
Using the Adaptive HistoPyramid to Enhance Performance
of Surface Extraction in 3D Medical Image Visualisation

Antony Padinjarathala
School of Electronic Engineering

Dublin City University
Dublin 9, Ireland

antony.padinjarathala2@mail.dcu.ie

Robert Sadleir
School of Electronic Engineering

Dublin City University
Dublin 9, Ireland

robert.sadleir@dcu.ie

ABSTRACT
There are currently a range of different approaches for extracting iso-surfaces from volumetric medi-
cal image data. Of these, the HistoPyramid appears to be one of the more promising options. This
is due to its use of stream compaction and expansion which facilitates extremely efficient traversal of
the HistoPyramid structure. This paper introduces a novel extension to the HistoPyramid concept that
entails incorporating a variable reduction between the HP layers in order to better fit volumes with
arbitrary dimensions, thus saving memory and improving performance. As with the existing HistoPy-
ramid techniques, the adaptive version lends itself to implementation on the GPU which in turn leads
to further performance improvements. Ultimately, when compared against the best performing existing
HistoPyramids, the adaptive approach yielded a performance improvement of up to 20% without any
impact on the accuracy of the extracted mesh.

Keywords
Marching cubes, surface extraction, HistoPyramid, Parallel Processing, CUDA

1 INTRODUCTION
3D Medical imaging often involves extracting
surfaces from volumetric datasets obtained using
modalities like MRI & CT. These datasets are
stored as 2D images of pixels which when com-
bined build a 3D volume of voxels.

The surfaces in a medical image have constant
density and so are called iso-surfaces. The March-
ing Cubes Algorithm (MCA) [Lor87], developed
by Lorensen & Cline can be used to extract these
surfaces. It is a robust algorithm that subdivides a
volume into smaller 2 × 2 × 2 overlapping neigh-
bourhoods and processes each neighbourhood
individually. This ’divide and conquer’ approach
is well suited to parallel processing. This method
is consistent and accurate but can be quite slow.

The MCA performs computations on the whole
volume, however, only a fraction of this volume
will produce geometry. Alternative solutions
to the MCA attempt to reduce the number of
unnecessary computations that are performed. In
this paper, one such solution that will be looked
at is the HistoPyramid (HP) [Dyk08; Dyk10;
Smi12]. The HP is a data structure that is used
to transform the problem from input-centric to
output-centric. This is a much more efficient
solution. However, the HP approach can be

further improved to be more space-efficient and
further optimised.

This paper introduces the Adaptive HistoPyramid
(AHP), as a novel alternative solution to existing
formations of the HP. The AHP further enhances
and extends the HP such that it can operate
on any arbitrary volume without the need for
extra padding. It is a more flexible structure in
comparison to the standard HP. Less padding
should have the effect of reducing the memory
required to store the AHP and also the amount of
time to create the AHP.

Both the HP and AHP can be shown to be highly
parallelizable and will be implemented using
NVIDIA’s Compute Unified Device Architecture
(CUDA) which is a parallel programming plat-
form [NVI20]. With this all of the steps involved
can be executed on the GPU alone without requir-
ing additional transfers between the GPU and
CPU which adversely affects performance.

2 PRIOR WORK
2.1 Marching Cubes and Extensions
The MCA introduces key concepts that make it
ideal for the task of surface extraction. First, the

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 331



3D grid of voxels is split into 2 × 2 × 2 neighbour-
hoods formed by adjacent voxels. From this each
individual neighbourhood is matched against one
of the 15 Marching Cubes which approximate the
geometry within the neighbourhood.

The MCA does have some limitations in its ability
to handle ’sharp’ shapes and those with ambi-
guity in certain sections. For this reason, more
sophisticated methods based on the MCA such as
Marching Cubes 33 [Che95] and Neural Marching
Cubes [CZ21] were proposed. Marching Cubes 33
aims to improve the MCA by introducing more
patterns so that there are more possible scenarios
that can be modelled in each cube, thus reducing
the potential for ambiguity.

