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ABSTRACT
We introduce a Monte Carlo based real-time diffusion process for shape-based analysis in volumetric data. The
diffusion process is carried out by using tiny massless particles termed shapetons, which are used to capture
the shape information. Initially, these shapetons are randomly distributed inside the voxels of the volume data.
The shapetons are then diffused in a Monte Carlo fashion to obtain the shape information. The direction of
propagation for the shapetons is monitored by the Volume Gradient Operator (VGO). This operator is known for
successfully capturing the shape information and thus the shape information is well captured by the shapeton
diffusion method. All the shapetons are diffused simultaneously and all the results can be monitored in real-time.
We demonstrate several important applications of our approach including colon cancer detection and design of
shape-based transfer functions. We also present supporting results for the applications and show that this method
works well for volumes. We show that our approach can robustly extract shape-based features and thus forms the
basis for improved classification and exploration of features based on shape.
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1 INTRODUCTION
Much research has been undertaken to incorporate in-
formation for volume data analysis from various param-
eters such as voxel intensity, gradient, curvature, and
size. However, incorporating shape information for vol-
ume analysis still remains a challenge. This is not the
scenario in the case of manifolds, where diffusion based
techniques have become popular for manifold shape
analysis. A successful attempt has been made by Guri-
jala et al. [GWK12] in using the diffusion based method
for shape-based volume analysis, wherein a modified
form of heat diffusion, called cumulative heat diffui-
son (CHD), was introduced. Despite good results, this
method cannot be adopted for real-time analysis due to
the high computational cost. Precisely, the computa-
tional complexity of the heat diffusion process for dis-
crete surface meshes is of the order t×n2, where n is the
number of voxels and t is the number of time steps. In
addition, the heat diffusion is carried out only between
voxels and 1-ring neighboring voxels per time step and
hence the number of time steps required to capture the
shape information increases with the increasing number
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of voxels. In other words, the rate of heat flow is influ-
enced by the resolution of the data. As a result, the dif-
fusion based methods suffer from the problem of long
running times. In order to address these challenges,
in this paper, we introduce a Monte Carlo based shape
analysis method for volumes which not only obtains ef-
ficient results but also provides a means of real-time
shape analysis, by re-defining the diffusion process us-
ing a new set of particles, which we call shapetons. In
addition, a new definition of time step is introduced.

This paper makes the following contributions. We in-
troduce a new diffusion based shape analysis method
using new particles, called shapetons. The shapetons
are tiny massless particles which are diffused across the
voxels of a volume, in random directions, for a pre-
defined distance per time step, to determine the local
shape information. This is the first time the diffusion
particles (in our case, the shapetons) are diffused across
the voxels separated by some distance, rather than just
between the adjacent voxels. Our method is indepen-
dent of the size of the volume; it only depends on the
number of shapetons. This independence on the resolu-
tion (size) of the data is another important contribution
of the paper. In addition, using probabilistic methods
for shape analysis is in itself a contribution. All the
shapetons can be diffused simultaneously and indepen-
dent of each other. As a result, our method can run in
parallel for all the shapetons. We use the GPU for im-
plementation and the convergence of the shapetons to a
stable value can be monitored in real time, thereby fa-
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cilitating real-time shape analysis. To the best of our
knowledge, this is the first time volume analysis based
on shape with real-time monitoring of the result is be-
ing carried out, thereby achieving orders of magnitude
improvement in the computational cost.
The remainder of the paper is organized as follows.
Section 2 provides background information and reviews
the related literature. Section 3 describes the algorithm
with a detailed description of the shapeton diffusion
process. We discuss how our shapeton diffusion method
can robustly extract the features based on their shape
information in the volume data. The influence of dif-
ferent parameters on the result is analyzed in Section 4.
Section 5 discusses applications of our method in colon
cancer detection and transfer function design and Sec-
tion 6 presents the results of our method. Finally, we
draw some concluding remarks along with the future
work in Section 7.

