
Operational theater generation by a descriptive language

Matis Ghiotto

Aix Marseille Univ, CNRS
LIS, Marseille, France

matis.ghiotto@lis-lab.fr

Brett Desbenoit

Aix Marseille Univ, CNRS
LIS, Marseille, France
brett.desbenoit@univ-

amu.fr

Romain Raffin

Université de Bourgogne
LIB EA 7534, Dijon, France

romain.raffin@u-
bourgogne.fr

ABSTRACT
3D landscapes generation is an interdisciplinary field that requires expertise in both computer graphics and ge-
ographic informations systems (GIS). It is a complex and time-consuming process. In this paper, we present a
new approach to simplify 3D environment generation process, by creating a go-between data-model containing a
list of available source data and steps to use them. To feed the data-model, we introduce a formal language that
describes the process’s sequence. We propose an adapted format, designed to be human-readable and machine-
readable, allowing for easy creation and modification of the scenery. We demonstrate the utility of our approach by
implementing a prototype system to generate 3D landscapes with a use-case fit for multipurpose simulation. Our
system takes a description as input and outputs a complete 3D environment, including terrain and feature elements
such as buildings created by chosen geometrical process. Experiments show that our approach reduces the time
and effort required to generate a 3D environment, making it accessible to a wider range of users without extensive
knowledge of GIS. In conclusion, our custom language and implementation provide a simple and effective solution
to the complexity of 3D terrain generation, making it a valuable tool for users in the area.

Keywords
Geographics data, operational theater, descriptive approach, multi-modal geometry processing

1 INTRODUCTION
3D landscape generation is an active topic of research
in the field of computer graphics and GIS. Operational
theater consists in a subset of landscapes used for se-
rious games or military simulations. The goal of op-
erational theater generation is to create realistic repre-
sentations of natural and urban environments based on
real-world data, or GIS data. The integration of GIS
data into 3D landscape generation is a challenging task.
It requires the efficient processing of large and complex
datasets as well as some knowledge of cartography and
coordinates system. Environment generation in the in-
dustry are made by either procedural or sketching [2]
tools. As procedural generation tends to create an arti-
ficial (yet realistic) terrain, as opposed to a terrain de-
picting a real place, it does not fit for operational the-
ater generation. Sketching is more adapted, allowing
human intervention to curate the terrain into something
close to the existing surface it tries to emulate, but it
is a lengthy process. Sketching requires expertise in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

GIS and use of sketching software. In this paper, we
propose a method to reduce time and complexity of op-
erational theater generation by limiting sketching to a
formalized description of the terrain to generate. Sme-
lik et al. [11] gave a relevant overview of the different
elements used to compose a 3D environment, but also
highlighted the lack of methods allowing for the gen-
eration of a complete terrain using all the different el-
ements. In recent literature, this segregation between
natural terrain and urban terrain is still existing. Eric
Galin et al. [3] present a state-of-the-art review for the
different methods of natural scene generation, but with
no insight on how to integrate them in an urban land-
scape. In contrast, Hoang Ha et al. [8] only approach
road network generation and Tang Ming [12] city gen-
eration. Each paper focuses on a specific type of terrain
generation and, when they provide a new way to sim-
plify their specific task, they do not provide an easy way
to interface their work with others of the same type,
in order to generate a complex landscape with natural
and urban terrain alike. Our study-case is the genera-
tion of an operational theater fit for military simulation.
It is a complex task with concrete industrial applica-
tion. Operational theater includes both urban and natu-
ral environment. We address this problem by a flexible
way, generating any type of terrain that can be easily
enhanced by future field-specifics works. The output
at this time is a full 3D scene, merging with geomet-

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 158



Figure 1: Language principle overview

ric processing of geographic data. The new method we
propose rely heavily on the formal description of the
scene to generate, so our first approach was to identify
the different elements that make an operational theater.

