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ABSTRACT

We present a pipeline for realistic embedding of virtual objects into footage of indoor scenes with focus on real-time AR
applications. Our pipeline consists of two main components: A light estimator and a neural soft shadow texture generator. Our
light estimation is based on deep neural nets and determines the main light direction, light color, ambient color and an opacity
parameter for the shadow texture. Our neural soft shadow method encodes object-based realistic soft shadows as light direction
dependent textures in a small MLP. We show that our pipeline can be used to integrate objects into AR scenes in a new level
of realism in real-time. Our models are small enough to run on current mobile devices. We achieve runtimes of 9ms for light
estimation and 5ms for neural shadows on an iPhone 11 Pro.

Keywords: augmented reality, light estimation, shadow rendering, neural soft shadows

1 INTRODUCTION

We propose a method for realistically inserting virtual
objects into indoor scenes in the context of augmented
reality applications. Thereby we first estimate the cur-
rent lighting situation in the scene from a single RGB
image captured by the camera of, for example, a mo-
bile device. Then we use this information to insert the
virtual object into the existing scene as plausibly and
realistically as possible.

The light situation in an existing scene can be ca-
putured by placing a light probe at the position of the
image. This can create a 360◦ high-dynamic range
(HDR) panorama, also called environment map, of the
scene. Such an HDR image contains a large amount
of information about bright and dark areas that would
be clipped as black or white in an ordinary 8Bit low-
dynamic range (LDR) image. Since the map contains
information about the illumination of each direction of
the scene at a given point, this environment map can be
utilized to illuminate an object as if it were in the scene
using methods from image-based lighting (IBL) [8].
Some techniques have been developed to estimate this
environment map from a single limited field-of-view
LDR image without additional 360◦ cameras using neu-
ral nets and deep learning [12, 28, 27]. However, such
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Figure 1: Example application of our pipeline: The
light estimation determines the light direction and am-
bient color for rendering the inserted object. Based
on the determined light direction, additional neural soft
shadows are generated to create a realistic shadow cast
as texture.

an environment map is only valid for a single specific
point in the scene. Moreover IBL techniques can be
used to realistically illuminate objects with spatial vary-
ing light. Shadows in IBL are created by tracing the
path of light and its interaction with other objects in
the scene. While this produces a very realistic shadow
cast, a large number of path traces is required. This is
computationally intensive and therefore not suitable for
real-time applications on mobile devices.
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Alternatively, parametric models exist that describe
the light sources as physical objects in a 3D scene. In
contrast to an environment map from IBL, these models
are valid for the entire scene. In the simplest case, such
a parametric model can be for example a directional
light with a fixed direction. Parametric light sources
have a long history in computer graphics and there are
several methods to efficiently calculate the shadow cast
by objects. However, they often have to be modeled
manually by a 3D artist for an existing scene. Recently,
methods came up to estimate parametric lights directly
from an input image using neural networks [5, 13, 11].
Our work takes up on these methods. We restrict our-
selves to reliably predict the main light direction at a
given point from a limited field-of-view LDR indoor
RGB camera image and additionally determine the light
color as well as the ambient color.

Especially in indoor scenes, the lighting situation is
very complex. For the realistic overlay of virtual ob-
jects in the context of AR [26], it makes a big differ-
ence whether a realistic or visual convincing shadow
cast is present. Many other light estimation works map
the existing lighting situation, but are only able to real-
istically insert virtual objects through offline rendering,
e.g. ray tracing. Most shadows in indoor scenes are soft
shadows as they are caused by light objects in a rela-
tively short distance with a certain surface area. They
are much more complex to compute than hard shadows
caused by a quasi infinitely distant light source like the
sun in outdoor scenes. We present a method to use the
estimated light direction from the previous part to gen-
erate realistic indoor soft shadows in real-time. For this
purpose we present a novel approach to encode precom-
puted ray-traced soft shadows using a neural network.
This small network can be queried in real-time to gen-
erate a shadow texture depending on the light direction
(see Fig. 1).
Our main contributions are as follows:

1. An improved deep neural network for parametric
light direction estimation in indoor scenes.

2. A new method for encoding shadow textures in an
MLP that is memory friendly and fast to query.

3. A complete pipeline for light estimation and shadow
creation for real-time AR applications on mobile de-
vices.

2 RELATED WORK
Existing work related to ours can be roughly divided
into two categories. On the one hand, research in the
area of estimating the existing light situation in the real
scenery and, on the other hand, research on how to use
this information for the realistic insertion of virtual ob-
jects into the augmented reality.