2 RELATED WORK
Shape has been previously used for volume classifi-
cation. Sato et al. [YSABNSK00] have proposed a
volume classification based on shape where they de-
tect pre-defined shapes such as edge lines and blobs
by measuring the multi-scale responses to 3D filters.
Skeleton based approaches were extensively used to
study shapes and for shape based volume visualiza-
tion. Hilaga et al. [HSKK01] have used skeletons for
shape matching and volume visualization. Pizer et
al. [PGJA03] have proposed a framework of stable me-
dial representation for segmentation of objects, regis-
tration and statistical 3D shape analysis. Several other
attempts using skeletons for shape-based volume clas-
sification were conducted by Correa et al. [CS05] and
Reniers et al. [RJT08]. Motivated by these ideas, Praßni
et al. [PRMH10] have presented a shape-based trans-
fer function using the curve-skeleton of the volumetric
structure. However, in all these works, the shape has
been pre-defined such as blobs, surfaces and tubes. In
contrast, we enforce no shape restrictions. All simi-
lar shapes, irrespective of orientation and scaling are
recognised and at the same time distinguished from
other shapes.
In volumes, the diffusion methods have been ma-
jorly used in the form of photon diffusion in the
volume rendering pipeline [Jen96]. Apart from
this, diffusion based models have also been used
to visualize fire [SF95], air pollution [Wan13], and
rendering depth of field effects [KB07]. None of
these diffusion based approaches have been used
for shape analysis. Diffusion based methods have
been used extensively for shape analysis in mani-
folds [ASC11, BK10, OMMG10, SOG09, VBCG10].
However, these methods cannot be directly extended
to volumes for shape analysis due to the huge com-
putational cost. The only attempt to perform volume

analysis based on shape was made very recently by
Gurijala et al. [GWK12] who introduced a cumulative
heat diffusion approach. Despite the novelty, the
method still has a large computational cost and the
shape analysis cannot be monitored in real-time. Using
our shapeton diffusion approach, we are able to not
only peform shape-based volume analysis but also
monitor the analysis in real-time.
Monte Carlo methods are not new to volume graphics
and visualization [AK90, BSS94, PM93]. They have
been largely used for photorealistic rendering (pho-
ton mapping) [DEJ+99, Jen96, JC98] and ray tracing
(rendering volumetric caustics and shadows) [JLD99,
LW96, PKK00]. Unfortunately, most of these meth-
ods have high computational cost. To solve this, several
variations of Monte Carlo photon diffusion approxima-
tion methods have been proposed for various rendering
applications [DJ05, JMLH01, Sta95]. All these Monte
Carlo based photon diffusion methods are a combina-
tion of a diffusion model and Monte Carlo methods
ala our technique. A GPU-based Monte Carlo volume
rendering approach including scattering, ambient oc-
clusion has been proposed by Salama [Sal07]. How-
ever, none of these methods focus on shape analysis in
volumes. Ours is the first time a Monte Carlo based
method using GPU has been developed for shape based
volume analysis, thereby facilitating a real-time moni-
toring of the shape information.

3 ALGORITHM
The shapeton diffusion process efficiently captures the
shape information in volumes and in addition facilitates
a real time monitoring of this information. The dif-
fusion particles, the shapetons, are able to capture the
majority of the shape information and hence the name
shapetons. Initially, these shapetons are randomly dis-
tributed inside the data. The primary idea of our ap-
proach is that each shapeton is diffused based on the
local shape information in a probabilistic manner. The
probability that a shapeton moves in a particular direc-
tion is based on how much the region in that direc-
tion contributes to the shape information. In continu-
ous space, generally the shape information around each
shapeton can be represented in the form of an uneven
distribution. This is because the local shape informa-
tion around the shapeton is not uniform (varies depend-
ing on the data). The area of this shape distribution
would give a measure of the shape information obtained
around the shapeton. A random number is used to se-
lect a fraction of the area. This fractional area indicates
the shape information obtained in that direction and in
turn the probability for the shapeton to move in that di-
rection. In other words, the probability of shapeton dif-
fusion is based on the ratio of the area of a sub-region
to the area of the total shape distribution. The differ-
ence between our method and previous diffusion based
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methods such as the cumulative heat diffusion (CHD) is
that, ours is a particle-based (shapetons) diffusion pro-
cess while the latter is not. During the diffusion process
the shapetons are moved inside the volume, across the
voxels, for a pre-defined distance in each time step. As
a result, the shapetons have the freedom to move any-
where inside the volume and not just between the 1-ring
neighboring voxels. Therefore, the rate of shapeton dif-
fusion is not affected by the resolution of the data and
is independent of the size of the data. In the remain-
der of the paper, please note that all the pre-defined
distance values are chosen by considering a [0,1] nor-
malized space of the volume data. Hence, the distance
value will always lie in the interval [0,1]. Initially, all