Alternatively, the Neural Marching Cubes algo-
rithm uses a cube with internal vertices and deep
learning in order to create a model to recover
more accurate geometry from the cube. While any
of these quality-centric marching cubes options
would be compatible with the performance-
centric approach that is the focus of this paper, the
standard MCA will be used as the starting point
in order to provide the most accessible description
of the technique that is being proposed.

2.2 Prefix Sum (Parallel Scan)
The Prefix Sum [Har07] is a common parallel
algorithm. It can perform many parallel additions
very quickly. It has many uses but the one that
is most applicable for these purposes is stream
compaction. Stream compaction involves mod-
elling the problem as a series of streams and
then removing unwanted or unnecessary streams.
This is done by turning the MCA into streams
that produce triangles with several streams for
each neighbourhood and then culling the streams
that don’t produce triangles. The scan done
with the Prefix Sum creates a cumulative sum of
triangles over the entire volume and then a scatter
operation is executed that selects only the streams
that produce output triangles.

The MCA processes every neighbourhood which
translates to outputting five streams per neigh-
bourhood. In practice, the average number of
triangles per neighbourhood will be less than one
as typical medical scans feature a large amount of
empty space. The Prefix Sum method uses stream
compaction which ensures there are exactly as
many streams as triangles. Until version 11.6 of
CUDA, a sample was packaged with the CUDA

toolkit that extracted iso-surfaces using the Prefix
Sum. This did not scale well with large volumes
so a better solution is needed.

2.3 HistoPyramid
Another possible solution is using the HP method.
The HP extends the prefix sum and creates a new
data structure, a tree structure that maintains
distribution information, instead of using a single
compacted array of streams. Similar to the Prefix
Sum it uses stream compaction to reduce the
problem into a stream of triangles. The HP base
layer has an entry for each neighbourhood which
is the number of triangles that will be produced
by the neighbourhood. It makes upper layers
by summing entries at each layer until there
is only one entry at the top layer which is the
total number of triangles. These triangles are
passed through each layer of the HP to find the
position and dimensions of that triangle. Often a
neighbourhood may produce multiple triangles,
but each traversal of the HP produces exactly one
triangle. These triangles make up the surface as
before.

2.4 Parallel Processing
A great benefit associated with the MCA is that
it is highly parallelizable. Even running the
standard MCA on a GPU can result in a reduction
in processing time. Parallel implementations
of the MCA have been tested [Arc11] and can
take between four and fifty times less time to
process by utilising the GPU. However, memory
issues may become a problem which limits the
benefit that can be gained when processing larger
volumes.

One reason is that parallel processing on a
GPU tends to require that each parallel process
has a fixed allocation of memory to deal with
all possible input/output scenarios. i.e., each
neighbourhood outputs the maximum number of
triangles which is five even though in most cases
no triangles will be produced. This will inevitably
lead to inefficiencies in terms of memory require-
ments and processing speed. On some GPUs it
may not be possible to process larger volumes in a
single pass without having to do additional slow
GPU to CPU transfers creating a bottleneck.

The HPs are highly parallelizable and the output
is a compact set of triangles so it doesn’t require
as much memory despite having to store a full

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 332



HP data structure as well as storing the full set of
underlying 2 × 2 × 2 voxel neighbourhoods. The
layers of the structure are composed of summing
sections of previous layers, a process which can be
carried out in a computationally efficient manner.
The HP is a Pyramid of partial sums. With the
top layer being the sum of all entries in the base
layer. This is similar to a Prefix Sum operation
that outputs intermediate layers. The HP layers
split the work done by the Prefix Sum method
and allow it to be traversed much faster while
taking the exact same time to create. And, since
the traversal is a simple algorithm that iterates
over a number of triangles it is easy to implement
in parallel.

3 DESIGN AND IMPLEMENTATION
3.1 Marching Cubes Algorithm

Figure 1: The 15 marching cubes cases.

