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Anotace

Analýza velkých elastických deformací materiálů s vlastnostmi podob-
ných gumě je moderní disciplínou v mnoha odvětvích výzkumu, jako
například v biomechanice aktivních polymerů či nematických elasto-
merů (funkční biomateriály a implantáty).

Co se týče biomechaniky problém spočívá v pokusu o sestavení mate-
maticko-fyzikálních modelů pomocí nichž je možný popis fyziologic-
kého chování živých tkání od pokožky a svalu až ke tvrdým strukturám
jako je chrupavka či kost. Biomechanická analýza a její validace skrze
experimentální pokusy in vivo a in vitro může být pomocnou metodou
neinvazivních lékařských diagnóz, plánování chirurgických zákroků či
navrhování speciálních protéz.

V našem případě jsme se především zabývali vývojem matematického
modelu kontrakce srdeční tkáně založeného na představě aktivních
distorzí. Následovně byla provedena programová implementace s cílem
provést sérii numerických výpočtů.

Ve druhém kroku bylo nezbytné vyřešit rozlišné numerické problémy,
jako konvergence, efekt „locking“, regularita řešení či vhodné využití
výpočetních zdrojů.

Předkládaná práce je zaměřena na analýzu porovnání různých nu-
merických schémat aplikovaných na testovací příklad, aby jednotlivá
obdržená řešení mohla být snadno konfrontována.

Konkrétně jsou formulovány tři numerické metody: kompatibilní, smí-
šená a de Veubeke–Hu–Washizu (dVHW) formulace.

Hlavním studovaným problémem v textu práce jsou nechtěné oscilace,
které vznikají v oblasti nespojitosti distorze materiálu. Cílem zkou-
mání je ukázat, jak použitím dVHW metody najít řešení omezující
tyto oscilace.



Pro vylepšení kvality řešení mohou být voleny dva hlavní směry: ob-
měna numerického schématu nebo přizpůsobení formy výpočetní sítě.
Na dvoudimenzionálním testovacím případě je ukázáno, že dVHWme-
toda může vykazovat lepší výsledky nežli původní smíšená metoda.

Problém optimalizace sítě za účelem lepší aproximace řešení lze ana-
lyzovat v jednodimenzionálním příkladě pomocí něhož je také určena
numerická chyba řešení nabízených integračních schémat.

Klíčová slova: de Veubeke–Hu–Washizu, konečné prvky, smíšená me-
toda, nelineární elasticita, distorze, oscilace, biomechanika



Abstract

The analysis of rubber-like materials undergoing large elastic defor-
mations is a key topic in field of active polymers, like ionic polymers,
hydrogels and nematic elastomers, as well as in biomechanics, for soft
tissues.

For biomechanics, the hot issue relays in the development of math-
ematical-physical models that are able to describe the behaviour of
physiological processes involving highly deformable tissues, like the
skin or the muscles, or hard tissue as cartilage and bones.

Such bio-mechanical models and their validation through experiments
in vivo or in vitro can be helpful for better understanding physiolog-
ical processes, for the planning of surgical interventions, or even for
designing advanced prosthetic devices.

In our case, we focused on the development of a model that describes
the contraction of cardiac tissue based on the notion of active dis-
tortions. Then, our model has been implemented in a computational
code in order to asses its performance through a series of numerical
experiments.

This second step brought us to face some tough problems, like conver-
gence, locking effect, irregular solutions, together with a careful design
of numerical test in order to optimize the computational resources.

The present work presents a comparative analysis of the performances
of different numerical schemes applied to the solution of a reference
benchmark problem.

All in all, there are proposed three numerical schemes, based on a com-
patible method, a mixed method, and the de Veubeke–Hu–Washizu
(dVHW) one.



An important feature analyzed in the present thesis are the spurious
oscillations of the solution which arise in the neighborhood of a jump
of the distortion field. The goal of the research is to demonstrate how
it is possible to find a solution without these oscillations using the
dVHW method.

To improve the quality of the solution one may follows two main direc-
tions, one related to the numerical scheme, the other to the adaptation
of the mesh. For one of our two-dimensional examples, it is demon-
strated how, for a given mesh, the dVHW method yields better results
than using the mixed formulation.

The optimization of the mesh as a strategy to improve the approxima-
tion of the solution, has been analyzed in a one-dimensional example,
which gives insight on the origin of some computational error in the
proposed integration schemes.

Keywords: de Veubeke–Hu–Washizu, finite elements, mixed method,
nonlinear elasticity, distortion, oscillation, biomechanics



Sommario

L’analisi dei materiali con proprietà simili alle gomme, ossia, suscet-
tibili di grandi deformazioni elastiche, ha acquistato sempre più ri-
levanza nel settore della biomeccanica o dei polimeri attivi, come i
polimeri ionici, gli idrogel o gli elastomeri nematici.

Per quanto riguarda la biomeccanica, l’importanza risiede nel tentati-
vo di mettere a punto modelli fisico-matematici in grado di descrivere
il comportamento dei processi fisiologici che coinvolgono i tessuti sof-
fici, come la pelle o i muscoli, ovvero, ai tessuti duri, come cartilagini
e ossa; la modellazione biomeccanica e la sua validazione attraverso
prove sperimentali in vivo od in vitro può essere di ausilio alle indagini
mediche non invasive o alla pianificazione degli interventi chirurgici,
nonché alla progettazione di protesi avanzate.

Nel nostro caso, ci siamo innanzitutto occupati dello sviluppo di un
modello fisico-matematico della contrazione del tessuto cardiaco ba-
sato sulla nozione di distorsioni attive; in seguito, il modello è stato
implementato in un codice computazionale con l’obbiettivo di avviare
una campagna di esperimenti numerici.

Questo secondo passo ci ha portato ad affrontare diversi problemi,
come la convergenza, l’effetto “locking”, la regolarità della soluzione,
l’uso accurato delle risorse di calcolo.

Il presente lavoro consiste nell’analisi comparativa di vari schemi nu-
merici applicati ad uno stesso problema campione, così da confrontare
i vari risultati ottenuti.

In totale sono proposti tre schemi numerici: il metodo compatibi-
le, quello misto e il cosiddetto metodo di de Veubeke–Hu–Washizu
(dVHW).



Il problema principale studiato nella presente tesi sono le oscillazioni
spurie della soluzione che hanno origine nelle zone di discontinuità del
campo delle distorsioni. Lo scopo della ricerca è dimostrare come sia
possibile, usando il metodo dVHW, trovare una soluzione limitando
queste oscillazioni.

Per migliorare la qualità delle soluzioni si possono seguire due di-
verse strategie: il cambiamento dello schema numerico, oppure un
adattamento del reticolo. Su un esempio numerico bidimensionale è
stato dimostrato come il metodo dVHW, a parità di reticolo, fornisca
risultati migliori rispetto a quelli ottenuti dalla formulazione mista.

Il problema della ottimizzazione del reticolo ai fini della migliore ap-
prossimazione della soluzione si può analizzare nell’esempio monodi-
mensionale da cui è stato ricavato l’errore computazionale ottenuto
da schemi di integrazione proposti.

Parole chiavi: de Veubeke–Hu–Washizu, elementi finiti, metodo mi-
sto, elasticità nonlineare, distorsione, oscillazione, biomeccanica



Résumé

L’analyse des matériels avec des propriétés similaires à celles du caou-
tchouc, c’est-à-dire susceptibles de grandes déformations élastiques, a
acquis une grande importance dans le secteur de la biomécanique ou
des polymères actifs comme les polymères ioniques, les hydrogels ou
les élastomères nématiques.

En ce qui concerne la biomécanique, l’importance réside dans les ten-
tatives de mettre au point des modèles physico-mathématiques en
mesure de décrire le comportement des processus physiologiques qui
impliquent des tissus conjonctifs, comme la peau ou les muscles ou
bien les tissus durs, tel que les cartilages et les os ; la modulation bio-
mécanique et sa validation à travers l’épreuve expérimentale in vivo ou
in vitro peut être utile pour des enquêtes médicales non invasives ou
pour la planification des interventions chirurgicales, mais aussi pour
le projet de prothèses avancées.

Dans notre cas, nous nous sommes avant tout occupés du développe-
ment d’un modèle physico-mathématique de la contraction du tissu
cardiaque fondé sur la notion de distorsions actives ; ensuite, le mo-
dèle a été implémenté avec un code de calcul ayant pour objectif de
lancer une série d’expériences numériques.

Cette seconde étape nous a conduits à affronter des problèmes divers,
comme la convergence, l’effet « locking », la régularité de la solution,
l’emploi adéquat des ressources du calcul.

Le présent travail consiste en l’analyse comparative de schémas numé-
riques variés appliqués sur un même étalon problème pour comparer
les différents résultats obtenus.



Au total nous proposons trois schémas numériques : la méthode com-
patible, le mixte et le dénommé de Veubeke–Hu–Washizu méthod
(dVHW).

Le problème principal étudié dans notre thèse est les oscillations apo-
cryphes de la solution qui ont leur origine dans la zone de la disconti-
nuité du champ des distorsions. Le but de la recherche est de montrer
comment il est possible, en utilisant la méthode dVHW, de trouver
une solution en limitant ces oscillations.

