying
them. Any subsequent modification of the provided instances would also
change their representation in the storage, which is not desirable.

The representation of attributes in JSON format, together with strict
detachment from their representation in Java types, makes it possible for
the information carried by attributes to be retrieved and used easily from
any other programming language.

AttributeMap AttributeMap is a wrapper very a tree hierarchy of at-
tributes. Primarily, it is used for inserting or querying multiple attributes of
an artifact or a relation. It is also used as a part of the in-memory dataset
storage for representing the attribute hierarchy.

Internally it is a map of maps forming a tree. Every node in the tree is
a hashmap having keys of type String and associated values of type Map,
List or a primitive values, thus mimicking the JSON structure.

Individual attributes can be inserted, and queried from the attribute map
using an AttributeSpec.

7.1.2 Serialization and deserialization
For the purposes of data serialization and deserialization into/from the inter-
mediate data format, two Java interfaces have been defined: DataSerializer
and DataDeserializer. There is one default implementation of both, which
handles data in the intermediate JSON data format designed by M. Hotovec
and modified by the author of this thesis (section 6.6.2).

The intermediate JSON format has been formalized by an OpenAPI
specification, which is a part of this thesis. Using this specification, all
DTOs (data transfers objects) are generated for (de)serialization) simpli-
fication. The DTOs are than deserialized using the Jackson library. The
created OpenAPI specification can be used to generate DTOs for any other
programming language which is supported by the OpenAPI generator tool,
thus, making the framework to be easily extended with other tools.

The deserialization has been tested on several original files from [1], how-
ever, since the format used for this work is a subset of the original one, some
files were incompatible. To test the specification suitability for other lan-
guages, DTOs for Python has been generated and are available as a part of
this work.

The created OpenAPI specification is available in appendices (appendix
A).

64

7.1.3 DAO
A set of interfaces for commonly used basic DAOs (data access objects) has
been defined:

• ArtifactDao – a DAO for basic artifact CRUD (create, read, update,
delete) operations.

• RelationsDao – a DAO for basic relation CRUD operations and for
fetching artifacts adjacent to the relations.

• AttributeDao – a DAO for basic CRUD operations of artifact and
relation attributes.

The core library includes default implementation of these three DAO
interfaces for in-memory storage and for ArangoDB storage.

7.2 Framework tools
Two command-line tools has been implemented as a part of this thesis. The
first is Data importer (section 7.2.1) and the second is Java compatibility
extractor (section 7.2.2).

Both tools are implemented using the Spring Boot Framework1, which is
a framework for creating stand-alone applications with strong emphasis on
dependency injection and autoconfiguration of application components. For
a user-friendly commandline interface, Picocli2 library has been used.

7.2.1 Data Importer
Data Importer is a simple Java utility command-line program for upload-
ing data into a framework dataset, whether it is located in memory or in
database. It supports two ways of importing data.

The primary way is to use the intermediate JSON data format by accept-
ing it as an input (file or STDIN) and importing it into the storage. This
behavior should by default for all tools with support for in-memory storage,
since the dataset has to be uploaded somehow into the storage, in this case
by using the intermediate data format.

The other way to import the data is to use a simple JSON file with
an array of artifact definitions and an array of relation definitions. This

1https://spring.io/projects/spring-boot
2https://picocli.info/

65

https://spring.io/projects/spring-boot
https://picocli.info/

additional way of importing data has been introduced for manual data gen-
eration, because writing the intermediate JSON data format with tree-like
structure in hand could be challenging for humans. Example of such JSON
is on the listing 5

{
"artifacts": [

{
"uid": "core=7.0.0",
"type": "artifact",
"attributes": {

"core": {
"id": "core",
"version": "7.0.0"

}
}

},
{

"uid": "core=6.0.0",
"type": "artifact",
"attributes": {

"core": {
"id": "core",
"version": "6.0.0"

}
}

}
],
"relations": [

{
"uid": "(core=6.0.0)-(core=7.0.0)",
"type": "compatibility",
"source": {

"type": "artifact",
"uid": "core=7.0.0"

},
"target": {

"type": "artifact",
"uid": "core=6.0.0"

},
"attributes": {

"compatibility": {
"difference": "DELETION"

}
}

}
]

}

Listing 5: Example of data importer simple input JSON.