To implement the MCA, the 3D grid of voxels is
first split into 2 × 2 × 2 neighbourhoods formed
by adjacent voxels. Each neighbourhood is a 2 ×
2× 2 overlapping region from the original dataset.
Every voxel forms a corner of the neighbourhood
and has a domain-specific value for its density.

3.1.1 Thresholding
For each neighbourhood, voxel densities are com-
pared with a threshold. This threshold is the den-
sity of the surface to be extracted. Voxels are thus
assigned as internal or external to this surface.

3.1.2 Identify Intersected Edges
If a neighbourhood contains voxels that are both
external and internal to the surface, then it must
be intersected by the surface. There are 256 ways
that a neighbourhood can be intersected. How-
ever, using rotations and complementary cases,

this can be reduced to only 15 unique scenarios as
shown in Fig. 1. Using a lookup table produced
by Lorensen and Cline, a set of intersected edges
was found in that neighbourhood that must con-
tain vertices of the surface.

Figure 2: Evolution of the mesh extracted using
the MCA. (a) A surface extracted before any inter-
polation occurs. (b) A surface extracted without
calculating vertex normals. (c) A fully extracted
surface with vertex normals for lighting calcula-
tions.

3.1.3 Interpolation of Points

Linear Interpolation is applied using the densities
of the voxels on either end of an intersected edge
and the threshold value to approximate the ex-
act position of the vertex along this edge. Inter-
polation stops the rendered surface from looking
’blocky’ as in Fig. 2(a) and instead look as they do
in Fig. 2(b). After this the vertices are triangulated.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 333



3.1.4 Calculating Vertex Normals
At this point the mesh is accurate but does not
have the information required to facilitate per
fragment lighting calculations. Consequently,
normals must be calculated for each vertex. This
is done for each voxel by finding the rate of
change in voxel density along each axis local to
that voxel using neighbouring voxels. Vertices
lying on an edge containing those two voxels have
their normals found using linear interpolation as
before.
The results were examined to ensure that a
smooth, high detail surface was produced as
illustrated in Fig. 2(c). After the MCA was
implemented on the CPU, the process was re-
peated on the GPU using CUDA and the resulting
surface was verified to be identical to the surface
produced by the CPU bound version of the
algorithm.

3.2 HistoPyramid
The HistoPyramid is a data structure that will al-
low a faster extraction phase and is ideal for GPU
implementations. It requires additional setup
time; however this time is negligible in compari-
son to the gains made during the extraction phase.

3.2.1 First Pass
As before, the volume is split into overlapping
neighbourhoods and thresholding is applied.
However, the voxels from this are used with the
lookup tables to quickly calculate the number of
triangles that will be produced by each neighbour-
hood without performing any time-consuming
calculations.

3.2.2 Constructing the HP
It has been suggested that accessing the data as a
series of tiled 2D slices [Har07; Dyk08] rather than
the original 3D sub-volumes has the potential to
significantly reduce the computational overhead
associated with indexing through the HP data
. The HP base layer in this case will be a 2D
array with each entry representing the number
of triangles in a given neighbourhood. The layer
above this is constructed by summing entries in
the layer below. This reduces the size of each
upper layer by a factor of four until one entry
remains at the top layer that contains the total
number of triangles produced by the surface.

This is a reduction factor r of four or 2 × 2. It
should be noted that for this reduction to be pos-
sible, the bottom layer must have sides of equal

length that are of size 2k and will form k+ 1 layers.
The layers are padded to fit these constraints.
The formation of the HP can be thought of as
a Prefix Sum with Intermediate Partial Sum layers.

Figure 3: Construction of a 2D HP with 16 entries
in its base layer.

For the above case, the reduction factor is four
which equates to a 2 × 2 square. However, it is
possible to sum over any area that is an n × m
rectangle. This requires that the base layer is
of area nk × mk and that there are k + 1 layers.
Above, in Fig. 3, a 4 × 4 area is used to represent a
possible 2 × 2 × 4 volume.