Figure 1: v1,v2,v3,v4,v5,v6 are the 1-ring neighboring
voxels of the source voxel v0 and w1, w2, w3, w4, w5 and
w6 are the corresponding edge weights respectively.

the shapetons are randomly distributed inside the vox-
els. The initial distribution of the shapetons does not
influence the final result. Only the steady state result
is considered for shape analysis. The steady state re-
sult will smooth out the differences and is not affected
by the initialization of the shapetons. We will discuss in
detail about the steady state later. The shapetons are dif-
fused inside the volume based on the local shape infor-
mation. In order to describe the direction along which
the shapetons travel in each time step, two angles are
used, namely the longitudinal angle and the latitudi-
nal angle. We now describe the elaborate process of
shapeton diffusion in detail. In general, any voxel is
surrounded by six adjacent voxels in a volume. Thus,
for any shapeton s inside a voxel (say v0), there are six
adjacent voxels (say v1, v2, v3, v4, v5 and v6).

The edge weights w1, w2, w3, w4, w5 and w6 between
the voxel v0 and its adjacent voxels, as shown in the
Figure 1, are determined using the VGO [GWK12], de-
fined by Equation 1. This VGO captures the local shape
information of the volume. There is a parameter p in
the VGO definition that influences the final result. We
discuss the effect of the parameter p in Section 4.5. For
i ∈ {1,2,3,4,5,6}:

wi =V GO(v0,vi) = ∆(v0,vi)+Fv(v0,vi) (1)

where ∆ is the Laplace-Beltrami Operator (LBO) and
Fv is a data-driven operator:

Fv(v0,vi) = 1− p ·hg(v0,vi) (2)

where hg is the half gradient and p is a user defined
value. The half gradient hg of the voxel v0 is given by:

hg(v0,vi) = | I(vi)− I(v0)

res
| (3)

where I gives the intensity of the corresponding voxel,
res is the size of the voxel which accounts for the dis-
tance between the two voxels under consideration.

We use these six edge weights to create a shape distri-
bution diagram around the shapeton, as shown in Fig-
ure 2. This shape distribution accounts for the shape
information around the voxel v0 (the shapeton is in-
side this voxel) and is used to determine the direction
of shapeton diffusion in a probabilistic manner. The
six weights form eight regions where each region rep-
resents an octant of a sphere. We call this octant of
the sphere octavusphere (derived from Latin). There-
fore, the six weights form eight octavuspherical regions
where sets of three weights form a single octavuspher-
ical region, as shown in Figure 2. In spherical coor-
dinates we normally need two angles (say θ and φ ) to
describe the direction of shapeton propagation. The an-
gle θ is measured with respect to the x-axis on the x−y
plane and the angle φ is measured with respect to the y-
axis on the y− z plane. In geographical terms, we refer
to the angle θ as the longitudinal angle and the angle φ

as the latitudinal angle.

Figure 2: The shape distribution around the shapeton
s shown using the edge weights. The probabilistically
estimated angles φ and θ define the direction of the
shapeton propagation.