Afin d’améliorer la qualité de la solution on peut suivre deux stra-
tégies différentes : le changement du schéma numérique, ou bien une
adaptation du maillage. Dans un exemple numérique bidimensionnel
nous avons montré comment la méthode dVHW, à égalité de maillage,
fournit de meilleurs résultats par rapport à ceux obtenus par la for-
mulation mixte.

Le problème de l’optimisation du maillage dans le but d’améliorer
l’approximation de la solution peut s’analyser dans l’exemple uni-
dimensionnel duquel a été déterminé l’erreur de calcul obtenu des
schémas d’intégration proposés.

Mots-clés : de Veubeke–Hu–Washizu, éléments finis, méthode mixte,
élasticité non lineaire, distorsion, oscillation, biomécanique
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Chapter 1

Problem introduction

Modelling based on the theory of finite elasticity with large distortions is applied
in various fields of mechanics. A first illustration could be given by the problem
of description of the behaviour of soft living tissues, namely the cardiac mus-
cle physiology. The result of such a research is the acquisition of non invasive
techniques to study the human heart. At the present time this issue is a big chal-
lenge containing several open practical and theoretical questions, see (Nardinocchi
et al., 2010) for further details. The second popular application of the non linear
elasticity theory with large distortions can be found in the nematic elastomers
mechanics, see (DeSimone and Teresi, 2009).

The modelling of soft tissues can be tackled in two main directions which
are the active stress or the active strain. The differences between these two
approaches are slightly sketched in chapter 2 with proper references to the con-
temporary literature. In this work for its mathematical robustness the active
strain approach is chosen as the tool to perform the active soft tissues analysis.
Note that the existence of works based on the active stress description (Rohan
and Cimrman, 1999, 2002) was taken in account and the priority instruments
therein leaved as an option of a possible later research direction.

Every substance supposed to be actively distorted is characterized by a large
spontaneous deformation. In the cardiac tissue this is caused by the presence
of free Ca2+ and in the nematic elastomers this mechanical behaviour can be
activated by Ultra violet (UV) light, electric field or thermally. The studies of
electromechanical properties of cardiac tissues in (Cherubini et al., 2008) are fo-

1



1 Problem introduction

cused on the propagation of the activating signal as a wave in the living medium.
In general such a wave or activated zone is characterized by a front with a very
steep gradient or even discontinuity on the margins of the zone with exciting
quantity. The solution of this kind of problem relative to the mechanical descrip-
tion can evince the oscillations near the front of the distorted part of the body.
In the work this spurious phenomena in the solution is analysed to understand
and consequently try to cancel it.

1.1 Objectives of the thesis

The electromechanical coupling is usually described as the convection diffusion
problem. When its stationary form is considered then its mechanical part yields
oscillations of the resulting stress appearing in the distortion discontinuity case.
Hence the problem of the finite elasticity with large deformations and distortions
is stabled and the non linear elliptic boundary value problem with discontinuity
coefficients is to be solved. In this thesis nor the issue of existence and uniqueness,
neither the convergence to the true solution of the problem is analysed, but are
simply assumed to be fulfilled. For further informations about this topic a reader
can be induced to see (Hartmann and Neff, 2006; Ženíšek, 1990).

The aim of this work is to improve the solution damping the oscillations as far
as the de Veubeke–Hu–Washizu method is concerned. When the mixed method
is applied then this effect can be observed, see (Wriggers, 2008). Thus two points
of view are chosen to be taken into account, the form of the mesh and the used
numerical scheme. There is also another factor to be taken into account, such
as the type of used elements and the physical parameters of the model that
are considered in order to obtain the best performance of the methods on the
chosen benchmark. The analysis revealed that both factors, the mesh quality
and the chosen method contributed to an improvement of the quality of the
solution. Every model is implemented in the compatible, mixed and de Veubeke–
Hu–Washizu formulation, see e.g. (Bathe, 1996; Hughes, 1987; Wriggers, 2008).
The basic characteristics of meshes are selected according to its fineness and the
ability to follow the critical zones as it is sketched in figure 2.1.

Both methods are used on the same mesh and it is possible to see a difference
between the solutions obtained. Then the different meshes for each proposed
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1.1 Objectives of the thesis

method are chosen simultaneously and the quality of solution compared. The
plots with the solution are a good tool to get a first idea about how the solution
behaves according to the used method and the mesh. Anyway this some kind of
intuitive approach, as yields a good frame about used tools, is not sufficient.

The numerical benchmarks have to be prepared so that more exact tools are
able to capture the differences on the used methods and meshes. Thus the three-,
two- and one-dimensional examples are stabled to obtain an exact solution of the
simplified three dimensional problems. To be able to relate these results of fewer
dimensional benchmarks it is important to maintain in some way the consistency
of the problem. Thus the geometry and the prescribed governing quantities are
to be maintained.

For the implementation of the model we used the commercial Finite Element
(FE) software COMSOL MultiphysicsTM 3.5a, see (COM, 2008). The possibil-
ity to get the proper implementation through the other especially open source
computational environment like SfePy, FEAPpv, or FreeFEM++ for instance,
see (Cimrman and contributors, 2011; Hecht, 2011; Zienkiewicz et al., 2009), had
also been taken into account, but was postponed due to the several complications
encountered already during the implementation in COMSOL. It should be noted
that for a special demands on the mesh the external generator GMSH is used,
see (Geuzaine and Remacle, 2010). The way how proper numerical methods are
implemented and mesh is imported can be found in Appendix B.

The work on this subject consists in several open questions and their summary
can be found in the conclusion in chapter 5, where we also mention the other
possible research directions.
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Chapter 2

Continuum mechanics

In this chapter the basic relations used in continuum mechanics will be introduced
so that it will be possible to capture the description of large deformations and
distortions. In both sections 2.1 and 2.2, at first the concepts of conventional
strain and stress measure will be introduced and then a generalization of the case
with distortions will follow. The basic informations about kinematics are taken
from the sources: (DiCarlo and Quiligotti, 2002; Gurtin, 1981; Podio-Guidugli,
2000).

2.1 Kinematics

Let T be the time line identified with the real line R and let E be the three-
dimensional Euclidean space and VE the associated vector space, which is en-
dowed with the inner scalar product a ·b and the cross product a×b ∈ VE of two
elements a,b ∈ VE . Thanks to the first inner product the length of a vector a

can be defined as ‖a‖ = (a · a)
1
2 . This Euclidean space will be equipped with the

Cartesian frame {o, c1, c2, c3}, where o ∈ E is the origin, ci ∈ VE , i = 1, 2, 3 is
an orthonormal basis . With B is introduced the smooth body manifold (identi-
fied with its reference shape) with boundary ∂B.

The set of all linear second order tensors which map VE into itself will be de-
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2 Continuum mechanics

noted as

Lin := {A : VE
lin.−→ VE } and Lin = VE ⊗ VE = Sym⊕ Skw , (2.1)

where Sym and Skw are the subsets of all symmetric and skew tensors whose
elements have the following properties

2symA = A + AT ∈ Sym , 2skwA = A−AT ∈ Skw . (2.2)

Let A ·B be a scalar product of two tensors in Lin and a⊗b ∈ Lin be a dyadic
product of two vectors from VE . An important group is a set of all gradients of
all rotations in Lin called orthogonal group denoted as

Ort := {Q ∈ Lin : QTQ = QQT = I} . (2.3)

2.1.1 Motion

The spatial placement, the motion, is understood as any smooth embedding

χ : B ×T → E

(X, t) 7→ x = χ(X, t) = X + u(X, t)
(2.4)

of the body into the euclidean space E associating to any material point X ∈ B

its position in the space x = χ(X, t) ∈ E . The vector valued field u = x − X
represents the displacement of the material point X. The set Bt = χ(B, t) repre-
sents the actual configuration of a body B at a time t, within ∂Bt as its boundary.

It should be noted that every one-to-one, smooth and locally orientation-preserving
mapping (2.4) is called deformation of the body and satisfies

det∇χ(X, t) > 0 , X ∈ B . (2.5)

The deformation gradient F ∈ Lin and the Jacobi determinant J of F will be
defined as

F := ∇χ = I +∇u , J := detF . (2.6)

As far as a definition of the deformation (2.5) is concerned the space of all ten-
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2.1 Kinematics

sors with a positive determinant will be denoted Lin+. Let a hierarchy be of
infinitesimally small one-, two- and three-dimensional parallepipedal cells, built
out of the vectors a,b, c ∈ VE attached to a place X ∈ B:

1. an oriented line element (a) represented by a vector a

2. an oriented surface element (a,b) represented by a vector product a× b

3. an oriented volume element (a,b, c) represented by the oriented volume
a× b · c.