3.2.3 Traversing the HP
Next the HP is traversed to find each triangle in
the surface. The number of triangles equals the
top entry since it is a sum of all base layer entries.
The HP is traversed using indices from 0 to N − 1,
where N is the top entry in the HP to find all N
triangles. Instead of iterating on an entire volume
like the MCA, the HP iterates on all the triangles
in a volume and then the HP is traversed to find
the exact position of each triangle.

This is done by finding which sub-area of a lower
layer that a triangle belongs to. Once the base
layer is reached, the neighbourhood containing
the triangle along with its corresponding vertex
positions are found. Each parallel process in this
is a stream that produces exactly one triangle.
This stream compaction transforms the basis of
the problem such that it is based on the number
of triangles instead of the size of the volume. This
new basis means that the complexity is related to
the length of the output which is why it is referred
to as an output-centric method. MCA on the other

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 334



hand has complexity related to the input volume
making it input-centric.

Figure 4: Traversal of a HP to find the location of
the 10th of 13 triangles in a surface.

In Fig. 4, the nth triangle is being extracted for
n = 10. The entries in each 2 × 2 square are
ordered starting at the top left and following the
arrow in the figure. At each layer a cumulative
sum of the entries is calculated as shown by the
number in red to calculate the ranges contained
within each entry. At the top layer, n must be
within the area beneath the first entry. At the
second layer the ranges contained by each entry
are created. In the example, n belongs to the range
created by the last entry. n is updated to be local to
that entry and given a value of one. The position
value p is updated also to point at this entry by
multiplying the position vector by the reduction
factor. In the base layer, n is within the first
entry. The triangle is within this neighbourhood
in the base layer. This neighbourhood produces
multiple triangles and n decides which triangle to
extract from the neighbourhood.

Unlike the construction phase, the number of
instructions to retrieve the position of the triangle
in a lower layer is not always constant since the
process may need to check multiple entries. This
can potentially result in slightly slower processing
because conditional logic may lead to branch
divergence and as a consequence the streams may
vary in terms of the time required to execute.
These processes run on threads, and in CUDA,
threads run in collections of 32 called warps.
These warps must be synchronised and if the
execution time varies greatly the performance
is affected negatively. Execution of a warp will
continue until its longest running member thread

has completed its operation.

3.3 HP Modifications
Different formations of the HistoPyramid are
possible by changing the way that reductions are
applied.

3.3.1 3D HistoPyramid
The HistoPyramid can have 3D layers [Smi12]. In
this scenario, the 3D base layer is not flattened
into a tiled area. Instead, the 3D data is processed
directly with constraints similar to those that
apply to the 2D case. It is possible then to divide
any volume of nk × mk × lk where n,m and l are
the reduction factors in each dimension and k + 1
is the number of layers. Only 2 × 2 × 2 reduction
factors were considered in this case which is
equivalent to an overall reduction factor of eight.

3.3.2 1D HistoPyramid
This HistoPyramid can also be flattened down
to 1D layers [Dyk10]. This has the potential to
reduce the indexing overhead even more than
the 2D case. It also loosens the constraints on the
size of the base layer to be any length that can
be written in the form rk where r is the reduction
between each layer and k + 1 is the number of
layers. A series of 1D HPs were evaluated and the
best performing of these were considered further.
As observed from experiments carried out, the
best performing HPs had reduction factors of five
or eight.

3.4 Adaptive HP
The HP makes the traversal phase and surface
extraction phase of the process optimally efficient
as they are output-centric. This is not the case for
the first pass over the volume and the creation of
the HP. As noted from repeated experimentation,
most of the processing time is associated with the
input-centric computations. These computations
took on average 84% of the total computation
time for surface extraction. The input-centric
computations took more time for sparser datasets,
especially where a large amount of padding of
the HP structure is required to accommodate
the HistoPyramid size constraints, while the
opposite was the case in datasets that contained
more extensive meshes. Reducing the effect of
input-centric processes requires removing the
padding created from the HP. To do this, the AHP

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 335



Figure 5: AHP removing the need for padding in a volume of fifteen neighbourhoods by using reduction
factors of three and five.

can be used.