Since we have to determine two angles probabilisti-
cally, namely θ (longitude) and φ (latitude), two ran-
dom numbers are drawn, one for each of them. We do
it in a step-by-step manner. First, the value of the angle
φ is determined by employing the first random num-
ber. Fixing this value of φ , the value of the angle θ is
then estimated by employing the second random num-
ber. In a given octavuspherical region both φ and θ

vary between 0 and π

2 . The probability of the shapeton
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diffusion should take into account the shape informa-
tion around it, which is indicated by the volume of the
octavuspherical region enclosed by the edge weights.
In other words, the probability of the shapeton to move
in a certain octavusphere is based on the ratios of the
volumes of the octavuspheres to the whole volume. By
employing the first random number over the volumes of
the octavuspherical regions, a particular octavusphere
region is selected and the corresponding value of φ is
estimated. This angle φ splits the selected octavuspher-
ical region into two sub-regions, which are separated
by a sector shown by the green and blue regions in Fig-
ure 2. By employing a second random number over the
area of this sector the final value of θ is estimated. More
details about the steps involved in calculating the longi-
tude and latitude for shapeton propagation are provided
in Appendix 4.

Now that we have evaluated both φ and θ , we have
the final direction for the shapeton to move. Once
the direction of propagation for the shapeton is de-
termined, the shapeton is moved in that direction for
a pre-defined distance. This accounts for one time
step of the shapeton. This process is performed for
all the shapetons independently and simultaneously.
After each time step, all the steps described above
are repeated to calculate the new direction for the
shapetons to diffuse. After each time step, the number
of shapetons inside each voxel is summed up to get
the accumulated density of shapetons. For example,
let st−1(i) be the accumulated shapeton density on a
vertex i before the tth time step and ct be the number
of shapetons that move onto that vertex from its
neighboring vertices during the tth time step. Then, the
new accumulated shapeton density st(i) on that vertex
is:

st(i) = st−1(i)+ ct (4)

The value of ct will either be positive or zero and
never negative since we only consider the number of
shapetons that accumulate in each of the voxels af-
ter each time step and not the number of shapetons
that diffuse away from the voxels. Note that no new
shapetons are added at any stage of the algorithm and
the number of shapetons used for diffusion is always
constant. Only the shapetons diffuse inside the volume
and based on which voxel each of the shapetons are
present after every time step, the corresponding accu-
mulated shapeton density of those voxels are updated.
The accumulated number of shapetons in each voxel in-
dicates the probability of the shapetons to appear at that
location. For all the voxels corresponding to objects
of similar shape, the shapetons have a similar proba-
bility to visit them. Hence, the number of shapetons
within each voxel would be the same for all voxels
corresponding to objects of similar shape. The diffu-
sion of shapetons in volumes is influenced by the VGO

which incorporates the local shape information. Thus,
the shapetons capture the shape information along their
path of diffusion and the accumulated number of the
shapetons inside the voxels quantifies the shape infor-
mation obtained.

4 ANALYSIS
The shapeton diffusion process is an efficient method in
classifying different objects based on their shape. The
shape information is obtained irrespective of the size
and deformation of the objects. However, the amount
of shape information obtained is influenced by a num-
ber of parameters such as the number of shapetons, the
value of the pre-defined distance, and the value of p. In
the remainder of the paper, for all the results, the render-
ing is based on the accumulated number of shapetons in
the voxels for a given number of time steps and the col-
ors are assigned such that a higher shapeton count is
shown in red and the color changes from red to blue
with the decrease in the shapeton count.

4.1 Steady State
Like any Monte Carlo method, the probability of the
shapetons to take a particular path increases as we in-
crease the number of shapetons and hence the rate of
accumulation of shapetons at a particular feature in-
creases. Thus, the shape information is obtained much
faster in terms of the number of iterations with the in-
crease in the number of shapetons. If the number of
shapetons is reduced, it takes more iterations to cap-
ture a specific feature, which otherwise would have
taken fewer iterations using more shapetons. However,
there is a tradeoff. Though the number of iterations de-
creases, the time taken for each iteration (time step) in-
creases with the increase in the number of shapetons.