Their images after the action of χ attached to the actual position x = χ(X, t) ∈
Bt in the space are

1. F(X, t)a

2. F?(X, t)(a× b) = (F(X, t)a)× (F(X, t)b)

3. J(X, t)(a× b · c) = (F(X, t)a)× (F(X, t)b) · (F(X, t)c)

Here A? = (detA)A-T is the cofactor of A ∈ Lin+. It is worth noting that from
2 can be deduced a rule which relates the normal m oriented to ∂B to its image n
oriented to ∂Bt as follows

n =
F?m

‖F?m‖
(2.7)

Therefore the line, area and volume elements associated to the reference and
actual configuration are mapped as follows

dx = F dX , da = ‖F?m‖dA , dv = JdV . (2.8)

Let a pair (X, e) denotes a material fibre through a point X in direction e and
its image be (χ(X, t),F(X, t)e), then the local change in length δl(e) at X of a
fibre (X, e) is

δl(e) = ‖Fe‖ − 1 . (2.9)

Thus the strech λ of the fibre (X, e) can be defined as follows

λ(e) := 1 + δl(e) = ‖Fe‖ . (2.10)
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2 Continuum mechanics

In the same way the changes in area and volume are

δa(m) = ‖F?m‖ − 1 , δv = detF− 1 . (2.11)

2.1.2 Strain measures

For the local analysis of deformation the mostly used strain measures will be
considered together with their physical meanings. About the definition of the
stretch (2.10) it is possible to write

λ(e) = (C · e⊗ e)
1
2 , where C = FTF ∈ Sym , (2.12)

being the right Cauchy–Green deformation tensor . Another strain measure used
in continuum mechanics is defined as

B = FFT ∈ Sym (2.13)

and is called the left Cauchy–Green deformation tensor . Both these strains are
exact so far as they measure the length deformation of the fibre with no approxi-
mation. When the change-length approximation is considered as the first degree
polynom of the Taylor series it is possible to write

δl(e) = ((I + 2E) · e⊗ e)
1
2 ≈ E · e⊗ e , E =

1

2
(C− I) . (2.14)

This deformation measure is called the Green–Lagrange strain measure. It should
be noted that no deformation implies C = B = I and E = 0.

2.1.3 Spatial and material fields

This subsection is based on the theory discussed in (Gurtin, 1981). When the
balance principles are settled, the relations between the quantities in the reference
and the actual configuration are needed. In these terms every material field
function is associated with the domain B×T and the spatial field function with
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2.1 Kinematics

Bt ×T . Let be considered a spatial scalar α and a vector field w respectively:

α : Bt ×T → R , (X, t) 7→ α(X, t) ,

w : Bt ×T → VE , (X, t) 7→ w(X, t) .
(2.15)

That is the material description of the spatial field. Then the corresponding
spatial description of a material field will be defined as the following composition
of maps

αm = α ◦ χ , wm = w ◦ χ . (2.16)

Then the material gradient “∇” of the material field is related to the spatial
gradient “grad ” of the spatial field as follows

∇αm = FT(gradα)m ⇔ (gradα)m = F−T∇αm ,
∇wm = (gradw)mF⇔ (gradw)m = ∇wmF

−1 .
(2.17)

Distinguishing with a dot the material time derivative of the spatial fields, i.e. ȧ,
and with a prime the spatial time derivative of the spatial field, i.e. a′, it holds

α̇ = gradα · v + α′ , ẇ = gradwv + w′ , (2.18)

where v is the spatial representation of the velocity field χ̇ = u̇ = vm. There-
fore as far as the material time rate of change of deformation of a continuum is
concerned the velocity gradient tensor can be considered as follows

(gradv)m = ∇vmF−1 = ḞF−1 = D + W , (2.19)

where the symmetric tensor D ∈ Sym and the skew part W ∈ Skw are respectively
called the stretching and the spin tensors.

2.1.4 Distortions

Distortions of a body B of any part of it will be described by the tensor-valued
field

Fo : B → Lin . (2.20)
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2 Continuum mechanics

Then the elastic deformation Fe of the body elements can be introduced as the
difference between the distortions Fo and the visible deformation F in the sense
of a multiplicative decomposition

Fe = FF−1o . (2.21)

dV

e

dVo

f =
Foe

dv

Fe =
Fef

Fo Fe = FF
−1
o

F

Figure 2.1: Illustrative example of a multiplicative decomposition of the defor-
mation gradient in the flat 2D manifold.

It is worth noting that Fo and Fe are not, in general, gradients of any field. It
means, therefore, that a general smooth field Fo can not be compatible, not even
locally: volume elements in a neighbourhood of X can not match any longer once
they have been distorted under Fo. To stick together all the distorted elements,
a further deformation Fe is needed, see figure 2.1. The stance after Fo has been
applied to the reference configuration can be called distorted, relaxed, ground or
rest state. Let the right Cauchy–Green strain measures be defined in terms of
distortion and elastic deformation

Ce = FT
e Fe = F−T

o CF−1o and Co = FT
oFo . (2.22)

It is worth noting that Co measures the stretch λo undergone by a reference
fibre e once embedded in the distorted state. In an similar way Ce measures
the stretch λe undergone by a distorted fibre f in the actual state, see figure 2.1.
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2.2 Dynamics

Therefore it is possible to write

e 7→ f = Foe thus λ2o = Co · e⊗ e = f · f (2.23)

and
λ2e = Ce · f · f = C · e⊗ e . (2.24)

2.2 Dynamics

The basic concepts of stress in terms of distortions are explained in this chapter
in subsection 2.2.3. It should be noted that the idea to associate the zero stress
state to the distorted configuration was firstly introduced in (Rodriguez et al.,
1994) and extended in terms of a constitutive theory in (DiCarlo and Quiligotti,
2002).

2.2.1 Balance and stress

Let the virtual velocity field be v ∈ VE , the set of all admissible functions over
the closure of the body B̄t in the actual configuration and the system (c,d) of
the external (contact) and internal (bulk, distance) forces respectively. Then the
external virtual power expended on a body part Pt ⊂ Bt during the motion by
a force system (c,d) is defined as

v 7→ Πext(Pt)[v] :=

∫
∂Pt

c · v +

∫
Pt

d · v . (2.25)

Given the Cauchy stress T on the body Bt then the internal virtual power is to
be defined

gradv 7→ Πint(Pt)[gradv] :=

∫
Pt

T · gradv . (2.26)

When the balance

Πext(Pt)[v] = Πint(Pt)[gradv] , ∀Pt ⊂ Bt , ∀v ∈ VE , (2.27)
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2 Continuum mechanics

of the external and internal virtual power is requested, then the integral balance
in the actual configuration is∫

∂Pt

c · v +

∫
Pt

d · v =

∫
Pt

T · gradv , ∀Pt ⊂ Bt , ∀v ∈ VE . (2.28)

Assuming the smoothness of a tensor valued field T over Bt, then balance (2.28)
can be expressed thanks to the per partes rule based on relation (A.3) and Stokes
identity (A.4) at an arbitrary point of the body Bt as

divT + d = 0 , and c = Tn , on Bt , (2.29)

with n being the normal to ∂Pt. It is worth noting that balance (2.28) in any
arbitrary part Pt ⊂ Bt can be written in the weaker form

Pt → Bt :

∫
∂Bt

c · v +

∫
Bt

d · v =

∫
Bt

T · gradv , ∀v ∈ VE (2.30)

and in the same way as in relation (2.29) it is possible to derive the local form
of (2.30) as follows

divT + d = 0 , on Bt ,

Tn = c , on ∂Bt .
(2.31)

It should be noted that the Cauchy stress is symmetric tensor T ∈ Sym. This
fact is implied by the statement that the internal virtual power is objective. For
details see (Noll, 1963; Podio-Guidugli, 2000, 2009).

Let the virtual velocity field be v̄ ∈ VE over the closure of the body B̄ and
the force system (c̄, d̄) in the reference configuration. Then the balance of the
external and internal virtual power on the reference body part P is

Πest(P)[v̄] :=

∫
∂P

c̄ · v̄ +

∫
P

d̄ · v̄ =

=

∫
P

S · ∇v̄ =: Πint(P)[∇v̄] , ∀P ⊂ B , ∀v̄ ∈ V E

(2.32)
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2.2 Dynamics

and in the local form as in balance (2.31) is

DivS + d̄ = 0 , on B ,

Sm = c̄ , on ∂B ,
(2.33)

with m being the outer normal to the boundary ∂B. Here the first Piola–
Kirchhoff (reference) stress S ∈ Lin, in general, is not the symmetric tensor.
The integral balance equations on Bt and B are related by the request

Πext(Bt)[v]−Πint(Bt)[gradv] = Πext(B)[v̄]−Πint(B)[∇v̄] , ∀v, v̄ ∈ VE , (2.34)

where the fields of virtual velocities in the reference and actual configuration are
related by v̄ = v◦χ. Therefore the quantities in proper configurations are related
as follows

S = TF? , T = J−1SFT ,

d = Jd̄ , d̄ = J−1d ,

c = ‖F?m‖c̄ , c̄ = ‖F?m‖−1c .
(2.35)

2.2.2 Energy and stress

In the following section the concept of hyperelasticity will be introduced and in
that context the constitutive laws will be settled. The importance of these re-
lations is shown by the fact that it is impossible to determine nine unknowns
regarding the displacement u and the Cauchy stress T using balance (2.31) only.
The natural conditions from which the constitutive equations are derived can be
found in literature specialised in continuum mechanics, e.g. (Beatty, 1987; Ogden,
1997; Rosenberg and Křen, 1995).