Light estimation is a classical problem in the field
of computer vision or computer graphics as a subarea
of 3D scene reconstruction. An accurate determination
of the existing lighting conditions is crucial for a con-
vincing insertion of virtual objects into the real environ-
ment.

Classic approaches usually require multiple images
and/or more detailed knowledge about the underlying
scene geometry. For example, Debevec and Malik
showed how the omnidirectional HDR radiance map
can be reconstructed using multiple shots of a reflecting
sphere with different exposure settings [9] and how to
render synthetic objects into real scenes [8]. Lombardi
and Nishino [19] showed how illumination can be
reconstructed from a single image of an object with
known geometry. Balcı and Güdükbay [2] recon-
structed illumation based on the shadows in scenes
that were mainly illuminated by the sun. Baron and
Malik [3] reconstructed not only the illumination but
also the geometry and reflectivity of an unknown object
from an image using shape priors. Lopez-Moreno et
al. [20] presented an approach based on heuristics that
does not require geometric knowledge.

With the rise of machine learning based approaches
the need for information about the scenery could be fur-
ther reduced. There exist quite some work that estimate
lighting information and environment maps. For exam-
ple, Hold-Geoffroy et al. [14] used a deep neural net to
predict the illumination in outdoor scenes from a sin-
gle image by relying on a physically-based sky model.
Gardner et al. [12] estimated an HDR illumination map
for indoor scenes also from a single image by splitting
the process into light position estimation and HDR in-
tensity estimation. Song and Funkhouser [28] used a
multi-stage approach to predict a 360◦ LDR map from
a single image and completed geometry and intensity
on HDR scale. Somanath and Kurz [27] predicted a
true HDR map from a single camera image in a sin-
gle stage approach tailored to mobile augmented real-
ity (AR) real-time applications. Other approaches focus
more on estimating light in form of low dimensional
parameters. Garon et al. [13] used spherical harmonic
coefficients as light model. Cheng et al. [5] also used
spherical harmonics for their light model, but used the
images from the front and rear camera for the estima-
tion.

Gardner et al. [11] described a deep neural net that
estimates light parameters for individual light objects.
This method is the closest to our work. They used the
Laval Indoor HDR dataset [12] which contains about
2100 HDR maps to train the network. These parame-
ters for the training data were determined by fitting el-
lipses on the HDR intensity maps. The brightest area in
the map was detected and the ellipse then was fitted by
region growing. This area was masked and the process
was repeated to determine a number of light sources.
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The parameters of the light source were defined by the
size of the ellipse, average HDR intensity in the ellipse
area and average HDR color value. Furthermore, a pre-
dicted depth map was used to determine the distance to
the light source. We also use the Laval Indoor HDR
dataset and with a DenseNet pretrained on ImageNet a
similar network architecture. However, unlike Gardner
et al. we estimate a light direction and therefore do not
need to rely on predicted depth maps for the dataset.

Shadow calculation is a very broad and relatively
old field of research in computer graphics. It ranges
from simple methods for computing hard shadows,
such as projection shadows [4], shadow mapping [31]
and shadow volumes [7] to more advanced methods
for computing soft shadows like image-based soft
shadows [1], geometry-based soft shadows [22] and
volumetric shadows [18].