We say that the shapeton diffusion process has reached
a steady state if the rate of change of the accumu-
lated shapeton density on all the voxels is uniform. For
this, we check if the rate of change of the accumulated
shapeton density on all the voxels after every time step
(∆t = 1) is below a threshold value as follows:

∆s(t) = ∑
i∈V

(st(i)− st−1(i))2 ≤ ε (5)

where ∆s(t) denotes the rate of change in the accumu-
lated shapeton density for all the voxels after t time
steps, V denotes the number of voxels in the volume,
st(i) and st−1(i) are the accumulated shapeton densities
on voxel i after t and t −1 time steps respectively and ε

is the threshold value. In all our datasets, we choose the
threshold value to be 0.05. This threshold value cho-
sen is not an accurate estimation and is chosen exper-
imentally by observing the shapeton diffusion process
on several datasets. As future work, we plan on find-
ing a way to provide a more accurate estimate of the
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threshold value that will be dependent on the dataset.
We check if the condition in Equation 5 is satisfied con-
tinuously in atleast 90% of the last 50 time steps. The
10% leverage is given to account for some unexpected
changes caused due to the probabilistic movement of
the shapetons. The number of time steps after which
all these requirements are satisfied is chosen to be the
point where a steady state is reached.

4.2 Distance Value

(a) (b)

(c) (d)
Figure 3: Effect of the different distance values on the
aneurysm volume data using 400 time steps. Smaller
features such as the narrow blood vessels (shown in the
red circle) are captured using small distance values of
0.001 in (a) and 0.005 in (b) which are absent when
larger distance values of 0.01 in (c) and 0.05 in (d) are
used.

When a shapeton travels a pre-defined distance (defined
by the user), it is said to complete one time step or iter-
ation of the diffusion process. This distance value also
affects the diffusion process of the shapetons and the
shape information captured. When we use a large dis-
tance value, the shapetons travel a larger distance in one
time step. Thus, if we increase the distance value the
diffusion process converges faster in terms of the num-
ber of time steps when compared to a lower distance
value. The smaller distance values cause the shapetons
to move slowly, thereby resulting in more time steps
needed to capture the global shape. However, the catch
here is that we cannot obtain the local features using
a large distance value because most of the shapetons
will travel over the smaller features missing them com-
pletely. Smaller distance values are useful in obtain-
ing and analyzing local features. Therefore, the dis-
tance value is an indication of the shape information
obtained at different scales of the data. Intricate local

shape details are obtained by using a smaller distance
value, while global shape information is obtained using
a higher distance value (with a smaller number of time
steps). It is not that the smaller distance value is unable
to capture the global shape information, it is just that it
takes more time steps to obtain the global shape infor-
mation using a smaller distance value. On the contrary,
a higher distance value is unable to obtain the local fea-
tures despite using more time steps.

Figure 3 shows the results of the shapeton diffusion on
the aneurysm dataset using different distance values for
the same number of 400 time steps. Figure 3(a) shows
the result for a distance value of 0.001; Figure 3(b)
shows it for a distance value of 0.005; Figure 3(c) shows
it for a distance value of 0.01, and Figure 3(d) shows
the result for a distance value of 0.05. For small dis-
tance values even the smaller features such as the nar-
row blood vessels (shown in the red circle) are captured.
As the distance value is increased, only the relatively
larger features such as the aneurysm blob are captured
by the shapetons. The smaller features such as the nar-
row vessels are missing in Figures 3 (c) and (d), where
a higher distance value is used.

4.3 Shape Classification
We now show that our shapeton diffusion method is
indeed successful in classifying different shapes. The
shapetons are diffused based on the VGO in volumes,
which captures the shape information. Hence, the prob-
ability of a shapeton to go in a particular path is influ-
enced by the shape information. The accumulated num-
ber of shapetons per voxel in a shape such as a cube
would be different from a shape such as a sphere since
both of them have different shape and thus bear differ-
ent probabilities for the shapetons to capture them.

Figure 4: Shape classification capability of the shapeton
diffusion approach shown using a synthetic data con-
sisting of a cube, two cuboids of different size and ori-
entation and a sphere.