A usage help can be printed by running the program with option -h.
The full usage help is in the listing 6.

66

Usage: data-importer [-h] [-d=DB_FILE] [--stdin | -f=INPUT_FILE] [--stdout |
-o=OUTPUT_FILE] [-j=DATA_FILE | DATA]

Simple utility program for importing/exporting data into/from SDAF dataset.
DATA The string with JSON data to load into the storage.

-d, --db-file=DB_FILE The file with ArangoDB connection options. If not
given, the data are handled in-memory.

-f, --input-file=INPUT_FILE
The input file to read the storage data from.

-h, --help Display a help message.
-j, --data-file=DATA_FILE

The file with JSON data to load into the storage.
-o, --output-file=OUTPUT_FILE

The output file to write the storage data into.
--stdin Read the storage data from stdin.
--stdout Write the storage data into stdout.

Listing 6: Data importer tool usage help.

7.2.2 Java Compatibility Extractor
Java Compatibility Extractor is a simple Java utility command-line program
for running compatibility information extraction on the framework dataset.
The main purpose of this program is to demonstrate the ability of the de-
signed framework to handle such tasks, as is the compatibility extraction
performed by the experimental CRCE repository[9] (described in this thesis
in section 4.1).

The flow of the program is following.

1. In the framework dataset, find Java artifacts.

2. For each artifact, find possible target artifacts – with the same ID
(core.id), different version (core.version) and which has not already
been compared.

3. Load JAR files for both (attribute java.file.jar), run comparison
and compatibility information extraction on these JARs.

4. Create and save a relation of type “compatibility” into framework data-
set and save all the related compatibility information as the relation
attributes.

The result of this program is, that a relation edge with compatibility
information is added for every pair of artifact with the same ID and different
version.

67

The algorithm of compatibility extraction is similar to the one imple-
mented by J. Daněk [11] for CRCE as a part of his work. Internally, the
Java Compatibility Extractor uses JaCC library (described in this thesis
in the section 4.1). The extracted information is parsed and mapped into
CompatibilityInfo classes representing the full compatibility tree structure
with the root ArtifactCompatibilityInfo denoting the top-level compatibility
of the artifact pair. The example of extracted compatibility information is
in the listing 7.

{
"compatibility": {

"difference": "INSERTION",
"children": [

{
"difference": "INSERTION",
"code": "java.package",
"before": "org.jvnet.hk2.config.types",
"after": "org.jvnet.hk2.config.types",
"children": [

{
"difference": "INSERTION",
"code": "java.class",
"before": "org.jvnet.hk2.config.types.Property",
"after": "org.jvnet.hk2.config.types.Property",
"children": [

{
"difference": "INSERTION",
"code": "java.interfaces",
"children": [

{
"difference": "INSERTION",
"code": "java.class",
"after": "org.jvnet.hk2.component.Injectable",
"note": "Inserted"

}
]

}
]

}
]

}
]

}
}

Listing 7: Example of a relation with extracted compatibility info.

Usage

A usage help can be printed by running the program with option -h. The
full usage help is in the listing 8.

68

Usage: java-compatibility [-h] [-d=DB_FILE] [--stdin | -f=INPUT_FILE] [--stdout
| -o=OUTPUT_FILE] [ARTIFACT_UIDS...]

Utility program for running Java compatibility extraction over an SDAF dataset.
[ARTIFACT_UIDS...] The unique IDs of all the artifact for which to

extract the compatibility information.
Default is for all.

-d, --db-file=DB_FILE The file with ArangoDB connection options. If not
given, the data are handled in-memory.

-f, --input-file=INPUT_FILE
The input file to read the storage data from.

-h, --help Display a help message.
-o, --output-file=OUTPUT_FILE

The output file to write the storage data into.
--stdin Read the storage data from stdin.
--stdout Write the storage data into stdout.

Listing 8: Java compatibility tool usage help.