In contrast to previous work, we present a new ap-
proach in which we encode pre-computed shadow tex-
tures for an object in the weights of a neural network.
This has the advantage that realistic soft shadows can be
displayed in real-time on mobile devices, since the net-
work can be queried very quickly. The idea of encoding
images or textures in neural networks is not new. Stan-
ley [29] encoded image information in Compositional
Pattern Producing Network (CPPN) inspired by encod-
ing in natural DNA. Rainer et al. [25, 24] used neural
networks to compress the bidrectional texture function
(BTF). Mildenhall et al. [21] trained an multilayer per-
ceptron (MLP) to generate novel views from unknown
perspectives of complex scenes. They used a mapping
for the input coordinates to create a higher dimensional
input space that allowed more high frequency variations
in their output. This strategy was inspired by the po-
sitional encoding in the Transformer architecture [30]
and is also used by our method.

3 LIGHT ESTIMATION
To estimate the existing light situation in a scene using
a single RGB image, we characterize the light situation
by a set of parameters

(ddd,ccc,aaa,o) . (1)

Here ddd ∈ R3 is a unit vector which determines the light
direction, ccc ∈R3 is the light color defined by RGB val-
ues with normalized components in [0,1] and aaa is an
RGB vector corresponding to the ambient lighting of
the scene. The parameter o is a scalar value and mea-
sure for the opacity of the shadow texture described in
Section 4. A value o = 1 corresponds to an alpha value
of 100% and a value of o = 0 corresponds to an alpha
value of 0%, i.e. invisible shadows. We train a con-
volutional neural network (CNN) to predict these pa-
rameters from a single RGB image with a resolution of
256x192 pixels.

(a) Original panorama

(b) Cropped image (c) Warped panorama

Figure 2: For a given panorama (a), the image infor-
mation from inside the red frame is used to create the
rectified cropped image (b). A warped panorama (c) is
projected around the insertion point (red point in (b)).

3.1 Input Data
For training the network, a large number of images is
needed for which the exact light situation of the whole
scene is known. 360◦ HDR panoramas are particularly
suitable for this, since one can crop a limited field-
of-view image from them to obtain input images (see
Fig. 2a & Fig. 2b), while still being able to recover
the entire lighting situation of the scene. We use the
Laval Indoor HDR dataset [12] which contains about
2100 HDR panoramas, taken at different indoor scenes.

Like Gardner et. al [12], we extract 8 different lim-
ited field-of-view crops per panorama at random po-
lar angles θ between 60◦ and 120◦ and azimuth an-
gles φ between 0◦ and 360◦. We use a field-of-view
(FOV) of 85◦ to approximate the viewing angle of non-
wide-angle cameras in modern smartphones. We per-
form a rectilinear projection (see red frame in Fig. 2a))
to back-project the distortion in the panoramas. The
360◦ HDR panorama describes the light situation of the
whole scene at the point where the camera was placed
for the panorama. However, this does not correspond to
the exact lighting situation around the cropped image.
For finding out the exact light situation at that point,
one would have to shoot a new 360◦ HDR panorama at
the virtual camera location of the cropped image. To
estimate the light situation at this location we rotate the
original panorama so that the cropped area is exactly
in the center and then apply the same warping operator
as described in [12]. The resulting new panorama (see
Fig. 2c) is an approximation of the panorama around
the virtual camera location of the cropped area.

We use each of the warped panoramas to extract the
light parameters for the corresponding cropped input
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Figure 3: Proposed light estimation network architec-
ture.

image. We first determine the pixel intensity Ii j by
adding the individual RGB channels with weights that
correspond to the natural perception of the individual
colors, i.e.

Ii j = 0.0722 ·Ri j +0.7152 ·Gi j +0.2126 ·Bi j, (2)

where i is the pixel’s column and j its row.
Then we mask the areas where the intensity is greater

than 5% of the maximum intensity Imax as highlights.
It should be noted that this is only applicable when
working with HDR data. To determine the average
light direction from the highlight area, we introduce
two weights. First, the light direction of each pixel is
weighted by its intensity. Second, the light direction of
each pixel is weighted by the area that this pixel occu-
pies on the unit sphere:

ωi j =
2π2

w ·h
sin

(
j+0.5

h
π

)
(3)

where j is the pixel’s row and w, h are the width and
height of the panorama. This is necessary because, for
example, an area near the poles occupies significantly
more pixels on the panorama than an area with the same
size at the equator. The resulting average light direction
is the parameter ddd. To determine the light color ccc, the
same weights are applied to the individual RGB values
of the highlight area in a tone-mapped version of the
panorama to obtain a mean highlight color. The ambi-
ent color aaa can be determined from the remaining pixel
values of the tone-mapped panorama by using the same
procedure. We determine the value for the opacity pa-
rameter o from the quotient of the summed weighted
intensities for the highlight areas Itot

l and analog for the
remaining areas Itot

a :

o = 1− tanh
(

Itot
a

0.05 · Itot
l

)
. (4)

The less the intensities from the highlight areas differ
from those of the ambient area, the lower the opacity of
the shadow textures.

3.2 Network Architecture
As mentioned before we use a CNN to estimate the pa-
rameters from the input RGB image. Since the dataset

Metric Gardner19(1) Ours
RMSE 0.1114 0.1101
si-RMSE 0.1518 0.1501
RMLE 0.07007 0.06928
Angular Error 3.556◦ 3.542◦

Table 1: Comparision by different widely used metrics
of our method with the state of the art parametric indoor
light estimation by Gardner et al. [11] with one light
source. Best results in bold.

is too small to train a network from scratch, we use a
DenseNet-121 [17], pretrained on ImageNet [10] as an
encoder. The block configuration is (6, 12, 24, 16) with
a growth rate of 32, a compression of 0.5 and a batch
norm size of 4. Furthermore, 64 initial features, ReLU
activations and 2D average pooling with a pool size of
4 are used. The classifier of the DenseNet is removed,
so the network produces a latent vector with size 512.
This is forwarded to a fully connected (FC) 512 layer
with batch norm and ELU activation. For each of the
four parameters there is a separate FC layer as network
head. The heads for the parameters ccc, aaa, o are each
normalized using a sigmoid function so that they lie be-
tween (0,1). For the parameter ddd we use a tanh acti-
vation function and normalize the entire vector to unit
length. The complete architecture is visualized in Fig-
ure 3.

3.3 Training & Implementation
During training, we directly compare the estimated pa-
rameters with the ground truth parameters. Thereby in-
dividual losses for each head are calculated as mean
squared error. The total loss function is the weighted
sum of the individual losses, i.e.

L = ωd l2(dddest,dddgt)+ωcl2(cccest,cccgt)

+ωal2(aaaest,aaagt)+ωol2(oest,ogt).
(5)

We weight the individual losses differently with the
weights ωd = 5, ωc = 2, ωa = 2 and ωo = 1. Since a
correct estimation of the direction is of utmost impor-
tance for us, ωd gets the highest value.

We train the network for a total of 60 epochs using
an Adam optimizer with β1 = 0.9 and β2 = 0.999. The
learning rate lr = 0.001 is halved every 15 epochs. We
use a batch size of 128 samples and a random 85/15
split of the dataset for training and validation. Scenes
unknown to the network were used for testing. Typi-
cally, training takes about 2 hours on two Nvidia RTX
A6000 GPUs. In total, our network consists of 7.7M
parameters. The interference time on the iPhone 11 Pro
GPU is 62ms and on the Apple Neural Engine (ANE)
9ms.

3.4 Evaluation
Comparing the results of two light estimation ap-
proaches is challenging. Since qualitative evaluation
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(a) Input image (b) GT HDR panorama (c) GT result (d) Our result

Figure 4: Exemplified representation of our evaluation. (a) shows the input image, (b) the corresponding GT
HDR panorama, (c) the GT image of the Armadillo rendered with IBL techniques, and (d) the image of the same
Armadillo rendered using the light parameters from our light estimation.

always contains personal bias, we rely on a purely
quantitative measure for this evaluation. We don’t
compare our method with approaches, that do not
estimate a parametric light direction but spatially vary-
ing light coefficients like spherical harmonics [5, 13]
or complete environment maps [12, 28, 27], because
we especially need the light direction for the shadow
calculation (Sec. 4). We therefore compare our light
estimation approach only with the work of Gardner et
al. [11] when using one main light source. We neglect
our opacity parameter o at this point, since its use is
mainly for the shadow textures presented in Section 4
and will be evaluated in the overall pipeline evaluation
in Section 5.