We use a synthetic data consisting of a cube, two
cuboids of different size and orientation and a sphere
to confirm this. Figure 4 shows the result of using the
shapeton diffusion method on the synthetic data. We
consider a large number of 2500 time steps to make
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sure that a stable state is reached. In each time step,
the shapeton was moved by a distance of 0.01. We can
clearly see from Figure 4 that all the shapes have been
identified and distinguished successfully (shown by
the different colors). The colors are assigned based on
the number of shapetons accumulated. The shapeton
propagation is based on the shape information (VGO)
and hence the number of shapetons accumulated per
voxel is the same in similar shaped objects. This fact
can be observed in Figure 4 where both cuboids have
the same color. In addition, the color of the cube is
almost similar to that of cuboids indicating that they
have almost similar shape. The cube and the sphere
have also been classified as different shapes, thus
asserting that the shapeton diffusion method serves
as a powerful tool in finding objects with similar
shape and distinguishing them from objects with
other shape. An important observation that can be
made from Figure 4 is that both cuboids have been
identified as similar shape irrespective of their size and
orientation. This further confirms that our method can
recognize different shapes independent of their size
and orientation.

4.4 Invariance to Deformations

Figure 5: Objects of similar shape identified success-
fully irrespective of their deformations.

The shapeton diffusion method displays some lucrative
properties such as invariance to deformations. We gen-
erated a synthetic data to establish this property. The
synthetic data consists of a cuboid, a deformed cuboid,
a sphere and a deformed sphere. Figure 5 shows the
result of the shapeton diffusion on this synthetic data.
Again the diffusion process is carried out for a large
number of time steps to ensure a stable state is reached
and all the objects in the volume data are obtained.

You can observe that although the cuboid has been
deformed, the number of shapetons accumulated per
voxel in both the cuboid and its deformed version are
the same and hence both have similar color. Likewise,
the sphere and its deformed version have similar color.
The sphere and the cuboid have also been distinguished
from each other. We used 1000 shapetons for 2500 time
steps to obtain the results. The results in Figure 5 show
that the shapeton diffusion method is successful in iden-
tifying objects of similar shape though they have been

deformed, thus proving that it is invariant to deforma-
tion.

4.5 Effect of p

(a) (b)

(c) (d)
Figure 6: Comparison of choosing different values for
p. (a), (b), (c) and (d) are the results obtained by choos-
ing p = 4, 9, 15 and 20, respectively, on the engine
dataset for 1300 time steps. Internal parts such as the
pipe (shown in the red ellipse), the outer rim around the
pipe (shown in the orange circle) and the beam (shown
in the yellow box) are captured in (b), (c) and (d), re-
spectively. For large values of p in (d) some of the
global shape information is missing (shown in the pink
circle).

The direction of shapeton propagation is guided by the
VGO. VGO has a parameter p which influences the re-
sult obtained. p is a user defined parameter that is used
to decide the boundaries of the objects in a given vol-
ume data. The clarity of the boundary determines how
clearly the different shapes are identified. The parame-
ter p gives the user extra flexibility in deciding the ob-
ject boundaries. A large p value would enhance the lo-
cal shape differences within an object and hence result
in more sub-objects. Therefore, by increasing the value
of p the local internal objects within an object can be
obtained. However, we tend to lose some of the global
shape information for larger values of p. Thus, the final
results obtained might vary both locally and globally
for different values of p based on how well the objects
are distinguished and how sharp the features are. All
these effects of p are shown experimentally using the
engine data in Figure 6.
Figure 6 shows the result of choosing different values
of p on the engine dataset. Figures 6(a), (b), (c) and
(d) show the result when p = 4, 9, 15 and 20, respec-
tively for 1300 time steps with a pre-defined distance
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of 0.05. We can observe that different parts of the en-
gine are captured by using different values of p. In
Figure 6(b) where p = 9, the internal pipe (shown in
the red ellipse) is separated which was not when p = 4
in Figure 6(a). Similarly, when p = 15 in Figure 6(c)
the outer rim around the pipe (shown in the orange cir-
cle) is captured. Finally, when p = 20 in Figure 6(d)
the beam of the engine (shown in the yellow box) is
captured. We can see that by increasing the value of p
more internal parts of the engine are captured as the lo-
cal shape differences between these parts are enhanced.
However, some of the global shape information is miss-
ing (shown in the pink circle) in Figure 6(d). This is
because a high value of p divides the same object into
much smaller sub-parts and because the pre-defined dis-
tance used was relatively high, these smaller sub-parts
are not captured. The same is the reason why the inter-
nal pipe from Figure 6(b) is missing in Figures 6(c) and
(d). In this way, different parts of the engine based on
their shape can be obtained and analyzed using different
values of p. This facilitates a better analysis and under-
standing of the data. As the convergence of shapetons
can be monitored in real time, even though the value of
p is changed, the new result can be obtained very fast.
Thus, based on what features the user wishes to focus
on and what features the user wants to analyze, different
values of p can be selected.