Starting with a 1D HP, the AHP takes advantage
of the fact that a constant reduction between
layers is not necessary. This is possible as long as
each layer is treated the same at construction and
traversal. Fig. 5 shows how the example used
in Fig. 3 can be reshaped in the form of an AHP.
With this the layers have a reduction of three and
then five to make up the size of exactly fifteen
which could not be expressed in the form rk or by
any of the HPs explored thus far.

The AHP must be traversed in the reverse order
to construction to find the correct positions. As
seen in Fig. 6, the traversal is identical to the HP
and selects the same entry for n = 10 and for any
other n, the main difference is how the layers are
divided. The AHP aims to reduce the padding by
a range of different reduction factors and finding
an arrangement of these that will produce the
least padding. The constraints on this structure
are that the base layer is of size ∏K

0 rk where rk is
the reduction at layer k.

Any size base layer can theoretically be accom-
modated given that it is not a prime number.
This significantly reduces the need for padding
compared to other similar techniques. In fact,

it could be possible to take only a subset of an
overall volume using this method and thereby re-
ducing the memory requirements further. Larger
reductions at each layer will produce fewer layers
however it will also increase the amount of data
at each layer which would slow down processing
at that layer.

A method is required for determining the reduc-
tion factors. The maximum reduction factor found
in existing works is eight [Smi12] but tended to be
lower e.g. four or five [Dyk08; Dyk10]. With the
AHP it will be possible to use larger reductions
without possibly creating a large amount of
padding. This is because, for a regular HP the
HP can only take a limited set of sizes which are
dependent on the reduction factor and this set
of sizes becomes sparser as the reduction factor
increases as the base layer size must be exactly
rk. Conversely, the AHP uses multiple reduction
factors so does not have the same constraints on
size as is the case with HP, so this is not an issue.

The reduction factors for a given volume were
selected from a set of numbers ranging from
4-16. Any factor is a valid choice, even so, it is
important to select factors that are not too large
as it was determined that this created layers with
a large possibility of branch divergence which

Figure 6: Traversal of a AHP to find the 10th of 13 triangles of a surface.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 336



would negatively affect performance.

The reduction factors were determined empiri-
cally from the range of values from this set for
this initial implementation. This was deemed
adequate as it was generally possible to find
an outcome that was close to ideal with very
little computation overhead. The HP could be a
possible configuration of the AHP so, in theory,
an ideal AHP would at most take as much storage
as most space-efficient regular HP.

4 RESULTS AND ANALYSIS
The algorithms were run on nine different datasets
[Sta87; Ack98; Kik14; McC14] obtained from a
range of sources. Table 1 presents a summary
of each of the methods compared with the stan-
dard MCA as well as the additional memory
requirements to store the base layer of the HP
over all datasets. Additionally, detailed results are
provided for three exemplar datasets that show
the performance of the technique across a range
of different modalities, dataset dimensions and
surface morphologies.

All algorithms were evaluated on a PC with an
Intel Core i7 2.60GHz CPU with six cores and
32 GB RAM, with a 4GB NVIDIA Quadro P2000
Graphics Card. The algorithms were imple-
mented using version 4.8 of the .NET framework
which incorporated CUDA 11.6 through the
NuGet Package ILGPU [ILG22].

Table 1 shows the average relative performance
from timing the various algorithms. The standard
MCA implementations are denoted as MCA CPU
and MCA GPU. 1D HP implementations are
denoted by HP and then a number relating to
the reduction. Only 2 of these were considered,
HP5 and HP8, which have reduction factors of
five and eight respectively. These two were the
best performing of the 1D HPs. AHP refers to the
adaptive approach and the final two algorithms,
HP2D and HP3D refer to implementations that
have 2D or 3D layers respectively.