This lead to a three-step process represented in figure 1:

• identify sources, ranges and format

• extract, process and merge data

• adapt outputs

We defined a data model and a specific language to gen-
eralize our approach and facilitate user’s interactions.
This language will be embedded in a file and will be
sufficient to create a full operational theater.

1.1 GIS data diversity
The input of our process is mainly GIS data. It involves
handling geospatial ranges, coordinates and references,
data types and associated metadata. Surface coordi-
nates face approximation due to the curved surface of
earth. Geocentric coordinates are inconsistent with al-
titude, as the sea level is not constant and the earth is
not a perfect sphere. This lead to historical disparities
between coordinates systems [4]. It has become even
more complex with new technologies and the number
of digital data formats.

Initiatives have been made to solve this problem. The
Open Geospatial Consortium (OGC) is a major actor in
the interoperability of geographical data. The consor-
tium has introduced many standards, helping to harmo-
nize the use of GIS data and intercompatibility between
them. Webservices such as Web Map Service (WMS)
and Web Feature Service (WFS), are OGC standards.
They allow users to fetch information (maps and fea-
tures) from geographic servers. It is an important part
of multi-format data process, as it decentralizes data
sources. Each Webservice can implement a process for
the data type it uses and requires minimal user’s exper-
tise. Webservices are a reliable bridge between OGC

data formats if the user knows which format they have
access to and which format they want to use.

Even with OGC standard, some tasks are traditionally
performed in specific formats that are not adapted for
a generic operational theater generation. For exam-
ple, describing a city with CityGML is a documented
task [13]. But, if we need to incorporate this city into
a larger environment, CityGML is no longer suitable.
The transformation of CityGML data into another more
suitable format will need processing and expert knowl-
edge. Hopefully, the format is documented and based
on norms.

Our first problem will be to use data in different formats
that are not trivially intercompatible. To do so, we will
need to list the formats and be able to use the right OGC
protocol to translate them. This is depicted in figure 1
as GIS constraint in blue.

1.2 Geometry constraints
Rendering geographical data on screen require their
conversion into geometrical elements. We will first de-
scribe how to construct the operational theater from the
geometrical point of view. An operational theater is
composed of a base, the ground terrain and surface el-
ements, such as vegetation or buildings. The terrain is
a Digital Terrain Model (DTM) [3] with geographic in-
formation superposed on it in most cases. This geo-
graphic elements, studied in [11], can be grouped in
three geometric categories:

• Surface elements, which cover large parts of the
DTM and represent a large homogeneous chunk of
the environment such as sea, farm, forests...

• Discrete elements which are small meshes and usu-
ally represent buildings, individuals trees or particu-
lar geological formations.

• Continuous elements which are linear components,
such as roads or rivers.

The geometry can cover a wide country-sized area.
Even with optimization [5] [15], covering that surface
and retaining details is not trivial. Large operational
theaters, typically covering over 250,000 hectares (50
km × 50 km) with 1 meter to 10 meters precision, re-
quire tiling and level of detail (LoD) or a patch-based
generation method [1]. Tiling refers to the subdivision
of the terrain into smaller areas that can be loaded and
cleared as needed.

LoD refers to the superposition of meshes of various
resolutions to represent the same object, with only one
visible at a time, depending on the proximity between
objects and the viewpoint origin. The use of both LoD
and tiling reduces much of the cost and allows large and
more detailed scenery to be made suitable for rendering.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 159



Our second problem is to split the GIS elements into the
corresponding geometrical elements, and process them
to create tiling and LoD appropriate for rendering. This
can be generalized as all optimization operations made
on the data, and is displayed in red on figure 1 (Geom-
etry constraint).