5 APPLICATIONS
5.1 Transfer Function Design in Volumes
The shapetons accumulate all the shape information
over different time steps while diffusing inside the vol-
ume. This information can be used to design a shape-
based transfer function. The user can assign different
colors and opacities to the final accumulated shapeton
count, which forms a 1-D transfer function based on the
shape information.
Figure 7 shows a volume rendered image of a CT
chest dataset with a transfer function designed using the
shape information obtained by our shapeton diffusion
method. We were able to classify different parts of the
data, such as the rib bones (shown in red), the sternum
(shown in dark green), the clavicle bones (shown in ma-
genta), the soapula (shown in fluorescent green), and
small bones of the spinal cord (shown in blue) based
on the shape information. Figure 7 shows all the seg-
mented parts of the CT chest data by using our transfer
function. All the ribs have similar curved shape and
hence have been classified as the same shape indicated
by the same color. Even the small but important part
named xiphoid (greyish blue shown in the black circle),
which is present at the tip of the sternum has been clas-
sified by the shape-based transfer function. The number
of shapetons used was 65000 with a distance value of
0.05. The diffusion process was carried out for 1600
time steps, for a total time of 3.10 sec.

Figure 7: Volume rendering with the shape-based trans-
fer function on the CT chest dataset. The rib bones
(red), the sternum (dark green), the clavicle bones (ma-
genta) and the soapula (fluorescent green) are obtained.
The small bones of the spinal cord (blue), xiphoid
(greyish blue in the black circle) - a small part present
at the tip of the sternum are also classified.

5.2 Colon Cancer Detection
Colorectal cancer is the second leading cause of cancer
related deaths in United States. Polyps are the precur-
sors of colorectal cancer. Polyps are small protrusions
of the tissue that grow out of the walls of the colon.
Early detection and removal of these polyps is impor-
tant for preventing colon cancer. We used our shapeton
diffusion approach to detect the polyps on the colon sur-
face, obtained from a CT scan of the patient’s abdomen
for virtual colonoscopy (VC) [HMK+97].

(a) (b)
Figure 8: Polyp detection inside the colon using the
shapeton diffusion method. (a) Polyp (shown in blue)
detected using our approach; (b) Volume rendering of
the corresponding location inside the colon confirming
the presence of the polyp.

We used real volumetric colon data from VC to show
the effectiveness of the shapeton diffusion process in
polyp detection. The volumetric colon is electronically
cleansed CT data. Figure 8 shows the result of the polyp
detection using our shapeton diffusion method on the
real colon data. Figure 8(a) shows the result obtained
by our method and Figure 8(b) shows the volume ren-
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Figure 9: Classifying objects based on their shape using our shapeton diffusion approach on (a) hydrogen atom,
(b) visible female hand, (c) CT abdomen, (d) MRI head, and (e) visible female feet volumetric datasets.

dering result of the corresponding location of the polyp
inside the colon. Since polyps have a blob-like shape,
different from the shape of the colon walls, we were
able to successfully detect the polyps using our method.
Figure 8(a) shows one such polyp (shown in blue) de-
tected. We confirmed the position of the polyp by ex-
amining the corresponding location inside the colon
volume data. This result can be seen in Figure 8(b).
It took just 4000 time steps using 65000 shapetons to
achieve this result. The p value was chosen to be 15.
The reason to choose a high value for p is to get a clear
boundary of the polyps. Since a smaller scale is needed
for the polyp detection, a low distance value of 0.005
was chosen. The total time taken was 5.44 sec.