We use a simple scene with an armadillo and a plane
as a shadow catcher (see Fig. 4c). For a given input im-
age (see Fig. 4a), we render a GT image (see Fig. 4c)
with the corresponding warped GT environment map
(Fig. 4b), as described in Section 3.1, with IBL tech-
niques. We then estimate light parameters with the re-
spective light estimation. The same scene is rendered
again with a parametric light source and ambient color
(see Fig. 4d).

To compare renderings of the two predictions with
the GT image we use 4 different metrics. On the one
hand RMSE as well as the scale-invariant si-RMSE and
RMLE and on the other hand a per pixel RGB angular
error [15]. The standard RMSE is a good measure for

the error in the relation between ambient and light in-
tensity. The two scale-invariant measures filter out dif-
ferences in the scales of the two images and are there-
fore good measures for errors in light position due to
difference in shadows. The RGB angular error, on the
other hand, comes from whitebalance research and is
a good measure to evaluate the color predicition of the
light source and the ambient color.

In total, we evaluated 977 images from a test set un-
known to the network. We used Blender [6] for all ren-
derings. Table 1 shows the results of our evaluation.
It can be seen that our method performs 1-1.2% better
than the previous state-of-the-art method in all metrics
when considering only a single light source.

4 SHADOWS

We aim to generate a planar shadow texture (see
Fig. 5b), i.e. a 2D grayscale image, depending on the
light direction defined by a unit vector ddd ∈ R3 for a
specific object (see Fig. 5a). Our experiments showed
that the use of cartesian coordinates leads to a more
stable training than spherical coordinates since the
network seems to have problems with the discontinuity
between φ = 2π and φ = 0. This results in a shadow
function

f : R5 −→ R, f (i, j,ddd)−→ v, (6)
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(a) Object (b) Shadow texture

Figure 5: A chair lit by a front light (a) with the corre-
sponding shadow texture (b).

that maps pixel position (i, j) together with a light di-
rection d to a grayscale value v. We use a MLPs are a
universal function approximator [16], to represent the
desired shadow function.

4.1 Input Data
We train one specific network for each individual
model. As training data, we use shadow textures for a
variety of different light directions. These textures are
created with a simple scene setup and the Cycles render
engine in Blender [6]. The scene consists of a quadratic
plane that acts as a shadow catcher. The plane is di-
mensioned so that its side length is three times as long
as the largest side of the bounding box that contains the
object to be trained. The object is centered on the plane
and is assigned a material that is invisible to the render
engine but allows shadow casting. An orthographic
camera from the top view captures the textures. A
directional light (sun in blender) with an opening angle
of 20◦ is used as the light source. This type of light
is defined by one direction and still produces soft
shadows. It’s therefore well suited as an approximation
for indoor shadows. This light source is set to different
light directions for the individual training samples.
We use uniformly distributed spherical angles θ , φ .
Where θ takes values from 0◦ to 45◦ with an increment
of 4.5◦ and φ takes values from 0◦ to 360◦ with an
increment of 12◦. This results in a total of 301 texture
samples. For each sample, we use a resolution of
256x256 pixels. Figure 6 shows an example of shadow
textures for different light directions for the Armadillo
(see Fig. 4c).

4.2 Network Architecture
As mentioned before (see Eq. (6)), all information
about the shadows is mapped by pixel-wise functions
from 5D space to 1D grayscale information. Since
neural networks tend to learn a low-frequency bias,
we assist them in learning high-frequency details by
mapping the 5D input to a higher dimensional space,

Figure 6: Shadow textures of the Armadillo (see
Fig. 4c) from different light directions ddd.

as shown by Rahaman et al. [23]. This technique is
also used very successfully with NeRFs [21]. Similar
to Vaswani et al. [30] with Transformers, we use an
encoder function Φ to map each of the five input
dimensions x ∈ R to a higher dimensional sequence of
alternating sine and cosine functions:

Φ(x) =
(
sin

(
20

πx
)
,cos

(
20

πx
)
, . . . ,

. . . ,sin
(
2L−1

πx
)
,cos

(
2L−1

πx
)) (7)

where L is a dimensionality parameter. The image
space (i, j) is normalized to values in [0,1]. For the im-
age space encoding is done with a dimensionality pa-
rameter L = 10. The elements of the light direction
vector ddd by definition take only values in [-1,1] and for
their encoding we choose an L = 4 analogous to the
viewing direction vector in [21]. In total we map the
R5 input space to higher dimensional space of R64. The
input passes through h hidden layers, each with a filter
size s, and is activated with ReLUs after each hidden
layer (see Fig. 8). In our experiments we use a filter
size s of 128 to 256 and a number of hidden layers h
from 1 to 4. The output value v of the network is nor-
malized with a sigmoid function between 0 and 1.

4.3 Training
During training, for each shadow texture sample k with
fixed light direction ddd, we take a number of N ran-
dom continuous pixel locations (i, j) ∈ [0,1]. Here, the
ground truth grayscale value vgt

i, j at the continuous loca-
tion (i, j) is obtained by bilinear interpolating from the
known values at the discrete surrounding known pixel
values. It should be mentioned that it is also possible
to train the network without interpolation only on ran-
dom known discrete pixel values. This speeds up the
training by a factor of 5 since filtering is a bottleneck.
On the other hand, it reduces the quality of the network,
and the ability to predict different resolutions with the
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(a) Ground truth (b) Ours

Figure 7: An example of our qualitative evaluation. Left: Coffee table rendered with the ground truth HDR
panorama around the insertion point. Right: Coffee table rendered with a directional light and ambient color from
our light estimation and shadow texture from our neural soft shadows.

Input (i,j,d)

Sigmoid

Encoder Function Φ

FC with ReLU

h = Number of layers

Output v

Figure 8: Proposed shadow network architecture.

network is lost. As loss function L we take the mean
squared error loss l2 between estimated pixel value vest

and interpolated pixel value vgt:

L = l2(vest,vgt). (8)

4.4 Implementation
One advantage of our method is that the resulting net-
work is very small and thus not only requires little
memory, but a forward pass also has a low interfer-
ence time. The forward passes for all 65536 pixels of a
256x256 texture need in total about 33ms on the GPU
of the iPhone 11 Pro and 5ms on the ANE. Assuming a
filter size s = 128 and a number of hidden layers h = 3
the network has just 58k parameters. The data set with
its 301 grayscale images with a resolution of 256x256 is
small enough to be loaded completely into the memory
even with simple consumer GPUs. We train our net-
work for a total of 10000 epochs and need about 5 min-
utes (or just under a minute without bilinear filtering)
on an Nvidia RTX A6000. As in Section 3.3, we again
use an Adam optimizer with standard values of β1 =
0.9 and β2 = 0.999. We apply an exponential learning
rate decay (γ = 0.99977) to the initial learning rate lr =
0.001 so that it is reduced to one-tenth of the original
value after 10000 epochs. Per texture sample we use

GT Ours
Rating 3.49 ± 0.38 3.26 ± 0.46
Votes 0.544% 0.456%

Table 2: Results of the qualitative evaluation (20 im-
ages, 50 participants). Rating describes how realis-
tically an objects fits into the scene considering only
lighting and shadows on a scale from 1 (very unrealis-
tic) to 5 (very realistic). Votes denotes the percentage
of which image was prefered in terms of realistic look
(50% = perfect confusion).

N = 256 pixel locations, which results in 77k network
passes per epoch.

4.5 Limitations
Currently, our method is only suitable for creating a pla-
nar shadow texture for the plane it sits on. This is suffi-
cient for of AR applications, where an object is placed
in the middle of an empty room and is far enough away
from walls to cast a shadow on them. Problems arise
when a virtual object should cast shadows on another
virtual object or on non-virtual objects in the scene.