1.3 Simulation constraints
Thirdly, there are specific requirements for simulation.
Creating a scenery for 3D mobiles deals with differ-
ent constraints than creating a web application for flood
control [10], [6]. These constraints vary from a simula-
tion to another and can be summarized as:

• Geographical extent, referencing the part of our
world described by the scenery

• Theater accuracy, whether it is exactly the same as
reality or if there is a margin of error on the present
elements

• Metadata, such as soil quality, vegetation density, or
street names

• Specific information requiring computation, such as
an inter-visibility check or ground distance compu-
tations

A user may need an operational theater to comply with
any number of these previously defined constraints.
Modifying any of these constraint parameters calls for
recreating the entire operational theater. It is a time-
consuming operation without an automated generation
process. Therefore, our third problem is to modify pa-
rameters or add new data or method to the operational
theater without having to rethink the entire creation pro-
cess. This impacts the generation process at all levels
and is displayed in yellow in figure 1 (Simulation con-
straint).

These problems are difficult to handle. Users must un-
derstand simulation constraint as well as geometrical
and GIS constraints. Moreover, once an operational
theater is generated, it is not possible to modify it with
new data or add support to a new simulation constraint,
without restarting a new creation from scratch. In the
method we proposed, we shift this difficulty into some-
thing easier to manage: the created landscape is still
static, but the model representing it, written in a human-
readable script, is easy to modify.

2 DATA MODEL
In previous sections, we identified difficulties linked to
the many constraints of operational theater generation.
To address them we present a new approach, based on a
descriptive-oriented language, seeking to explicit sim-
ulations needs and constraints that can be used to auto-
matically create an operational theater.

2.1 Overview
The identified constraints are linked to three main cate-
gories:

• GIS constraints

• Geometry constraints

• Simulation constraints

We consider these constraints as tangled elements
rather than independent elements. We unraveled them
and exposed that GIS constraints never impact the
geometrical output outside construction. With the same
logic, outside the specific data format that was already
accounted as a GIS constraint, geometry constraints
are never used to determine what kind of sources will
be used as base material for the operational theater
generation. Our approach is to propose a description of
these two subsets of constraints (the available data and
the expected output) to get parameterized input and
output, adapted to computer process. Then, we define a
subset of operations allowing to extract and modify the
input to obtain the output. As shown in figure 1, this is
the global structure of our solution.

Sources used are determined from available GIS data
according to a geographical extent and metadata needed
by simulations constraints.

Outputs are determined from geometrical constraints,
limiting data quantity and format, and by simulation
constraints requiring a minimal precision and quality.

2.2 Model specification
Generation methods based on scripting exist in the lit-
erature [12] but are traditionally not used in conjunc-
tion with wide real-world data. To handle these com-
plex data, we took inspiration from L-System [9] and
conceived a theoretical data model that allows data mu-
tation. This abstract model is fed and manipulated by
a scripting language. The language we defined is com-
posed by three core-concepts: Data, Sources, and Oper-
ations. The main idea of the language is to handle these
concepts to create a data model representing an abstract
operational theater before processing.

Data represent all the information needed in the 3D
scenery representation. They can be assigned as vari-
ables to feed operations.

Sources are all the protocols needed to communicate
with external data sources. We collect sources to obtain
raw data or letting a server do requested modifications
on raw data before their acquisition.

Operations encompass all the modifications that can be
done to process some data and result to other ones, as-
signing them to a variable.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 160



Figure 2: Description language schematic representation

The Data model is the most complex part of our lan-
guage. This is the part where we perform acquisition
and transformation of data sources, so we have usable
and inter-operable data. The Data model allows a global
and abstract representation of scenery while retracing
the origin of all available data, lists all the transforma-
tions and applies them. As described before, these data
can contain metadata about their actual quality or about
their formats, and it’s possible to use these as criteria to
manipulate them. This model is innovative as it allows
a representation of a 3D scenery composed of multi-
ple georeferenced elements and their relative disposi-
tion without being a graphical data.

Operations can make use of external software by spec-
ifying the executable path and the output location. The
commands will be handled as if the executable output
is a data from a specified format coming from a local,
non-mutable, source. It allows extensibility for the lan-
guage, making use of state-of-the-art processes without
having to re-implement them.