6 RESULTS
We used several datasets to demonstrate the efficiency
of our method. Figures 9 (a)-(e) show the object classi-
ficaiton capability of our approach based on the shape
information for hydrogen atom, visible female hand,
CT abdomen, MRI brain and visible female feet volu-
metric datasets, respectively. In Figure 9(a) both the or-
bitals of similar shape are clearly distinguished from the
nucleus (center) and the orbit (around the nucleus) in a
hydrogen atom as inidicated by different colors. In Fig-
ure 9(c), the shape-based volume exploration of the CT
abdomen reveals various organs such as the kidneys,
liver, pancreas, and vital parts such as the aortic vessel,
spinal cord and pelvic bones using 260000 shapetons
and a pre-defined distance of 0.01. All the internal or-
gans have different shapes and by virtue of our method,
they have been identified successfully. Furthermore, it
has just taken only 2.13 sec using 2600 time steps to ob-
tain this result. In Figure 9(d), we are able to separate

the brain from the cranium and eye sockets in the MRI
head data, using the shape-based transfer function de-
signed by our approach. We used 65000 shapetons for
a pre-defined distance value of 0.01 and 4160 time steps
which accounted for a total time of 2.82 sec. Figures 9
(b) and (e) show that the bones and the joints between
the bones are identified in the visible female hand and
feet data, respectively. While we used 65000 shapetons
and a pre-defined distance of 0.01 in both the cases, the
number of time steps were 460 and 420 with a total time
of 0.34 sec and 0.27 sec for the visible female hand and
feet, respectively.

(a) (b)
Figure 10: Visual comparison of the results obtained for
the visible female hand dataset using (a) Our shapeton
diffusion method and (b) The cumulative heat diffusion
method.

We compared our approach with the cumulative heat
diffusion (CHD) approach [GWK12], in terms of the
running time per iteration and the number of time steps
required to obtain visually similar or even better re-
sults. Table in Appendix 5 shows the comparison re-
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sults using different volume datasets. For the sake of
completion, we also provide a visual comparison of the
results obtained by using our method with that of the
results obtained using the CHD method using the vis-
ible female hand dataset (see Figure 10). Figure 10(a)
shows the results obtained using the shapeton diffusion
approach, while Figure 10(b) shows the result obtained
by using the CHD method. In Figure 10(b), 1000 time
steps were considered while in Figure 10(a) only 460
time steps were considered for a distance value of 0.01.
Since we wanted to capture the local features, a smaller
distance value was used. The same p value of 10 was
used in both the cases. We can clearly observe that vi-
sually better results were obtained using our method
compared to the CHD method. We can also see that
a better distinction of shapes was obtained using our
method even in very local regions, as indicated by the
region in the green box in Figure 10(b). The joints have
been clearly distinguished from the hand bones. Fur-
thermore, the result was obtained in much less time
compared to the CHD approach, further emphasizing
the superiority of our method.

7 CONCLUSION AND FUTURE
WORK

The main contribution of this paper is the real time
shape analysis method in volumes using a Monte Carlo
approach. Tiny massless particles, called shapetons, are
diffused based on the VGO in a Monte Carlo manner.
In addition, a new definition for the time step using a
pre-defined distance is introduced. Unlike the conven-
tional diffusion based methods, this method is indepen-
dent of the size and resolution of the data. The final
accumulated shapeton count after each time step would
capture the shape information and helps in analyzing
the data based on shape. The diffusion process can be
monitored in real time and this facilitates a real time
shape analysis of different features until a convergence
state is reached. Furthermore, we discuss the proper-
ties of our method by presenting results using simple as
well as complex datasets. Important applications of our
method to colon cancer detection and transfer-function
design have also been discussed, along with supporting
results.
The results obtained using our method are influenced
by many parameters such as the number of shapetons,
the distance value, the number of time steps t, and the
value of p. As discussed earlier, there is an optimum
value for the number of shapetons used after which the
time taken to obtain the results increases even though
the number of shapetons is increased. Similarly, the
time step t and the value of p have optimum values to
obtain the best results based on the dataset used. As
part of our future work, we plan to focus on finding a
way to automatically decide the optimum values for all
the parameters in order to obtain the best results.
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