In the hyperelastic theory every solid is characterized by the strain energy function
defined on the space of deformation gradients F ∈ Lin+

ψ(X, t) = ψ(F(X, t), X, t) , (2.36)

where ψ can also be called elastic potential energy or stored energy referred to be
in a deformation gradient per unit reference volume, see (Beatty, 1987; Podio-
Guidugli, 2000). From now on an argument of ψ will be automatically considered

13



2 Continuum mechanics

and generally omitted, on the contrary only for the special cases will be specified.
It should be noted that when B is a the stress free configuration, then it is
referred to as a natural configuration for any unconstrained material and holds

ψ(I) = 0 ,
∂ψ

∂F
(I) = 0 . (2.37)

As in (Beatty, 1987; Podio-Guidugli, 2000) the total stored energy of elastic
material is conserved, hence as far as the stress power is concerned the following
holds

Π(P) = (

∫
P

ψ)· (2.38)

and the first Piola–Kirchhoff stress tensor is expressed as

S =
∂ψ

∂F
. (2.39)

Every elastic energy is required to be independent of superimposed body motions
(principle of objectivity or frame indifference). Therefore ψ(QF) = ψ(F) is valid
for all rotations Q ∈ Ort. Using this principle it is possible to show that the
stored energy can be expressed in terms of other deformation measures

ψ(F) = ψC(C) = ψB(B) = ψE(E) , (2.40)

see (Beatty, 1987; Ogden, 1997). Further restriction on the material symmetry
in the reference configuration B is identified therein by transformations which
do not affect the material response. When the symmetry group of the material
relative to B is the proper orthogonal group, then it will be called isotropic and
hold

ψ(FQ) = ψ(F) , (2.41)

for all rotations Q ∈ Ort. This symmetry condition is naturally respected by
using the principal invariants defined

I1 = I ·C , I2 =
1

2
(I21 −C2 · I) , I3 = detC , (2.42)

It should be noted that the values of the invariants are the same using the de-
formation tensor B instead of C. The relations between the corresponding first
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Piola–Kirchhoff and the Cosserat stress tensors can be derived from the definition
of the stress power that is

Π(P) =

∫
Pt

T · ∇v =

∫
P

S︷︸︸︷
∂ψ

∂F
·Ḟ =

∫
P

SE︷︸︸︷
∂ψE
∂E
·Ė =

∫
P

SC︷︸︸︷
∂ψC
∂C
·Ċ , (2.43)

where v = χ̇ is the velocity of motion. The stresses S ∈ Lin and SE,SC ∈ Sym
can be called the energetic stress measures and the following relation holds

S = FSE = 2FSC . (2.44)

For further details see (Beatty, 1987; Podio-Guidugli, 2000).

2.2.3 Incompressibility

During the deformation of an elastic solid a specific class of dynamic processes can
be imposed. This restriction on the motion is called internal constraint and can
be for example an invariant angle or consist in preserving volume deformations
as it will be shown in this work. Due to the property of symmetry of the Cauchy
stress tensor T ∈ Sym it is possible to perform an additive decomposition into a
deviatoric devT part and a spherical sphT part, where the second one plays a
role in the reactive part of the stress and produces a zero stress power in every
motion compatible with the internal constraint. From the incompressibility it
can be deduced

detF = 1 ⇒ div v = 0. (2.45)

Thereforeas far as the stress power is concerned:∫
Pt

T · gradv =

∫
Pt

devT · gradv , (2.46)

and Cauchy stress can be decomposed as follows

T = devT + sphT = devT +
1

3
(trT)I = devT− pI . (2.47)
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The spherical reactive stress Ts = −pI remains indeterminated because of the
constant p, which is called internal (hydrostatic) pressure. For further details
see (Beatty, 1987; Podio-Guidugli, 1994). An example of an isotropic homo-
geneous incompressible material is neo-Hooke with the following strain energy
function

ψ =
1

2
µ(I1 − 3) , (2.48)

where µ represents the shear modulus. It is worth noting that this is a special
case of the Mooney–Rivlin or Blatz–Ko material description, see (Beatty, 1987).

In the context of a multiplicative decomposition of the deformation gradient F

different stress measures can be attributed to proper states as it is sketched in
figure 2.2. Apart from the Cauchy and the first Piola–Kirchhoff stress measures
let the ground stress So be introduced in the distorted stance related to the other
ones

S = TF? = SoF
?
o . (2.49)

The hyperelastic response of a body is assumed to be described by a strain energy
density per unit ground volume ψo whose value at each body point X ∈ B

depends only on the present value of the elastic deformation Fe at that point. In
case of incompressibility of the material the following holds

ψo : Fe 7→ ψo(Fe) , and Je = det(Fe) = 1 . (2.50)

When the relation of the strain energy ψ per unit reference volume to ψo is defined
by ψ = Joψo, with Jo = detFo, then the energetic stress related to the distorted
stance is

So =
∂ψo
∂Fe

, and Se = SoF
?
o . (2.51)

In case of incompressibility the results for the first Piola–Kirchhoff and the Cauchy
stress measures are

S = Se − pF? , and T = Se(F
?)−1 − pI . (2.52)

It should be noted that from the time derivative of the strain energy ψ and the
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relation ψ = Joψo, as in (2.43), relation (2.51) applies, thus

ψ̇ =

Se︷︸︸︷
∂ψ

∂F
·Ḟ = Jo

∂ψo
∂Fe

· Ḟe =

So︷︸︸︷
∂ψo
∂Fe

F?
o · Ḟ . (2.53)

In the same way as for the stress power in (2.43) the following can be derived
from the time derivative of the strain energy

ψ̇o =
∂ψo
∂Ce

· Ċe =
∂ψo
∂Fe

· Ḟe , (2.54)

the relation for the energetic stresses being then

So =
∂ψo
∂Fe

= 2Fe
∂ψo
∂Ce

. (2.55)

F
o

F
e =

F
F −

1o

F

So =
∂ψo
∂Fe

ψo

ψ = JoψoSe =
∂ψ

∂F

S = TF? = SoF
?
o

T = J−1SFT

Figure 2.2: Deformation gradient decomposition with sketched stresses and strain
energies.

In order to improve the computational performance, the nearly incompressibil-
ity is introduced. It consists in the multiplicative decomposition of the elastic
deformation tensor Fe into the isochoric (spherical) F̄e part and the deviatoric
(volumetric, dilatation) J

1
3
e I part of the elastic deformation

Fe = J
1
3
e F̄e , and det F̄e = 1 . (2.56)
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The relaxed strain energy, like in (Flory, 1961), is therefore additively decomposed
into the isochoric and the volumetric part

ψo = ψiso(C̄e) + ψvol(Je) . (2.57)

As far as ψ = Joψo is concerned, its time rate can be derived as follows

ψ̇ = Jo
∂ψiso
∂Fe

· Ḟe + Jo
∂ψvol
∂Je

· J̇e = (
∂ψiso
∂Fe

F?
o +

∂ψvol
∂Je

F?) · Ḟ . (2.58)

The previous expression identifies a constitutive relation for the whole first Piola–
Kirchhoff stress S as a sum of the isochoric and volumetric contribution

S = Siso + Svol , with Siso =
∂ψiso
∂Fe

F?
o , and Svol = −pF? , (2.59)

where the internal pressure is determined as

p = −∂ψvol
∂Je

, (2.60)

and the isochoric term is determined from the time rate of the isochoric part of
the relaxed strain energy

ψ̇iso = J
− 1

3
e (

∂ψiso
∂F̄e

− 1

3
(
∂ψiso
∂F̄e

· Fe)F
−T
e ) · Ḟe =

∂ψiso
∂Fe

· Ḟe . (2.61)

Therefore from the previous relations, namely for the neo-Hookean material the
first Piola–Kirchhoff and Cauchy stresses are

S = µJ
5
3
o J
− 2

3 (FC−1o −
1

3
(C ·C−1o )F−T)− pF? , (2.62)

and
T = µJ

5
3
o J
− 5

3 (FCoF
T − 1

3
(C ·C−1o )I)− pI . (2.63)

The internal hydrostatic pressure prescribed by the choice of volumetric part of
the strain energy

ψvol(Je) =
1

2
κ(Je − 1)2 , (2.64)
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hence it is
p = −κ(Je − 1) . (2.65)

Here κ is the bulk modulus. Note that this volumetric function is not the unique
possible choice for the tackling incompressibility, see (Hartmann and Neff, 2006).