3 METHODS
3.1 Language
We proposed the implementation of the previous con-
cepts in a language including the followings elements:

• One or more Source-declaration blocks (formula 2)
that can be either:

– A local source, indicating path, format and all
necessary metadata (formula 3).

– A geoserver source, indicating the connection
address, the protocol (WMS, WFS, WPS) and
optional connection parameters (formula 4).

• One or more data Acquisition blocks (formula 5),
indicating a predeclared source, an identifier (id) for
the newly obtained data and an acquisition parame-
ter if the source allows it.

• Any number of Operation blocks (formula 6) de-
clared with the following information:

– A declared source data id.

– A not previously declared new data id.

– A processing name (already implemented or ex-
ternal command).

– Arguments needed by the operation.

– Any number of nested operation blocks.

• One or more Export blocks (formula 9), containing:

– The format for the output model.

– Constraints linked to this format (such as number
of vertices, texture quality, etc.).

– The list of data to use for model creation.

– A fusion heuristic if the format is implemented
with more than one fusion processes.

Formally, the language specification is as following:

Let D the description language, S a source block, A an
acquisition block, O an operation block, and E an ex-
port block, we define:

D = S+ A [A∪O]∗ E+ (1)

Figure 2 is a schematic representation of this equa-
tion 1.

3.1.1 Sources

Sources blocks noted S are defined as:

S = S1 ∪S2 (2)

S1 = t1 as f cg∗ (3)

S2 = t2 asg∗ (4)

With S1 and S2 respectively a local and distant source.
t is a source type (t1 covers file sources and t2 covers

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 161



geoserver sources), a is an address or a path, f is a file
format, c is a CRS, s is a source id. A specific s id
must be present in only one S block. g is an unspec-
ified argument, it may be used to convey additionals
informations, g is included in the language for the sake
of extensibility. It can be any number of g arguments.
Block S, which stands for Source, describes the data to
obtain and how to obtain them. They are declared in
the header of our description file and can show differ-
ent behaviors depending on the given arguments at the
time of data acquisition.

Sources can depict a folder, local or upon a network (t1),
a requestable database, or a geographical data server
(t2). Geographical data servers can alter data before
serving them. These alterations are defined by the
geoserver standard, and they can be, but are not limited
to: georeferencial rebasement, aggregation of multiple
data on the same bounding boxes and segmentation of
data to obtain only the one inside a defined bounding
box.

This differentiation is made via a specific keyword and
does not impede future implementations of other data
acquisition methods.

S blocks are logically linked to Acquisition block, de-
noted by A.

3.1.2 Acquisition
A = sd bg∗ (5)

s is a source id and d is a data id and b a geographic
bounding box limiting the data to get. A specific source
id denoted by s can be used only if it was previously
declared in a S block. A specific d argument can’t be
reused if already used in a A block. A b argument must
describe a bounding box included in the one declared
in the corresponding s. Block A allows loading the in-
formation described in a source into the data model. It
makes use of all the information specified in the source
and the added arguments g to create a named data d,
which will be viable to modify or export later. The same
S block can be used by multiple A blocks to create dif-
ferent data by specifying various bounding boxes b or
using the arguments to request different server-side data
management.

3.1.3 Operations

Operations blocks noted O are defined as follows:

O = O1 ∪O2 (6)

O1 = od1 d2 g∗ O∗ (7)

O2 = pd1 d2 a f g+ O∗ (8)

Where d1 represents an already existing data (and thus
must be previously declared) that will be used as source

for creating a new data d2. d2 must not have been previ-
ously declared. In O1, an o operation will be declared to
be executed by the interpreter, using an internal process
to modify a d1 data into a d2 data using only this data
and optional arguments depending on specifics o. In
O2, an external process hosted at address p will be ex-
ecuted, its result must be stored in a. Once completed,
the file at the address a is read and loaded into d2, as
if it was a local source of format f . O blocks augment
the data model with newly made data fitting the user’s
needs.