69

8 Testing

Testing of the designed framework and implemented core library has been
realized by demonstrating the ability to handle such tasks, as is the compat-
ibility extraction performed by the experimental CRCE repository[9]. For
this purpose, the Java Compatibility Extractor tool 7.2.2 has been imple-
mented. Since the tool mimics the same functionality as the compatibility
extraction plugin created by J. Daněk [11] for CRCE, the testing for this
thesis has been realized using the same performance test scenario and test
data. The correctness testing of the created tool is not relevant in the context
of this thesis, since the main purpose of the created tool was to demonstrate
the ability to handle the specified task.

Unlike the CRCE plugin which uses the OBCC library for compatibility
extraction, the Java Compatibility Extractor uses the JaCC library. How-
ever, OBCC uses internally JaCC and performs the compatibility extraction
only for OSGi exported packages. Thus, the Java Compatibility Extractor
will do more computation compared to CRCE plugin, but it will contain the
same results as a subset.

The testing scenario and results are in the section 8.1.

Test machine specifications

The specifications of the test machine and ArangoDB database server used
for the test scenario are in the following table 8.1.

Computer Model Lenovo Yoga S740-15IRH

CPU Intel i7-9750H (12) @ 4.500GHz

OS Fedora Linux 38 (Workstation Edition) x86_64

Linux kernel 6.3.4-201.fc38.x86_64

Java JRE OpenJDK Runtime Environment 17.0.7
Red_Hat-17.0.7.0.7-4.fc38

ArangoDB ArangoDB 3.10.6
Docker image arangodb:3.10.61

Table 8.1: Test machine specifications.

1https://hub.docker.com/_/arangodb

70

https://hub.docker.com/_/arangodb

8.1 Performance
Performance testing has been conducted in order to evaluate the time it
takes for compatibility data to be fully extracted. The same testing dataset
has been used as in the work of J. Daňek [11]. The testing involved six dif-
ferent sets of components and their revisions2 from the Glassfish Application
Server. The components were initially chosen to have variations in size and
to have a substantial number of available revisions [11].

The details of the components in the testing set are in the table 8.2.
The tests have been run against an ArangoDB database storage.

8.2 Test scenario
The test scenario consists of two steps.

The first step involves uploading information about all components into
the framework data storage at once. Data Importer tool is used for this task.
An artifact record is created for each component revision with attributes
core.id and core.version for the component identification, and attribute
java.file.jar for denoting the component’s JAR archive location in the
local filesystem.

The second step is the compatibility extraction itself. The Java Com-
patibility Extractor is used for this task together with a modified version of
the same tool for running in multi-threaded environment.

For each artifact, the compatibility information is extracted for every pair
of the artifact and its revision which yet not have been processed. Start and
end times were recorded using application logging messages directly inside
the service which performs the extraction. The times were recorded for the
whole extraction of artifact and its previous revisions, and also for each
single pair extraction. The duration was computed as a difference between
the times recorded before and after extraction. The following times were
measured:

• The duration of a single artifact pair compatibility extraction.

• The total extraction duration for a single artifact and all its previous
revisions.

• The total extraction duration for all artifacts.
2http://relisa-dev.kiv.zcu.cz/data/experiments/crce-2013-12/

71

http://relisa-dev.kiv.zcu.cz/data/experiments/crce-2013-12/

Name Number of revisions Average size [kB]
config-types 139 6.8
osgi-adapter 140 75.7
dataprovider 90 103.9
asm-all-repackaged 141 293.8
bean-validator 142 575.1
webservices-osgi 44 11186.5

Table 8.2: List of components used for the performance test.

8.2.1 Test results
The results are analyzed from three perspectives:

1. Time to compute compatibility information for a single artifact pair.

2. Time to compute compatibility information for artifact’s all previous
revisions.

3. Total time to compute compatibility information for all artifacts and
their revisions.

8.2.2 Single-pair extraction duration
The table 8.3 shows the mean times and the standard deviation required for
compatibility extraction of single pair of components.

The standard deviation is rather high for smaller components, but as
the component size increases and the extraction time grows, the standard
deviation is getting smaller relatively to the extraction time. This applies
for both single-threaded and multi-threaded environments. From that fact
can be stated that the compatibility extraction times are predictable, and
the higher standard deviation for smaller components is likely caused by
external causes, such as operating system thread scheduler.