2.2.4 Active strain vs active stress

The construction of the model that describes the response of soft living tissues
to the deformation can be performed in two ways. In the first one, the active
strain approach, the distortion Fo is introduced by (2.20) and consequently used
to define the stress-free state of the material, which may be activated by coupling
it to some external event, e.g. an electrochemical reaction. For an illustration
see figures 2.3 and 2.1. The other way the active stress can be an addition of
an active stress to the Cauchy stress expressing the passive part as follows

T =
∂ψ

∂F
(F?)−1 + Ta , (2.66)

where the active stress Ta is, in general, a function of deformation gradient F.
For variety of Ta see for example (Ambrosi and Pezzuto, 2011).

l

lc l − lc

ls − lc

ls l − ls

T T

contracted length

visible length

slack length

lc = lsλo

l = lcλe

l = lsλ

λ = λeλo

εo =
lc − ls
ls

εe =
l − lc
lc

ε =
l − ls
ls

εls = εelc + εols

Figure 2.3: A one-dimensional example of active strain illustrating the modelling
of soft tissue. The fiber of tissue in the reference state (green) has length ls, which
is contracted to the length lc in the distorted stance (white), then the traction T
has to be applied to obtain the visible deformation of the fiber long l embedded
in the actual configuration (red).
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2 Continuum mechanics

To show the difference between the active stress and the active strain is not
an easy task. A one dimensional illustration can be found in figure 2.3. Note
that from the mathematical point of view the active strain description is more
robust than the active stress approach especially as far as maintaining the rank of
ellipticity condition or frame invariance is concerned, see (Ambrosi and Pezzuto,
2011; Cherubini et al., 2008; Nardinocchi and Teresi, 2007; Rossi et al., 2012) for
further discussion.
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Chapter 3

Numerical methods

3.1 Functional spaces

Let the Lebesgue space of measurable functions be defined on a domain B, which
is Lebesgue measurable open subset of Rn with non empty interior,

L2(B) := {u : ‖u‖L2(B) <∞} , (3.1)

where the norm of a real valued Lebesgue measurable function u(x) defined on B

is
‖u‖L2(B) := (

∫
B

|u(x)|2 dx)
1
2 . (3.2)

Let
(u, v)L2(B) := (

∫
B

u(x)v(x))
1
2 (3.3)

represent a scalar product in the space L2(B), then the inner product space
(Sobolev space) can be introduced as follows

Hk(B) := {u ∈ Lloc(B) : ‖u‖Hk(B) <∞} , (3.4)

with a norm
‖u‖Hk(B) := (

∑
|α|≤k

(Dαu,Dαu)2L2(B))
1
2 . (3.5)

Here α denotes a multi-index and L1
loc(B) represents a space of locally integrable

functions on all compact interior subsets of B. For the details see (Brenner and
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3 Numerical methods

Scott, 2007). The solution of variational problems is usually looked for in the
following spaces

V := {v ∈ H1(B) : v = 0 on ∂kB} and M := {v ∈ L2(B)} , (3.6)

where ∂kB is a part of boundary with the imposed kinematic boundary conditions
u = ū. It is worth noting that in literature the space V is also denoted as H1

0 (B).

3.2 Finite element spaces

For the formulation of the finite element methods, namely the Galerkin and the
discontinuous Galerkin methods as far as the proper variational problems are
concerned, there is a request of weighted finite element subspaces Vh of spaces
V . As it is shown in (Johnson, 2009; Křížek and Neittaanmäki, 1990), to define
them, the following conditions have to be specified:

• the triangulation Th is established over the domain B̄,

• the nature of the functions vh in the space Vh is piecewise polynomial,

• the basis with a small support does exist in the space Vh.

The triangulation Th is the division of the set B̄ into a finite number of subsets
called elements K which have the following properties:

• the union of all elements K of triangulation Th yields the subdivided set
B̄ =

⋃
K∈Th

K,

• each set K of triangulation Th is closed and its interior K0 is non-empty,

• each distinct K1, K2 ∈ Th have no intersection that is K0
1 ∩K0

2 = ∅,

• each element K ∈ Th has the Lipschitz boundary ∂K.

It should be noted that h, the maximum diameter of all K ∈ Th, as a lower
index, is connected with a discretized domain. When two or three dimensions are
considered, then
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3.2 Finite element spaces

• any face of any K ∈ Th is either a subset of the boundary ∂B, or a face of
any other element K ′ ∈ Th,

• the interior of any face of any K ∈ Th is disjoint with the set of points where
one type of boundary condition changes into another – the consistency
condition, see (Křížek and Neittaanmäki, 1990).

It is worth noting that the set K of the triangulation Th will be considered as
a simplex so that in one, two or three dimensions it will be respectively a line,
a triangle or a tetrahedron. To specify the nature of the functions of Vh let us
define the finite element by the triple (K,P,Σ), where

• K 6= 0 is a closed subset of R, R2 or R3 with a Lipschitz boundary

• P is a space of real-valued functions defined over the set K

• Σ is a finite set of linearly independent linear forms Φ1 , . . . , ΦN defined
over the space P or over a space which contains P .

Here P denotes the space of all polynomials called ansatz-functions.

Lagrange linear element
The set P of the linear Lagrange element is the set of polynomials of degree one

P1(K) = {p1(x, y) = a0 + a1x+ a2y , ai ∈ R , i = 0, 1, 2} (3.7)

and the set of degrees of freedom Σ of the linear Lagrange element is

Σ1(K) = {p1(Ai), 1 6 i 6 3} , (3.8)

where Ai are the vertices of the simplex K.

Lagrange quadratic element
The set P of the second degree Lagrange element are polynomials of degree two

P2(K) = {p2(x, y) = a0 + a1x+ a2y + a11x
2 + a12xy + a22y

2, ai, aij ∈ R} (3.9)
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3 Numerical methods

and the set of degrees of freedom Σ of the quadratic Lagrange element will be

Σ2(K) = {p2(Ai), 1 6 i 6 3; p2(Aij), 1 6 i < j 6 3} , (3.10)

where Aij = 1/2(Ai + Aj) are the midpoints of edges of simplex K.

The spaces of the weighted functions Vh can be defined for the linear Lagrange
elements as

Vh = {v : v|K ∈ P1(K) ∀K ∈ Th and is continuous at the nodes} (3.11)

and for the quadratic Lagrange elements as

Vh = {v ∈ C0(B̄) : v|K ∈ P2(K), ∀K ∈ Th} . (3.12)

When continuity in the space of all integrable functions M is required, then its
weighted subspace will be denoted Mh. When the weighted subspace of M with
no continuity requirements accross interelement boundaries is equipped by the
first or the second order Lagrange element, then it can be defined

Wh := {v ∈ L2(B) : v|K ∈ Pr(K) ∀K ∈ Th} , (3.13)

where Pr(K) are the polynoms on K of degree at most r, here r = 1, 2.

Remark 1. It is worth noting that later on, the Lagrange elements associated
with the weighted space Wh will be called discontinuous elements and the nomi-
nation Lagrange elements will be reserved for those associated with the weighted
space Vh. The first and the second order Lagrange elements will be respectively
called Lag1 and Lag2. And the first and the second order discontinuous elements
will be respectively defined as Dsc1 and Dsc2.

Remark 2. In two or three dimensions, when two or three spatial variables
appear, then the variational space is called [V ]d, where 1 6 d 6 3 is the spatial
dimension. As far as the complicated kinematic conditions are concerned the
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3.3 Finite element methods

usual convention on the variational space does apply as follows

[V ]d := {u ∈ [H1(B)]d : u satisfies the admissible kinematic BC
and ũ ∈ [H1(B)]d : is compatible with such kinematic BC} .

(3.14)

For further details see (Braess, 2007).

3.3 Finite element methods

For the derivation of a various type of finite element methods, several procedures
are used and the basic scheme in figure 3.1 describes the relations between these
procedures. Further information about the relations between proper formulations
can be found in (Johnson, 2009)

Partial Differential
Equation: Boundary
Value Problem

Variational
problem

Minimization
problem

Galerkin’s
method

Ritz’ method

Figure 3.1: Standard procedures for the derivation of numerical schemes.

The following text is based on the scheme in figure 3.1 and demonstrates the
derivation of the numerical schemes used in chapter 4. Consider a boundary
value problem of non linear finite elasticity (2.33) stating:

“Find the displacement field u so that the following equations hold

DivS + d = 0 in B

Sm = c on ∂dB
u = ū on ∂kB ,

(3.15)

25



3 Numerical methods

where the material is hyperelastic and the dependance of the first Piola–Kirchhoff
stress tensor S on the displacement field u is derived from (2.49), (2.51) and (2.52).”

The classical solution u of this problem is usually numerically found thanks to
other formulations. Hence like in chapter 2, when the equation (3.15) is multi-
plied by ũ and when the per partes integration is applied, involving rule (A.3)
and Stokes identity (A.4), then the variational problem can be defined as:

“Find the displacement field u so that that following relation holds∫
B

(DivS + d) · ũ = −
∫

B

S · ∇ũ+

∫
B

d · ũ+

∫
∂dB

c · ũ = 0 ∀ũ ∈ [V ]d , (3.16)

where the kinematic boundary conditions u = ū are fulfilled on ∂kB.”