The HistoPyramids reduce the number of com-
putations and performs these computations in
parallel, so a large improvement is expected. This
approach was found to be 50 to 500 times faster
than the MCA to extract the same surface. The
benefit of this technique is clear from these results.

The AHP performs better than any of the other
implementations. On average it performed 4.5%
faster than the next best performing method
for each individual case, for the volumes that
exceeded 256 × 256 × 256 this improvement
increases to an average of 10%. In the best case
from the dataset this improvement increased to
20%. The performance of the AHP was also found
to improve as the size of the volume increased.

In addition to this the AHP was generally found to
be the best method across datasets. In one outlier
case, the AHP was not the top performer as it took
slightly longer than the HP5 method. In this case,
the AHP used a large amount of padding and has
not tended to the best formulation of layers. The
HP5 method uses less padding for this case. There
is at least one better solution to the arrangement
of AHP layers since any 1D HP is also a possible
solution to the AHP. Using a different algorithm
for determining the reduction factors of the AHP
would reduce the padding used and improve
performance further. This outlier demonstrates
that padding is a relevant factor in performance.

The 1D implementation tends to perform better
than 2D or 3D alternatives. Using 1D layers
eases the constraints on the shape and size of
the original volume. Additionally, the index
overhead of using 3D or 2D indices for each
layer is not present with the 1D implementation.
For irregularly shaped data this can be particu-
larly apparent. The AHP tends to use even less
padding especially when averaging results over
several datasets. It will produce a consistently
low amount of padding while with other forms
of the HP, the amount of padding can vary sig-
nificantly from dataset to dataset. This may be
because it can model any arbitrary volume easily.
Because of this the AHP is particularly fast in the
construction phase.

5 CONCLUSIONS
The AHP evaluated was an initial unrefined
implementation and yet it regularly performed
better than the other methods. It enhances the HP
using a variable reduction factor between layers
of the data structure. This results in a performance
boost of up to 20% with an additional benefit of
using less of the finite memory available on a
GPU. These performance boosts do not sacrifice
the accuracy of the mesh extracted. In the outlier
case, where the AHP doesn’t give a benefit over a
1D HP, which is quickly calculable before creating
any structure, a hybrid solution might be used

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 337



MCA CPU MCA GPU HP5 HP8 AHP HP2D (HP4) HP3D (HP8)
Average Performance over 9 datasets

Relative Time to MCA 1.000000 0.244867 0.005974 0.006015 0.005722 0.006558 0.007677
Padding Required 86.56% 139.06% 8.98% 105.93% 258.50%

MRHead (130 x 256 x 256)
Relative Time to MCA 1.000000 0.341110 0.004098 0.004229 0.004232 0.004216 0.004643

Padding Required 14.85% 98.44% 22.03% 98.44% 98.44%

F_Head (234 x 512 x512)
Relative Time to MCA 1.000000 0.229836 0.006884 0.006498 0.005701 0.009239 0.011601

Padding Required 300.45% 243.90% 0.16% 9.48% 119.78%

Wrist CT (251 x 440 x 440)
Relative Time to MCA 1.000000 0.485414 0.009634 0.010373 0.009393 0.015005 0.018657

Padding Required 0.49% 177.72% 7.60% 38.43% 177.72%

Table 1: The relative time taken for each method relative to the Baseline MCA CPU and the extra padding
required for each HP and AHP. The best performing algorithms for each surface are highlighted.

instead that could force the use of the most
appropriate conventional HistoPyramid-based
approach.

There are some areas in which the AHP could
be improved. Namely, the final structure is
often not the optimal solution and, moreover,
uses more padding than needed. This happens
because the method for selecting factors reaches
an acceptable solution but there are often better
solutions available, possibly by refining an initial
guess or by using a more analytical approach.
Additionally, the AHP can readily select subsets
of the volume. For example, a pre-processing step
could crop only important parts of the volume
as much of it is empty space. Or a computer
vision task might quickly detect subvolumes from
larger datasets that might need to be selectively
extracted, something that the AHP would easily
accommodate. Future work might see a better
method for selecting factors while also taking
advantage of the AHP’s ability to model arbitrary
volumes to see more significant gains.