3.1.4 Export

Export blocks denoted E are defined as follows:

E = f d+ (cg∗)∗ (9)

c is used as a geometry constraint to create an ex-
portable version of the data model.

The E blocks, or Export are in charge of producing
the 3D scene or other data format specified by the
user. This part allows the specification of the non-
geographical simulation constraint c. These constraints
are deeply linked to a specific format, and thus, do not
have a place in the data model. These constraints can be
the quality of the 3D meshes created, their sizes, or their
formats. It can also be the used metadata, or simulation-
only data that must be attached to the scenery elements.

We presented a proof of concept for a new method of
landscape generation, incorporating the basic features
required to create a landscape. Our approach includes
the ability to import GIS data, as well as the ability to
use process from external tools, such as GDAL, and
maintain relationships with the source data.

3.2 Implementation
The implemented subset of the language contains the
following elements:

• Data format

– Image for texture purpose, PNG and TIFF

– Raster data, tiff and XYZ

– Vector data, Shapefile and GML

• Operation

– HeightMap mesh creation from XYZ data

– Mapping of terrain mesh and vector features

– Texturing

– Land flattening around vector features

• Output formats

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 162



(a) texture-less terrain (b) textured terrain (c) textured terrain with buildings
Figure 3: Visual examples

– GLTF as 3D mesh

In our proof of concept, we have selected XYZ, TIFF,
GML and Shapefiles as sources data formats. We se-
lected these formats due to their support from GIS
standard libraries such as GDAL [14] and widespread
availability, notably by local organizations such as the
French survey (IGN, from which we get most of the
data). For our test outputs, we have chosen the GLTF
format, backed by Khronos, as it provides an optimized
geometric format for rendering and is straightforward
to write. This choice of formats and processes reflects
a meaningful range of capabilities within the GIS field,
as it covers all steps involved in the creation of a com-
plete terrain. The process starts with data collection and
includes the aggregation of vector and raster data, lead-
ing to the creation of a simulation-ready 3D operational
theater. We have also added some specialized opera-
tions to demonstrate the versatility of our model, its
ability to integrate various data sources, and its align-
ment with the needs of simulations.

The executable running the language is implemented
with C++. The computer executing it has a AMD Ryzen
5 3400G processor with 4 cores and a 16 GB RAM.

This implementation is a showcase, and the opera-
tions can be further optimized with state-of-the-art al-
gorithms. The test case’s goal is to determine the diffi-
culty to produce different operational theaters. We eval-
uate the time used to create a specific theater, and also
assess the visual coherence of the results, the skill level
required to conduct the test case and the ease of modi-
fying it to meet other requirements.

4 RESULTS
To represent elements constituting our scenery, we
chose an indicative and functional-like language, based
on the JSON standard. JSON has the advantage to
be easily interpreted by computers without being too
harsh to read and write by humans.

4.1 Incremental complexity
The figures 6i, 6j and 6k show one of those files. We
can see the all the elements of our language represented
here.

Each letter under bracket (and text color) shows a dif-
ferent step of the test. The same bracket letter (and
corresponding color) is used for figures 3 and 4. The
construction of this file is incremental. The text un-
der brackets "a" (black text) alone is enough to create
a simple texture-less terrain, and adding step by step,
"b" (green) and "c" (blue) will refine it into a textured
terrain with buildings. "d" (red) shows an optional ter-
rain modification to demonstrate the possibility of the
language.

"Sources" in figure 6i that can contain one or more
S Sources as defined previously, here contains a t1
"localAccess" named s SourceHeightmap at address a
"../GrandLyonData.XYZ" with a data format f "XYZ"
and a geographic system c "EPSG:3946". A second
local source with similar parameters named "Source-
Buildings" and a distant source "SourceOrthophoto" are
also present, but we will see them in detail later with an
advanced example.