As it is sketched in the scheme from figure 3.1 the variational problem (3.16) can
be derived from the minimization problem that is:

“Find the displacement field u such that

Π(u) := −
∫

B

ψ(F(u)) +

∫
B

d · u +

∫
∂dB

c · u (3.17)

is a global minimum

Π(u) = min
ũ

Π(ũ) ∀ũ ∈ [V ]d .” (3.18)

The variation is defined by the Gâteaux derivative, which due to fact that F̃ = ∇ũ
can be read:

δΠ(u)[ũ] =
d

dε
(Π(u + εũ))|ε=0 =

= −
∫

B

∂ψ

∂F
· ∇ũ +

∫
B

d · ũ +

∫
∂dB

c · ũ = 0 ∀ũ ∈ [V ]d ,

(3.19)

where the stress is defined in (2.39). If the finite space Vh is considered, then
both variational problems (3.16) and (3.19) are called compatible methods . As
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3.3 Finite element methods

shown in (Bathe, 1996) if the compatible formulation (3.16) is used, the computa-
tions yield the locking effect or there can even be no convergence to the solution.
That is why the mixed finite element schemes are introduced. The theory of this
kind of schemes is further analysed in (Brezzi and Fortin, 1991; Hughes, 1987;
Wriggers, 2008; Zienkiewicz et al., 2009).

Mixed method:
To avoid the computational difficulties the proposed mixed displacement–pressure
formulation does apply. Consider the additive decomposition of the strain energy
function (2.57) and the functional

Π(u, p) = −
∫

B

(ψiso(u) + ψvol(u, p)) +
1

2

∫
B

p2

2κ
+

∫
B

d · u +

∫
∂B

c · u , (3.20)

ψvol =
1

2
κ(J − 1)2 = −p

2
(J − 1) and p = −κ(J − 1) , (3.21)

δΠ(u, p)[ũ] = −
∫

B

(
∂ψiso
∂F

+
dψvol
dJ

JF−T) · ∇ũ+

+

∫
B

d · ũ +

∫
∂B

c · ũ = 0 ∀ũ ∈ [V ]d

(3.22)

δΠ(u, p)[p̃] =
1

2

∫
B

(
p

κ
+ J − 1)p̃ = 0 ∀p̃ ∈M (3.23)

Therefore the mixed method states:

“Find the couple (u, p) ∈ [Vh]
d ×Mh so that the weak forms (3.22–3.23) hold for

all the couples (ũ, p̃) ∈ [Vh]
d ×Mh.”

It should be noted that the mixed displacement–pressure formulation is also very
often used, by the weak term for the third variable regarding Jacobian. The use
of it has been ommited in this work, because the same results do apply with the
mixed method (3.22–3.23) For further details see (Simo and Taylor, 1991; Wrig-
gers, 2008).
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3 Numerical methods

De Veubeke–Hu–Washizu method:
The de Veubeke–Hu–Washizu (dVHW) formulation known also as the method of
H.C. Hu and K. Washizu was initially introduced by B.M.F. de Veubeke1 in 1951,
for further details see (Braess, 2007; de Veubeke, 1951; Hu, 1954; Jihuan, 1997;
Washizu, 1974). Like in (Wriggers, 2008) let the following functional be looked
at

Π(χ,F,S) =

∫
B

(ψ(F) + S · (∇χ− F)) +

∫
B

d · χ +

∫
∂B

c · χ (3.24)

Considering that χ̃ = ũ holds, the first variation of the functional, as far as its
variables are concerned yields

δΠ(χ,F,S)[χ̃] =

∫
B

(S(F, p) · ∇χ̃ + d · χ̃)−
∫
∂B

c · χ̃ = 0 ∀ũ ∈ [V ]d (3.25)

δΠ(χ,F,S)[S̃] =

∫
B

(∇χ− F(u)) · S̃ = 0 ∀S̃ ∈ [M ]d
2

(3.26)

δΠ(χ,F,S)[F̃] =

∫
B

(
∂ψ(F, p)

∂F
− S(F, p)) · F̃ = 0 ∀F̃ ∈ [M ]d

2

(3.27)

and the weak incompressibility (3.23) holds. Therefore the aim of the dVHW
method remaines:

“Find a quartet (u,F,S, p) ∈ [Vh]
d× [Mh]

d2× [Mh]
d2×Mh so that balances (3.25–

3.27) and (3.23) hold for all quartets (ũ, F̃, S̃, p̃) ∈ [Vh]
d× [Mh]

d2 × [Mh]
d2 ×Mh.”

Remark 3. It is worth noting that the compatible, the mixed and the dVHW
methods are of a Garekin’s type if the elements are taken from the weight
spaces Mh. In chapter 4 the weighted spaces Wh of discontinuous functions are
introduced for the dVHW method. Such an approach is called the discontinuous
Galerkin’s method.

1Baudouin M. Fraeijs de Veubeke 1917–1976 was a Belgian scientist, an engineer and a uni-
versity professor.
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Chapter 4

Problem formulation
and its analysis

A significant problem in the three dimensional frame will be established in the
following chapter. Its expected behaviour is described in the simplified example
here under, in which the numerical results obtained by the mixed method are
briefly analysed. Then the reduction of its size is reached by introducing the
plane strain problem and the various analyses are carried out. The mixed and
dVHW method are tested and the results are then compared for various types
of mesh. In a further analysis the uniaxial problem is introduced and its exact
solution is found. The compatible, mixed and dVHW schemes are introduced in
one space dimension and after that the computational results are compared with
the analytical ones.

4.1 Three dimensional configuration

The mixed method for the decomposition of the deformation gradient (2.21) is∫
B

(−S(Fe, p) · ∇ũ + d · ũ)−
∫
∂B

c · ũ = 0 & u = ū on ∂Bd , ∀ũ ∈ [V ]3 , (4.1)

∫
B

(
p

κ
+ J − Jo)p̃ = 0 , ∀p̃ ∈M , (4.2)
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4 Problem formulation and its analysis

For the derivation of the numerical schemes, the formulation of the problem has
been performed as a minimization of the potential functional. The variation
in the deformation (placement) χ, the elastic deformation Fe and the reference
stress S is followed when the dVHW method has been established. The reference
(material) configuration is considered as the computational manifold. The general
propounded functional without any regards to material properties is

Π(χ,Fe,S) =

∫
B

(−Joψo(Fe)− S · (∇χ− F) + d · χ) +

∫
∂B

c · χ , (4.3)

where the elastic energy ψo defined on the rest configuration is accounted in
the reference domain and holds the relation ψ(F) = Joψo(Fe). And the elastic
deformation on the reference configuration takes account of a distortion as a part
of the multiplicative decomposition of the deformation gradient F = FeFo. When
the first variation of the functional (4.3) in the space determined by the elements
χ̃, F̃e and S̃ is performed, then the following expression holds

δΠ(χ,Fe,S)[χ̃, F̃e, S̃] =

∫
B

(−Jo
∂ψo
∂Fe

· F̃e − S · (∇χ̃− F̃eFo))

−
∫

B

((∇χ− F) · S̃− d · χ̃) +

∫
∂B

c · χ̃ .

(4.4)

Then comparing (4.4) to zero, these three balances are obtained∫
B

(−S(Fe, p) · ∇χ̃ + d · χ̃) +

∫
∂B

c · χ̃ = 0 , for all χ̃ = ũ ∈ [V ]d , (4.5)∫
B

(S(Fe, p)F
T
o − Jo

∂ψo(Fe, p)

Fe

) · F̃e = 0 , for all F̃e ∈ [M ]d
2

, (4.6)∫
B

(Fe(u)Fo −∇χ) · S̃ = 0 , for all S̃ ∈ [M ]d
2

. (4.7)

They form the dVHW scheme for the generalized problems of non linear elas-
ticity, where large distortions are tackled. When the slightly incompressibility is
considered, the following weak form is added to the scheme, see (Wriggers, 2008)∫

B

(p+
dψvol(Je)

dJe
)p̃ = 0 , for all p̃ ∈M . (4.8)
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4.1 Three dimensional configuration

Therefore the formulation of the d-dimensional dVHW method for the problem
of non linear elasticity with large distortions for the incompressible materials
consists in finding the displacement u ∈ [Vh]

d, the stress S ∈ [Wh]
d2 , the elastic

deformation Fe ∈ [Wh]
d2 and the internal pressure p ∈ Mh such that (4.5–4.8)

hold for all (ũ, S̃, F̃e, p̃) ∈ [Vh]
d × [Wh]

d2 × [Wh]
d2 × Mh. Remember that this

scheme corresponds to the discontinuous Galerkin’s method. The question of
the choice of the weight spaces Wh for the approximation of the stress S and
deformation gradient F is discussed in subsection 4.2.2.

Foii = 1

Foii > 1

Foii = 1

z

y x

u = 0, v = 0

u = 0, v = 0

F

Fo Fe

Figure 4.1: Distortion of the central part: Foii > 1, i = 1, 3.

4.1.1 Example of a simple distortion

To reveal the important quantities to be observed the following simple example
helps. For the sake of simplicity and the need not to loose the general aspects
the two dimensional rectangular domain is considered as is sketched in figure 4.1
on the left. The central part is supposed to be distorted in the orthotropic way
(Nardinocchi and Teresi, 2007)

Fo = αe1 ⊗ e1 + βe2 ⊗ e2 + γe3 ⊗ e3 , (4.9)

with a positive α, β and γ, see the central part of figure 4.1. It is worth noting
that when the fields are equal to one then Fo becomes identity I and no distortion
occurs. A visible deformation is described by the gradient of placement F and due
to compatibility conditions the object reaches the form of a deformed red body
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4 Problem formulation and its analysis

as in figure 4.1 on the right. Therefore the displacement u and its gradient ∇u
has a form similar to the one included in figure 4.2 on the left (here has been
sketched approximately the third component). It should be noted that in the
axis directions the components of the displacement vector are defined

u = (u, v, w)T = uc1 + vc2 + wc3 . (4.10)

The determinants of the distortion, deformation and elastic deformation Jo, J
and Je are respectively sketched in figure 4.2 on the right.