Since the concurrent access to the database in the multi-threaded does
not need to be transactional, because all read and write operation in this
use case do not affect each other, there is no time penalty apart from the
possible waiting times due to increased disk IO read/write operations. On
the other hand, the multi-threaded environment introduces time overhead
which is needed for splitting the work between threads and for the thread
context switches. This is projected into the slightly higher times required
for single-pair extraction.

72

Component

Mean
time
[ms]

Std.
deviation

[ms]

Mean
time
[ms]

Std.
deviation

[ms]
1 threads 4 threads

config-types 3.9 7.22 4.45 6.87
osgi-adapter 19.61 14.76 23.42 8.59
dataprovider 31.82 6.52 50.41 14.14
asm-all-repackaged 101.85 11.15 144.16 25.54
bean-validator 187.78 107.79 266.5 170.33
webservices-osgi 3532.75 151.74 7582.5 776.3

Table 8.3: The times needed to extract compatibility information for a
single pair of components.

8.2.3 Previous revisions extraction duration
Time duration required for compatibility extraction between a component
and all of its previous revisions depends only on two factors:

1. Size of the component.

2. Number of previous revisions.

From the figures 8.1 and 8.2 is clearly visible, that the required time
grows linearly in direct proportion to the number of previous revisions for
both single-threaded and multi-threaded environments.

Figure 8.1: Extraction times based on number of previous revisions –
single-threaded.

73

Figure 8.2: Extraction times based on number of previous revisions –
multi-threaded.

8.2.4 Total extraction duration
Similar to [11], running the extraction in multi-threaded environment resul-
ted in longer mean times for single-pair compatibility information extraction.
The overall extraction time is, however, shorter than in the single-threaded
environment. The total extraction times for both environments are in the
table 8.4.

Total duration [s]
1 threads 4 threads

Whole extraction scenario 6595.72 3080.78

Table 8.4: The times neede in total for the whole compatibility extraction
scenario.

8.3 Test conclusion
The measured times for both single-threaded and multi-threaded environ-
ments are similar to the ones determined by J. Daňek [11] for the CRCE
compatibility plugin. As a result, it can be concluded that the framework
design is suitable for more advanced tasks such as the compatibility extrac-
tion.

74

9 Conclusion

The author of this thesis has created a universal and modular framework for
analysis of software artifacts and their relations.

The framework design analysis has been performed based on the initial
study of component-based software systems (chapter 2), graph data rep-
resentation and analysis (chapter 3), and into existing tools and methods
which are being researched and developed at the Department of Computer
Science at the University of West Bohemia (chapter 4). The analysis of
the framework overall concept and data model has been performed in the
chapter 5 and the subsequent analysis of the framework storage model in the
chapter 6. The analyses itself are built on existing work done by researches
at the Department of Computer Science at the University of West Bohemia
and on the thesis of M. Hotovec [1].

As a part of the analysis, framework data model generalization has been
proposed to support a broader set of use cases, such as the compatibility
extraction and verification introduced by CRCE project. For the framework
data storage model, the ArangoDB database has been chosen as the main
data storage provider.

The framework data and storage models have been designed with em-
phasis on multi-language development support. This has been achieved
thanks to the ArangoDB which provides an application and language-independent
data storage. In addition to this, the framework also utilizes the interme-
diate JSON data format for dataset transfer between individual framework
tools, which has been originally proposed by M. Hotovec [1]. An OpenAPI
formalization of a common intermediate JSON format has been created as
a part of this thesis for easy multi-language development.

The requirement for the framework to be able to process large amounts
of data has been fulfilled by designing the data model to support rich-
structured and hierarchical records and by using the ArangoDB database
solution, whose data model conforms to the designed framework data model.

A core framework library for Java programming language has been de-
veloped as a part of this thesis. To demonstrate the framework suitabil-
ity for component-based systems research, two tools have been developed
(chapter 7) on top of the created core library. The first tool is Data Im-
porter — a tool for framework dataset initialization, import, and export.
The second is Java Compatibility Exctractor — which mimics the func-
tionality of a java compatibility extraction plugin developed for the CRCE

75

experimental repository.
The same performance test, which has been done in the work of J.

Daňek [11] to verify the CRCE compatibility extraction plugin, has been
cunducted. It has been eventually determined that the created tool performs
similarly as the CRCE plugin. The results clearly state that the framework
can be used for more advanced tasks such as the compatibility extraction.