5 OVERALL PIPELINE EVALUATION
We determine the overall quality of our entire pipeline
with a qualitative evaluation. For this we use new HDR
panoramas that are not from the Laval Indoor HDR
dataset and have not yet been seen by the network.
For each panorama we choose a cropped rectified im-
age where a virtual object should be inserted. We use
the light estimation from Section 3 to determine the
light direction, light color, ambient color and the opac-
ity value for the shadows. We then use the light direc-
tion to determine the shadow texture using our method
from Section 4. We insert the object into the image
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(a) Without shadow cast

(b) With neural shadow texture

Figure 9: Comparison between a real clay squirrel
(right) and the virtual object (left) rendered with the
light parameter of the light estimation from Section 3.
(a) shows the object without shadow cast and (b) with
the neural shadow texture from our method in Section 4.

and render it using only a directional light and ambient
lighting. We also add the neural shadow texture with
the estimated opacity (see Fig. 7a). In comparison, we
determine the warped panorama (see Sec. 3.1) at the in-
sertion point and render the same object with ray traced
IBL and a plane as shadow catcher (see Fig. 7b).

A total of 20 images (see supplementary material)
were created for qualitave evaluation. We showed these
images to 50 participants. On the one hand, the par-
ticipants were asked to assess how realistically an ob-
ject fits into the existing scene in terms of its lighting
and shadows. For the rating, we use the Likert scale
with values from 1 (very unrealistic) to 5 (very realis-
tic). Explicitly the participants were told not to consider
syle, proportions, object selection and context. On the
other hand, the participants were shown both pictures
(see Fig. 7) next to each other and they were asked to
decide which of the two pictures they thought was more
realistic looking in terms of lighting and shadows. Ta-
ble 2 shows the results of our survey. It turns out that
the participants as a whole give the ground truth visu-
alizations only a slightly higher quality rating than our
visualizations. This is also confirmed by the fact that

quite a few participants prefer our visualization to the
ground truth in a direct comparison.

Furthermore, in Figure 9 we compare a real object
with a rendered virtual version. For this we place a
real clay squirrel in the room and leave space for the
virtual version. The photo was taken with an ordinary
smartphone and the light estimation from Section 3 was
used to determine the light direction, light color, ambi-
ent color and the opacity value of the shadows. The vir-
tual squirrel was inserted on the left and rendered with
the light parameters. Figure 9a shows the virtual squir-
rel without shadow cast. Figure 9b shows the squirrel
with the neural soft shadow texture generated with our
method from Section 4. It is easy to see that without
shadows the object looks out of place in the scene. The
subtle soft shadow of our method, on the other hand,
conveys immersion.

6 CONCLUSION
We presented a complete pipeline for realistic embed-
ding of virtual objects into indoor scenes. Our light
estimation determines a parametric description of the
light situation from an RGB image as input. Our neu-
ral soft shadow method generates realistic soft shadows
as textures that allow to embed virtual objects in pre-
viously unknown levels of realismn in real-time into
AR scenes. Of course, our method is not suitable for
reproducing complex lighting situations exactly, but it
is suitable for giving the viewer a convincing sense of
immersion. This is supported by our user test where
approximately the same number of subjects preferred
our method over ground truth visualization. Our entire
pipeline is real-time capable on current mobile devices.

In particular, our fundamental work in the area of
neural soft shadows opens up a wide range of possibili-
ties for future research. At the moment we are work-
ing on how to effectively transfer our method to the
shadow cast on walls. In this case, the distance to the
wall adds another degree of freedom to the problem. It
would be interesting to incorporate more complex light
sources, such as area lights, with further parameters like
light size in neural shadows. It is also exciting to see if
multiple light sources can be represented as neural soft
shadows. Furthermore, we could imagine that complex
shadows of semi-transparent objects could be another
future application of our method.

ACKNOWLEDGMENTS
This project (HA project no. 1102/21-104) is financed
with funds of LOEWE - Landes-Offensive zur En-
twicklung Wissenschaftlich-ökonomischer Exzellenz,
Förderlinie 3: KMU-Verbundvorhaben (State Offen-
sive for the Development of Scientific and Economic
Excellence).

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.8 78



REFERENCES
[1] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Lau-

rent Moll. Efficient image-based methods for rendering soft
shadows. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pages 375–384, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.
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