0 z

w, wz

w(x, y, z)

1

wz(x, y, z)

(0, 1) z

J , Je, Jo

Jo ≡ J > 1

1Je ≡ 1

Figure 4.2: The displacement and its gradient on the left. The Jacobian of
distortion, deformation and elastic deformation is on the right.

The displacement u and the Jacobian of elastic deformation Je are continuous in
the z direction and for this reason can be taken as the two kinematical reference
quantities to be observed in numerical tests.

4.1.2 Numerical observation on the unit cube

A basic numerical test is performed on the isotropic unit cube. The introduced
model contains a nearly incompressible neo-Hooke material. Instead of the the-
oretical behaviour of the problem described in the previous subsection it can be
observed the above mentioned numerical oscillations near the zone where the step
change of distortion occurs, see the illustration in figures 4.3 and 4.4.
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1.055

0.9700

xy

z

Figure 4.3: 3D example of Jacobian of elastic deformation Je oscillations. On the
left coarse mesh with 4816 elems and 23138 dof and the right the fine one with
40782 elems and 182600 dof.

−0.0010

−0.02810

xy

z

Figure 4.4: 3D example of oscillations of the first Piola–Kirchhoff component of
stress S11. On the left the coarse mesh with 4816 elems and 23138 dof and on
the right the fine one with 40782 elems and 182600 dof.

The problem is set as sketched in figure 4.5. The boundary conditions on the faces
parallel with yx-plane fix the displacement in all three directions (zero Dirichlet
b.c. for u, v, w) and the rest of the boundary is without kinematical constraints.
No external contact loads are applied, hence the zero Neumann boundary condi-
tions are considered on the whole boundary. This can be summarized as follows
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4 Problem formulation and its analysis

bottom and top basis fixed: (u(x, y, a), v(x, y, a), w(x, y, a)) = (0, 0, 0) ,

xz-plane parallel face free: (u(x, a, z), v(x, a, z), w(x, a, z)) = (·, ·, ·) ,
yz-plane parallel face free: (u(a, y, z), v(a, y, z), w(a, y, z)) = (·, ·, ·) ,

(4.11)

with a = 0 or a = 1.

0

xy

z

Fo3
3

=
1.1

F
o33 =

1

F
o33 =

1

Figure 4.5: The unit cube is supposed to be distorted in the central part with
Fo33 = 1.1 while its bottom and top basis are constrained like in (4.11).

A significant example has been chosen to show the phenomena of oscillations
where the dilatation can only take place in the direction perpendicular to the
constrained faces. Hence the components of the distortion tensor are the following

|Fo| =

1 0 0

0 1 0

0 0 Fo33

 (4.12)

and as it is sketched in figure 4.5 the the way of action of dilatation Fo33 is defined
as the step function of the form

Fo33 =

{
1.1 for 1/3 < z < 2/3

1 elsewhere .
(4.13)

The bulk modulus κ is chosen as κ = 104µ, see (Papoulia, 1995). The value
of the shear modulus µ is 0.1. Either with the coarse or the fine mesh one
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4.2 The plane strain problem

can observe the oscillations near the plane of distortion discontinuity. As it is
demonstrated in subsection 4.1.1 this effect is only due to the computational
procedure and has no physical meaning. It is worth noting that even if the
finer mesh is used this cumbersome behaviour does not vanish. For any basic
observation in three dimensions the high computational costs are to be faced.
Therefore some simplified cases are to be analysed to hypothesise the reasons
of such a behaviour and find some approach that improves the quality of the
solution. Two basic significant examples are constructed: the plane strain and
then the uniaxial strain problem.

4.2 The plane strain problem

The following two dimensional problem is taken directly from the illustrative
example introduced in subsection 4.1.2. The configuration remains the same as
it is sketched in figure 4.5 except that the with yz-plane parallel faces are blocked
against the displacement in the direction of the x axis, which can be summed up
as follows

bottom and top basis fixed: (u(x, y, a), v(x, y, a), w(x, y, a)) = (0, 0, 0) ,

xz-plane parallel face fixed: (u(x, a, z), v(x, a, z), w(x, a, z)) = (·, 0, ·) ,
yz-plane parallel face free: (u(a, y, z), v(a, y, z), w(a, y, z)) = (·, ·, ·) ,

(4.14)

where a = 0 or a = 1. The two dimensional plane strain problem is then obtained
with the following domain illustrated in figure 4.6. The reason why the plane
strain formulation has been chosen and not the plane stress one is because it is
difficult to explicitly express the components of the deformation tensor F as a
function of the components of the first Piola–Kirchhoff reference stress tensor S. It
is especially true when the nearly incompressible isotropic neo-Hookean material
is used because then a lot of non linearities occur.

4.2.1 The plane strain problem formulation

Values of components of the deformation tensor F and of the distortion ten-
sor Fo are introduced performed and their influence on the form of the first
Piola–Kirchhoff reference stress tensor S is analysed. The planar deformations

35



4 Problem formulation and its analysis

within the chosen form of the distortion are described by the tensors as follows

|F| =

F11 0 F13

0 1 0

F31 0 F33 ,

 |Fo| =

Fo11 0 Fo13

0 Fo22 0

Fo31 0 Fo33

 . (4.15)

Here the distortion tensor also determines a dilatation or a contraction in the y-
axis, which is the direction of the constrained deformation in the xz-plane. It
should be noted that in the case of Fo22 = 1, the pure planar distortions appear.

Fo33 = 1

Fo33 > 1

Fo33 = 1

z
0 x

u = 0, w = 0

u = 0, w = 0

B

Figure 4.6: Two-dimensional body B = (0, 1) × (0, 1) on which numerical tests
are performed.

After the first Piola–Kirchhoff reference stress tensor S has been expressed in
function of the deformation F and of the distortion Fo as given in (4.15), S be-
comes

|S| =

S11 0 S13

0 S22 0

S21 0 S33

 , (4.16)

where the usually non zero component S22 depends on Fij, Foij, i, j ∈ {1, 3} and
on Fo22 in the following manner

S22 = µJ
− 2

3
e (1− 1

3
Ie1F

2
o22)

Jo
F 2
o22

− pJe . (4.17)

In respect of the balance (2.32) the component S22 should be a general function
in the xz-plane only and the derivative in the direction of the y-axis should
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4.2 The plane strain problem

vanish. Therefore the necessary and sufficient condition that S22 = S22(x, z) and
S22(y) ≡ const. is valid if and only if Fo22 = Fo22(x, z) and Fo22(y) ≡ const.

Leaving the three dimensional frame to work on the plane strain problem, the
unknown quantities become u = (u,w) for the displacement, p for the internal
pressure, Feij, i, j ∈ {1, 2} for the elastic deformation tensor and Sij, i, j ∈ {1, 3}.

4.2.2 Numerical observations in the plane strain problem

Several numerical tests on the square domain are performed. The mixed me-
thod (4.1–4.2) and the dVHW numerical scheme (4.5–4.8) for the nearly in-
compressible, isotropic, neo-Hookean material are implemented. The benchmark
problem is described by the balance (2.32) where the internal force d = 0 and the
external forces c = 0 and where the boundary conditions (4.14) are as sketched
in figure 4.6. Because of the high non linearity of the problem, the COMSOL
Multiphysics PDE Mode toolbox (COM, 2008) has been used as a finite element
implementation. The necessity of a better control of the mesh quality leaded to
the choice of the GMSH mesh generator (Geuzaine and Remacle, 2009, 2010).

Figure 4.7: From left to right: the “coarser”, “finer” and “partitioned” mesh with
respectively 206, 1382 and 236 triangular elements.

The meshes which were created by GMSH and consequently loaded by COMSOL
for the numerical computations are sketched in figure 4.7. The meshes construc-
tion is described in Appendix B. The analysis of the oscillations of the quantity
of the stress component S33 and of the determinant of the elastic deformation
Je has been performed near the zones of discontinuity as they are sketched by
parallel red lines in figures 4.7. Regarding the influence on the quality of the so-
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lution three main principal case directions have been selected. At the beginning
different kinds of elements have been applied and then the results compared.
After that the mesh fineness and the arrangement of the elements edges have
been tested along the red line. In all the figures 4.8–4.13 the limits for the Ja-
cobian of elastic deformation are Je ∈ 〈0.97, 1.055〉 and for the stress component
S33 ∈ 〈−0.0281,−0.001〉. The value of the shear modulus µ is 0.1 again and the
bulk modulus related with it is κ = 104µ.

The discussion about the element types:
Tests with the first and second order Lagrange and discontinuous elements ave
been performed for the stress S and the elastic deformation Fe in relations (4.6)
and (4.7) following the dVHW method (4.5–4.8). The results for Je and S33

are illustrated in figures 4.8 and 4.9. When the first order Lagrange elements
Lag1 were used the system matrix was singular. The convergence was achieved
only when using the Lag2 elements. However the oscillations of the solution can
be observed near the discontinuity zones, see figures 4.8 and 4.9 on the right.
It is worth noting that after the interpolation was performed the spreading of
oscillations could be observed over the whole domain.