The created framework can be used as is as a platform for development
of additional tools in various programming languages. The tools created
in the future can be used to support the research into component-oriented
software system systems or into other fields since the framework provides a
flexible data model and storage solution.

76

Bibliography

[1] M. Hotovec, ‘Analýza závislostí softwarových artefaktů,’ M.S. thesis,
The University of West Bohemia, 2022.

[2] F. Bachmann, L. Bass, C. Buhman et al., ‘Volume ii: Technical con-
cepts of component-based software engineering,’ Technical Report CMU/SEI-
2000-TR-008, Carnegie Mellon Software Engineering . . ., Tech. Rep.,
2000.

[3] M. S. Rahman et al., Basic graph theory. Springer, 2017, vol. 9.
[4] R. Čada, T. Kaiser and Z. Ryjáček, Diskrétní matematika. Západočeská

univerzita v Plzni, 2004.
[5] ArangoDB GmbH. ‘Index free adjacency or hybrid indexes for graph

databases.’ (2016), [Online]. Available: https : / / www . arangodb .
com/2016/04/index- free- adjacency- hybrid- indexes- graph-
databases/ (visited on 08/05/2023).

[6] R. Angles and C. Gutierrez, ‘An introduction to graph data man-
agement,’ Graph Data Management: Fundamental Issues and Recent
Developments, pp. 1–32, 2018.

[7] G. Klyne and J. J. Carroll. ‘Resource description framework (rdf):
Concepts and abstract syntax.’ (2004), [Online]. Available: https :
//www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (visited on
08/05/2023).

[8] ArangoDB GmbH. ‘Nosql performance benchmark 2018 – mongodb,
postgresql, orientdb, neo4j and arangodb.’ (2018), [Online]. Available:
https : / / www . arangodb . com / 2018 / 02 / nosql - performance -
benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb
(visited on 17/05/2023).

[9] ReliSA. ‘Crce - component repository supporting compatibility eval-
uation.’ (2019), [Online]. Available: https://github.com/ReliSA/
CRCE (visited on 15/05/2023).

[10] P. Brada and K. Jezek, ‘Ensuring component application consistency
on small devices: A repository-based approach,’ in 2012 38th Eur-
omicro Conference on Software Engineering and Advanced Applica-
tions, IEEE, 2012, pp. 109–116.

77

https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb
https://github.com/ReliSA/CRCE
https://github.com/ReliSA/CRCE

[11] J. Daňek, ‘Determining and publishing component compatibility in-
formation,’ M.S. thesis, The University of West Bohemia, 2014.

[12] P. Brada and K. Jezek, ‘Repository and meta-data design for efficient
component consistency verification,’ Science of Computer Program-
ming, vol. 97, pp. 349–365, 2015.

[13] J. Bauml and P. Brada, ‘Reconstruction of type information from java
bytecode for component compatibility,’ Electronic Notes in Theoretical
Computer Science, vol. 264, no. 4, pp. 3–18, 2011.

[14] M. Roohitavaf. ‘In-memory vs. on-disk databases.’ (2020), [Online].
Available: https://www.mydistributed.systems/2020/07/an-
overview-of-storage-engines.html (visited on 08/05/2023).

[15] A. Meier and M. Kaufmann, SQL & NoSQL Databases: Models, Lan-
guages, Consistency Options and Architectures for Big Data Manage-
ment. Springer, 2019.

[16] D. Fernandes and J. Bernardino, ‘Graph databases comparison: Al-
legrograph, arangodb, infinitegraph, neo4j, and orientdb.,’ in Data,
2018, pp. 373–380.

[17] Neo4j, Inc. ‘Neo4j documentation.’ (2023), [Online]. Available: https:
//neo4j.com/docs/ (visited on 08/05/2023).

[18] ArangoDB GmbH. ‘Arangodb documentation.’ (2023), [Online]. Avail-
able: %5Curl%7Bhttps://www.arangodb.com/docs/stable/%7D
(visited on 08/05/2023).

[19] OpenJS Foundation. ‘Json schema.’ (2022), [Online]. Available: https:
//json-schema.org/ (visited on 08/05/2023).