"Populate" in figure 6j is the first part of the data model
and can contain one or more A blocks. Here it con-
tains the acquisitions of data described by the previ-
ous s, into a new data id d "LoadedHeightMap" (and
respective "LoadedBuildings" and "RequestedOrtho"),
but limiting the acquisition to the range of the specified
bounding box b, expressed in the previously declared
geographic system for or in a new one in the case of
Webservice sources as in "b" blocks.

"Build", first half of figure 6k, can contain any num-
ber of O blocks. Here it contains three operations o.
The first one, under bracket "a", named "HeightMap-
ToMesh", builds a mesh from the previous data d1
"LoadedHeightMap" to the new data d2 "TerrainMesh".
The second, under bracket "b", will similarly create
a new data d2 "TerrainMeshWithBuildings" using the
previously created d1 "TerrainMesh" and the data given
by argument g "LoadedBuilding". The third, under
bracket "d", will similarly apply a new geometrical pro-
cess to the generated data.

"Outputs", second half of figure 6k, must contain at
least one way to export E for the data. It contains
here an f GLTF output from the d "TerrainMesh" (or
"TerrainMeshWithBuild" or "TerrainMeshFlattened"
and "RequestedOrtho" if we go farther into the exam-

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 163



ples) data using arguments g, such as the model size,
bounding box and the output filename.

Sections "a" of this descriptor file show a short genera-
tion script for making an untextured 3D model. This il-
lustrates the language simplicity. The only skill needed
to use it is to be able to express the bounding box coor-
dinate of model integration step in the coordinates refer-
ence system (CRS) declared in source description step.
It is too simple for any real-world use, but it is a base
easy to increment.

Sections "c" show the language capacity to communi-
cate with a geoserver and aggregate sources of different
origins. Data present on the geoserver referenced in fig-
ure 6i are initially under CRS EPSG:3857, but we can
request them in another CRS providing the right argu-
ments in figure 6j. If the data in the geoserver and the
one used to create the terrain model are correct, they
will match and create a textured terrain when declared
together at the GLTF generation in figure 6k. This is
as simple as the previous step and will require no more
skills. The biggest difficulty is to verify beforehand if
the data are not faulty. There is no easy automated way
to do so embedded in the language, and it falls to the
user charge to verify their data sources.

Sections "b" show the language capacity to re-use pre-
viously created element and aggregate complex vector
sources. We declare a vector file containing buildings
in 6i and 6j as done in the first steps. It should be men-
tioned that the data are this time from the same provider
as the ones used for the Heightmap in the black part,
so there was no need to verify if they were coherent
with the already present ones. The fusion of the data
is happening in the build step in 6k. The process "ad-
dBuildingsToMesh" takes a Mesh as source data and a
vectorial feature list as argument and creates a new data
that contains both. The implementation checks if the
data used are of an expected format and issues an er-
ror if they are not. With this step we get a minimal but
simulation ready operational theater we can further sup-
plement by adding roads and rivers delimitations, veg-
etation or any required element by following the same
steps. We see the progression of these three use-cases
in figure 3.

Section "d" shows the model capacity to keep track of
data hierarchy. The process declared is a simple geo-
metrical operation that flattens the ground under given
features. It may seem of no more interest for our ex-
ample than the "b" process, as it takes the same kind of
arguments and produces the same kind of output. But
we only use as input for these process the data created
with the precedent processes. This highlights that data
are keeping a symbolic link to the data that was used
for their creation, and that we can use this hierarchy to
easily reuse data. The process can use the feature list
of id "LoadedBuildings" referenced by "TerrainWith-

Buildings" to flatten the ground without damaging the
buildings, as shown in the wireframe of figure 4.

4.2 External command
The main limitation of this language is the number of
implemented processes that cannot possibly match the
wideness of GIS. That why the language can also use
external processes such as GDAL command line to pro-
cess data. This is a less flexible way to use data, and it
requires knowledge about the external program. The
example shown in figure 5 was obtained by using the
build step in listing 1.