As with the HP, the AHP is a parallel-first ap-
proach making it ideal for GPU implementations.
This avoids any CPU to GPU transfers which will
cause a bottleneck. Each step of the HP consists
of only additions or comparisons. It is therefore
easy to comply with the SIMD or SIMT models of
parallel computing and ensure that maximum use
is being made of the GPU.

REFERENCES
[Ack98] Ackerman, M. “The Visible Human

Project”. In: Proceedings of the IEEE 86
(Mar. 1998), pp. 504–511.

[Arc11] Archirapatkave, V., Sumilo, H., See,
S. C. W., and Achalakul, T. “GPGPU
Acceleration Algorithm for Medical
Image Reconstruction”. In: 2011 IEEE
Ninth International Symposium on Par-
allel and Distributed Processing with
Applications. 2011, pp. 41–46.

[Che95] Chernyaev, E. V. “Marching Cubes 33:
Construction of topologically correct
isosurfaces”. In: (Nov. 1995).

[CZ21] Chen, Z. and Zhang, H. “Neural
Marching Cubes”. In: ACM Trans.
Graph. 40.6 (Dec. 2021).

[Dyk08] Dyken, C., Ziegler, G., Theobalt, C.,
and Seidel, H.-P. “High-speed March-
ing Cubes using HistoPyramids”. In:
Computer Graphics Forum 27.8 (2008),
pp. 2028–2039.

[Dyk10] Dyken, C. and Ziegler, G. “GPU-
accelerated data expansion for the
Marching Cubes algorithm”. In: Proc.
PGU Technol. Conf., 2010.

[Har07] Harris, M., Sengupta, S., and Owens,
J. “Parallel prefix sum (scan) with
CUDA”. In: vol. 39. Aug. 2007,
pp. 851–.

[ILG22] ILGPU. https://www.ilgpu.net/.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 338



[Kik14] Kikinis, R., Pieper, S. D., and Vosburgh,
K. G. “3D Slicer: A Platform for Subject-
Specific Image Analysis, Visualization,
and Clinical Support”. In: Intraoperative
Imaging and Image-Guided Therapy. Ed.
by F. A. Jolesz. New York, NY: Springer
New York, 2014, pp. 277–289.

[Lor87] Lorensen, W. and Cline, H. “Marching
Cubes: A High Resolution 3D Surface
Construction Algorithm”. In: ACM
SIGGRAPH Computer Graphics 21 (Aug.
1987), pp. 163–.

[McC14] McCormick, M., Liu, X., Jomier, J., Mar-
ion, C., and Ibanez, L. “ITK: Enabling

Reproducible Research and Open Sci-
ence”. In: Frontiers in neuroinformatics 8
(Feb. 2014), p. 13.

[NVI20] NVIDIA, Vingelmann, P., and Fitzek,
F. H. CUDA, release: 10.2.89. 2020.

[Smi12] Smistad, E., Elster, A., and Lindseth,
F. “Real-Time Surface Extraction and
Visualization of Medical Images using
OpenCL and GPUs”. In: Jan. 2012.

[Sta87] The Stanford Volume Data Archive.
http://graphics.stanford.edu/data/voldata/.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.57 339


	Introduction
	Prior Work
	Marching Cubes and Extensions
	Prefix Sum (Parallel Scan)
	HistoPyramid
	Parallel Processing

	Design and Implementation
	Marching Cubes Algorithm
	Thresholding
	Identify Intersected Edges
	Interpolation of Points
	Calculating Vertex Normals

	HistoPyramid
	First Pass
	Constructing the HP
	Traversing the HP

	HP Modifications
	3D HistoPyramid
	1D HistoPyramid

	Adaptive HP

	Results and Analysis
	Conclusions