[20] The Linux Foundation. ‘Openapi.’ (2023), [Online]. Available: https:
//json-schema.org/ (visited on 08/05/2023).

78

https://www.mydistributed.systems/2020/07/an-overview-of-storage-engines.html
https://www.mydistributed.systems/2020/07/an-overview-of-storage-engines.html
https://neo4j.com/docs/
https://neo4j.com/docs/
%5Curl%7Bhttps://www.arangodb.com/docs/stable/%7D
https://json-schema.org/
https://json-schema.org/
https://json-schema.org/
https://json-schema.org/

List of Abreviations

ACID Atomicity, Consistency, Isolation, Durability

API Application Interface

AQL Arango Query Language

BASE Basically Available, Soft State, Eventual Consistency

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRCE Component Repository and Compatibility Evaluation

DAO Data Access Object

DBMS Database Management System

DTO Data Transfer Object

IO Input/Output

JAR Java Archive

JSON JavaScript Object Notation

JaCC Java Class Comparator

OBCC OSGi bundle comparator

OBR OSGi Bundle Repository

OSGi Open Services Gateway Initiative

PyPI Python Package Index

RAM Random Access Memory

RDF Resource Description Framework

REST Representational State Transfer

SDAF Software Dependency Analysis Framework

SQL Structured Query Language

STDIN Standard Input

STDOUT Standard Output

79

List of Figures

3.1 Examples of simple graphs. 19
3.2 Examples of multigraphs. 19
3.3 Example of graph and its subgraph. 21
3.4 Examples of adjacency matrix, incidence matrix and adja-

cency list. 23

4.1 Core elements of the CRCE metadata model. 29
4.2 Data model of the universal JSON data format. 32

5.1 The framework execution pipeline. 38
5.2 The example of the framework dataset graph structure. . . . 40

6.1 Inter-tool data transfer approaches. 43
6.2 Process in-memory data storage solution. 48
6.3 File-based data storage solution. 49
6.4 Database data storage solution. 49
6.5 Graph visualization in ArangoDB web interface. 59

8.1 Extraction times based on number of previous revisions –
single-threaded. 73

8.2 Extraction times based on number of previous revisions –
multi-threaded. 74

80

List of Tables

6.1 Advantages and disadvantages of custom storage implement-
ation . 45

6.2 Advantages and disadvantages of third-party storage solution 45
6.3 Advantages and disadvantages of single-tool storage solution. 46
6.4 Advantages and disadvantages of multi-tool storage solution. 46
6.5 Advantages and disadvantages of in-memory storage solution. 47
6.6 Advantages and disadvantages of on-disk storage solution. . 47
6.7 Features and difference of graph databases Neo4j, OrientDB

and ArangoDB. 55

8.1 Test machine specifications. 70
8.2 List of components used for the performance test. 72
8.3 Performance test pair result times. 73
8.4 Performance test total result times. 74

81

List of Listings

1 Example of a dataset serialized into the universal JSON format. 34
2 Example of an artifact data representation. 41
3 Example of a dataset serialized into intermediate data format. 61
4 Example of a database reference file 61
5 Example of data importer simple input JSON. 66
6 Data importer tool usage help. 67
7 Example of a relation with extracted compatibility info. . . . 68
8 Java compatibility tool usage help. 69

82

Appendices

83

A. OpenAPI intermediate
JSON format specification

openapi: 3.0.3

info:
version: 1.0.0
title: SDAF data JSON schema.
description: SDAF.

paths: { }

components:

schemas:

DataSerializationWrapper:
type: object
description: Root wrapper object.
properties:

Version:
description: Version of the data format.
type: string

Data:
description: The data.
type: array
items:

$ref: "#/components/schemas/DependencyItem"

DependencyItem:
description: Dependency item information.
type: object
properties:

$id:
description: ID of the serialized dependency item to be used in references.
type: string

$ref:
description: Reference to a serialized dependency item that is already present in the file.
type: string

Id:
description: The unique ID of the artifact in the registry.
type: string

Name:
description: The dependency name.
type: string

Version:
description: The dependency version.
type: string

RegistryType:
description: The type of package registry.
type: string

Authors:
description: The list of authors.