4.3 Gathering results and analysis
These examples demonstrate how to add a complex el-
ement in the operational theater, as well as the commu-
nication and fetching data from geoserver. They also
demonstrate that a small amount of knowledge of GIS
or information processing is required to generate a sim-
ulation ready simple operational theater. Some may still
be needed to understand errors inherent to the sources,
such as a delta between different sources created by
the conversion of CRS or by inaccurate sources, which
are at least not format-specific knowledge. Once the
sources are selected successfully, it is particularly easy
to manipulate the script to display more or less elements
or another geographic area.

Table 1 gathers analyses of the examples. Three addi-
tional tests to the incremental construction have been
made: "Contouring with GDAL" is for the contouring
example (see section 4.2) that displays a smaller area
but with the call to an external process; The "Full large
zone" is expensive to generate, but it is coherent as it
covers a zone 625 times larger than the first example
with the same level of detail. The high triangles count
makes it difficult to display or load in a visual engine;
the "Full zone split into 16 tiles" is, as the name sug-
gest, the same zone but generated with 16 square tiles
instead of only one in the previous example. It is ob-
tained by adding multiple delimitation sections in Mod-
els and Outputs (respectively, figure 6j and figure 6k).
This method enables reduced generation time and eas-
ier load/display.

Listing 1: External process example

" B u i l d " : [
{

" pAdress " :
" . / g d a l _ c o n t o u r −p − i 1 0 . 0 " ,
" o r i g D a t a _ i d " : " HeightMap " ,
" p R e s u l t " : " . / c o n t o u r . png " ,
" f o r m a t " : " png "
" newData_id " : " C o n t o u r i n g "

} , . . .

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 164



(a) featureless (b) with building (c) with geometrical process
Figure 4: Wireframe examples

Acquisition
Time (s) Triangles count (k) Generation time Surface

a (Black) - Base case 4 4,016 1 min 21 s 2 km × 2 km
c (Blue) - Texturing 12 4,016 1 min 31 s 2 km × 2 km
b (Green) - Adding building 10 8,126 2 min 15 s 2 km × 2 km
d (Red) - Geometric operation 10 10,252 4 min 10s 2 km × 2 km
Other - Contouring with GDAL 4 2.048 32 s 500 m × 500 m
Other - Full large zone 24 6,089,800 3 h 15 min 50 km × 50 km
Other - Full zone split into 16 tiles 24 380,600 × 16 1 h 07 min 50 km × 50 km

Table 1: Summary table

5 PERSPECTIVES
As we present this work, we do not implement all the
operations that a user may need. It is a first proof of
concept and the next version is planned to include a plu-
gin system to allow GIS or simulation communities to
add any sources needed from data or operations, and
to upgrade it as new cutting edge algorithms, or with
new data formats. Our objective is to focus in par-
ticular on the integration of 3D tiles formats, a natu-
ral extension of the GLTF we use, allowing georefer-
enced tiling. This is essential, as tiling shows very good
performances compared to non-tiled methods for large
surfaces. We also consider adding conditional branch-

Figure 5: Contouring line by call to an external process

ing structures to the language. Doing so will further
reduce the knowledge needed for the user, by letting
the implementation taking decisions based on formula
or metadata. The conditional system, in addition to
data-quality measurements, may alleviate to some ex-
tent the difficulty of sources selection, by choosing au-
tomatically the best of two sources under an objective
criterion, such as approximation error on the CRS or
comparison with another data marked as "trustworthy".
Another perspective is to add new interfaces. We will
add dynamic information provider to our data model
to communicate the data from the model directly to a
simulation client. This is included in a SaaS (Simula-
tion as a Service) and WebGIS 2.0 [7] approach of the
simulation’s problem that breaks down complex simu-
lation elements into more understandable services. Do-
ing so improves accessibility for nonspecialized users
who will only be confronted to a standard interface and
is not required to understand all the underlying com-
plexities.