84

type: array
items:

description: Author name, email and/or other identifier.
type: string

License:
description: The license identifier.
type: string

LicenseLink:
description: The link to license.
type: string

Summary:
description: The summary text of the package.
type: string

Description:
description: The description text of the package.
type: string

Link:
description: The link to package info.
type: string

PackageDownloadLink:
description: The link to download the package.
type: string

SourceCodeLink:
description: The link to the source code.
type: string

AnnotationInfo:
description: Annotation info added by analyzers.
type: array
items:

$ref: "#/components/schemas/AnnotationInfoItem"
CustomAttributes:

description: Custom attributes based on needs of the dependency registry or analyzer.
type: object
additionalProperties: true

Dependencies:
description: List of sub-dependencies for this dependency.
type: array
items:

$ref: "#/components/schemas/DependencyEdge"

DependencyEdge:
description: Specific edge for the dependency.
type: object
properties:

$id:
description: ID of the serialized dependency edge.
type: string

RequiredVersionsText:
description: Required versions of the dependency - textual representation.
type: string

VersionsLimit:
description: List of the limits for the specific version required.
type: array
items:

$ref: "#/components/schemas/VersionLimit"
Parent:

$ref: "#/components/schemas/DependencyItem"
Link:

$ref: "#/components/schemas/DependencyItem"

85

AnnotationInfo:
description: Annotation info added by analyzers.
type: array
items:

$ref: "#/components/schemas/AnnotationInfoItem"
CustomAttributes:

description: Custom attributes based on needs of the dependency registry or analyzer.
type: object
additionalProperties: true

VersionLimit:
description: Package version limitation.
type: object
properties:

RequiredVersion:
description: Required version of the dependency.
type: string

CustomLimitSymbol:
description: Optional, custom symbol of the operation.
type: string

LimitSymbol:
description: Type of operation of the version.
type: string
enum:

- GREATER_OR_EQUAL
- GREATER
- LOWER_OR_EQUAL
- LOWER
- EQUAL
- NOT_EQUAL
- COMPATIBLE
- CUSTOM
- UNDEFINED

AnnotationInfoItem:
description: Annotation information added by analyzers.
type: object
properties:

AnalyzerName:
description: Name of the analyzer, which created this item.
type: string

AnalyzerVersion:
description: Analyzer version.
type: string

AnalyzerCondition:
description: Analyzer condition, which was used to match this report.
type: string

InformationType:
description: Type of information provided.
type: string
enum:

- Info
- Warn
- Err
- None

Text:
description: Textual representation of the information.
type: string

86

	Itroduction
	Component-based software systems
	Software component
	Interface
	Contract
	Component model
	Component framework
	Composition

	Graph data representation and analysis
	Graph theory fundamental terms
	Graph
	Adjacency
	Vertex degree
	Subgraph
	Walk, trail, path and cycle
	Connectivity
	Graph representation

	Graph data management
	Graph data models
	Graph data analysis
	Graph databases
	Graph-processing frameworks

	Tools for static analysis of components
	CRCE
	Metadata

	JaCC
	OBCC
	Dependency analysis of software artifacts
	Common JSON data model
	Tooling concepts
	Parsers

	Framework design analysis
	Framework concept
	Common data model
	Data model generalization

	Framework data storage model analysis
	Inter-tool data transfer analysis
	Data storage types analysis
	By implementation origin
	By usage scope
	By data location

	Data storage solutions
	Process memory storage
	File-based storage
	Database storage

	Graph databases
	Neo4j
	ArangoDB
	OrientDB
	Summary of graph databases

	Analysis conclusion
	Framework data management
	ArangoDB features
	Intermediate data transfer format
	Database reference passing

	Framework implementation
	Framework core Java library
	Domain classes
	Serialization and deserialization
	DAO

	Framework tools
	Data Importer
	Java Compatibility Extractor

	Testing
	Performance
	Test scenario
	Test results
	Single-pair extraction duration
	Previous revisions extraction duration
	Total extraction duration

	Test conclusion

	Conclusion
	Bibliography
	List of Abreviations
	List of Figures
	List of Tables
	List of Listings
	Appendices
	A. OpenAPI intermediate JSON format specification