Acknowledgements
The authors acknowledge support by SopraSteria and
French ANRT "Association Nationale de Recherche et
Technologie" under CIFRE n° 2020/0364. The authors
also thank the GrandLyon and IGN open data for their
resources.

6 REFERENCES
[1] Leandro Cruz, Luiz Velho, Eric Galin, Adrien

Peytavie, and Eric Guérin. Patch-based Terrain
Synthesis. In International Conference on Com-
puter Graphics Theory and Applications, Pro-
ceedings of the 10th International Conference

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 165



(i) Sources description (j) Model Integration (k) Build and Output

Figure 6: Descriptor file

on Computer Graphics Theory and Applications,
page 6, Berlin, France, March 2015.

[2] James Gain, Patrick Marais, and Wolfgang
Straßer. Terrain sketching. In Proceedings of
the 2009 Symposium on Interactive 3D Graphics
and Games, I3D ’09, page 31–38, New York, NY,
USA, 2009. Association for Computing Machin-
ery.

[3] Eric Galin, Eric Guérin, Adrien Peytavie, Guil-
laume Cordonnier, Marie-Paule Cani, Bedrich
Benes, and James Gain. A review of digital
terrain modeling. Computer Graphics Forum,
38(2):553–577, 2019.

[4] Ian N. Gregory and Richard G. Healey. Historical
GIS: structuring, mapping and analysing geogra-
phies of the past. Progress in Human Geography,
pages 638–653, 2007.

[5] Pedro Morillo, Juan Manuel Orduna, Miguel Fer-
nandez, and Jose Duato. Improving the perfor-
mance of distributed virtual environment systems.
IEEE Transactions on Parallel and Distributed
Systems 16 (7), 637-649, 2005.

[6] Rostivlav Nètek and Marek Balun. Webgis solu-
tion for crisis management support - case study of
olomouc municipality. In ICCSA 2014, Part II,
pp394-403, 2014.

[7] Rostivlav Nètek, Vit Vozenilek, and Alena Von-
drakova. Webgis 2.0 as approach for flexible
web-based map application. In ICCSA 2018, pp1-
5, 2018.

[8] Hoang Ha Nguyen, Brett Desbenoit, and Marc
Daniel. Realistic urban road network modelling
from GIS data. In UDMV, pages 9–15, 2016.

[9] Yoav IH Parish and Pascal Müller. Procedural
modeling of cities. In Proceedings of the 28th
annual conference on Computer graphics and in-
teractive techniques, pages 301–308, 2001.

[10] Shital Shah, Debadeepta Dey, Chris Lovett, and
Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In
Field and Service Robotics, 2017.

[11] Ruben Smelik, Klaas Jan De Kraker, Tim Tutenel,
Rafael Bidarra, and Saskia A Groenewegen. A

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 166



survey of procedural methods for terrain mod-
elling. In Proceedings of the CASA workshop on
3D advanced media in gaming and simulation
(3AMIGAS), pages 25–34. sn, 2009.

[12] Ming Tang. City generator: GIS driven genetic
evolution in urban simulation. In SIGGRAPH
Posters, 2009.

[13] Gwenola Thomas and Stéphane Donikian. Mod-
elling virtual cities dedicated to behavioural ani-
mation. Computer Graphics Forum, 19(3):71–80,
2000.

[14] Frank Warmerdam, Even Rouault, et al. Gdal
documentation: Raster drivers. https:
//gdal.org/drivers/raster/index.
html, https://gdal.org/drivers/
vector/index.html, 2022. Accessed: 2022-
09-13.

[15] Ye Zhi, Yong Gao, Lun Wu, Liang Liu, and Heng
Cai. An improved algorithm for vector data ren-
dering in virtual terrain visualization. In 2013
21st International Conference on Geoinformatics,
pages 1–4. IEEE, 2013.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.19 167