1.055

0.970

Figure 4.8: The Jacobian of the elastic deformation Je on the “coarser” mesh with
a choice of different kinds of elements for the first Piola–Kirchhoff stress S and
the elastic deformation Fe in (4.6–4.7) as from left to right: Dsc1, Dsc2, Lag2.

The quadratic Lagrange and discontinuous elements Lag2 andDsc2 generally give
higher oscillations than the first order discontinuous elementsDsc1, see figures 4.8
and 4.9. It is therefore reasonable to use the first order discontinuous elements
for S and Fe.
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−0.0010

−0.0281

Figure 4.9: The component of the first Piola–Kirchhoff stress tensor S33 on the
“coarser” mesh with a choice of different kinds of elements for the stress S and
the elastic deformation Fe in (4.6–4.7) as from left to right: Dsc1, Dsc2, Lag2.

The use of discontinuous elements Dsc for the stress S and the deformation F

results more appropriate considering the relation in (Johnson, 2009)

Vh ⊂ H1(B)⇔ Vh ⊂ C0(B̄) . (4.18)

This relation could explain the cumbersome behaviour when the Lagrange ele-
ments Lag are used.

From now on the first order discontinuous elements Dsc1 are used for the depen-
dent variables of the first Piola–Kirchhoff stress S and the elastic deformation Fe

following the proper methods, see table 4.1.

method\variable u p S Fe

Mixed Lag2 Lag1 – –
dVHW Lag2 Lag1 Dsc1 Dsc1

Table 4.1: Elements for proper variables in the mixed and dVHW method.

The discussion about the mesh fineness:
The other important observation is that the solution behaviour according to the
mesh refinement. The first “coarser” and the second “finer” mesh were used from
figure 4.7. The tests results following the mixed and dVHW method with the
elements from table 4.1 are illustrated in figures 4.10 and 4.11.
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1.055

0.970

Figure 4.10: The Jacobian of the elastic deformation Je with elements chosen
according to table 4.1 as from left to right: the mixed method on “coarser” mesh,
the mixed method on “finer” mesh, the dVHW scheme on “finer” mesh.

When the “finer” mesh is used the oscillations do not vanish neither for the mixed
nor for the dVHW method. But using the dVHW scheme the solution quality
has improved anyway, see figures 4.10 and 4.11.

−0.0010

−0.0281

Figure 4.11: The component of the first Piola–Kirchhoff stress tensor S22 with
elements chosen according to table 4.1 as from left to right: the mixed method
on “coarser” mesh, the mixed method on the “finer” mesh, the dVHW scheme on
“finer” mesh.

The discussion about the mesh arrangement:
The tests have been performed on the first “coarser” and the third “partitioned”
mesh from figure 4.7. The right one contains the elements whose edges coincide
with the red zone of distortion discontinuity. As one can see see from figures 4.12
and 4.13 the oscillations have not vanished for the meshes that does respect
the discontinuity. Even while following the dVHW scheme, the solution near
the boundary reaches unexpected values. It should be noted that there is no
improvement using the mixed method on the “partitioned” mesh rather than on
the “coarser” one, see figures 4.10–4.13.
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1.055

0.970

Figure 4.12: The Jacobian Je of the elastic deformation Fe with elements used as
in table 4.1 as from left to right: the dVHW method on the “coarser” mesh the
mixed method on the “partitioned” mesh and the dVHW scheme on “partitioned”
mesh.

−0.0010

−0.0281

Figure 4.13: The component of the first Piola–Kirchhoff stress tensor S22 with
elements used as in table 4.1 as from left to right: the dVHW method on “coarser”
mesh, the mixed method on the “partitioned” mesh and the dVHW scheme on
“partitioned” mesh.

According to the chosen discontinuous elements Dsc1 for the approximation of
the deformation gradient F and the stress S in the dVHW formulation the com-
putation already gives good results on the coarse mesh. The numerical tests
demonstrate that the mesh refinement yields better results than its geometrical
adaptation in the zones of discontinuities.

4.3 The uniaxial strain problem

For a more exact description of the numerical solution quality it is useful to
introduce a simplified problem which has got an exact solution. Like in the
previous section the isotropic nearly incompressible neo-Hooke material model
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4 Problem formulation and its analysis

is used. The balance (3.15) in the classical form is to be satisfied on the reference
configuration. Therefore the first Piola–Kirchhoff reference stress is

S = µJ
5
3
o J
− 2

3 (FC−1o −
1

3
(C ·C−1o )F−T)− pJF−T , p = −κ(J/Jo− 1) , (4.19)

with κ as a bulk modulus.

4.3.1 Problem formulation in 3D and 1D

The three dimensional problem formulation which under certain conditions can
lead to its the one dimensional version is sketched in figure 4.14. Neither external
contact forces nor bulk loads are considered.

a a

a/3
a/3

a

a

a

a

a a

>
a

a/3 <

F
Fe

Fo

Figure 4.14: The three dimensional problem example with a distortion disconti-
nuity illustrated on the cube whose height is a. Perpendicular edges of the base
are identified with x and y axis and the vertical one from bottom to top with
oriented z axis.

Only the central part is supposed to be distorted by Fo while applying certain
kinematic boundary conditions. The bottom basis is fixed against any displace-
ment in all directions and the lateral faces are free except for the constraint in the
direction of the outwards boundary normal vector n. The boundary conditions
can be summed up as follows

bottom basis fixed: (u(x, y, 0), v(x, y, 0), w(x, y, 0)) = (0, 0, 0) ,

top basis free: (u(x, y, 1), v(x, y, 1), w(x, y, 1)) = (·, ·, ·) ,
xz-plane parallel face: (u(x, a, z), v(x, a, z), w(x, a, z)) = (·, 0, ·) ,
yz-plane parallel face: (u(a, y, z), v(a, y, z), w(a, y, z)) = (0, ·, ·) ,

(4.20)
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4.3 The uniaxial strain problem

with a = 0 or a = 1. The distortion tensor Fo will be in a special form that only
admits the dilatation or contraction in the direction of the three main axes x,
y and z, see (4.21). The problem set on the domain B in figure 4.14 with the
already defined distortion Fo consists in finding a displacement field u so that the
balance (2.33) and the boundary conditions (4.20) are satisfied with d ≡ 0 and
c ≡ 0. To make a problem simpler, it is possible to expand the zone of distortion
to the whole domain B as it is sketched in figure 4.15. When the analytical
solution is found, then its generalization to the original problem is easy to be
found.

a a

a

a aa

> c

b >
a

b >
a

a < c

F
Fe

Fo

Figure 4.15: The three dimensional problem example with with the zone of dis-
tortion discontinuity expanded to the whole domain which is the cube of size a.
Axes are defined as in figure 4.14.

Regarding the boundary conditions (4.20) and the form of the distortion tensor

Fo = Foiiei ⊗ ei , (4.21)

the following hypothesis can be introduced on the problem kinematics. The
displacement field is

|u| =

 0

0

w(z)

 , hence |F| =

1 0 0

0 1 0

0 0 F33

 , (4.22)

where F33 is only a general function of z, i.e. F33(z) only. Therefore all the
components of the first Piola–Kirchhoff reference stress S depends on z only. Es-
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4 Problem formulation and its analysis

pecially S11(x, y, ·) and S22(x, y, ·) are constant in x, y variables and the reference
balance (2.33) with S11′1 = 0 and S22′2 = 0 holds automatically. The one dimen-
sional problem can be set looking for a displacement w(z) that holds the balance
on the reference domain B = (0, 1) as follows with, the here under, boundary
conditions:

with S ′33 = 0 , for z ∈ (0, 1) , BC: w(0) = 0 and S33|z=1 = s = 0 , (4.23)

where the prime denotes the derivative in z.

4.3.2 The exact solution of the 1D problem

When the distortion (4.21) is considered and the derivative of the stress compo-
nent S33 in (4.19)1 is written in detail then it holds

S ′33 = F ′33(
2

9
µJ

5
3
o F
−2
o33F

− 2
3

33 +
5

9
µJ

5
3
o (F−2o11 + F−2o22)F

− 8
3

33 + κJ−1o ) = 0 , (4.24)

from which follows that a general real solution for the displacement is

w(z) = c1z + c2 , (4.25)

where c1 and c2 are real constants. From the first boundary condition (4.23)2
it is possible to deduct c2 = 0. The constant c1 can be obtained from the last
boundary condition in (4.23)3, which means solving the following equation

S33 =
µ

3
J

5
3
o F
−2
o33F

1
3
33(2− F−2o33(F

−2
o11 + F−2o22)F

−2
33 ) + κ(F33J

−1
o − 1) = 0 , (4.26)

where the unknown constant c2 is embedded in the root F33. Due to the presence
of rational exponents some problems occur while looking for the solution. Any-
way it is possible to find a solution only if all coefficients are given numbers.

The displacement w(z) = (0.21)z[m], when Fo11 = Fo22 = 1.1[1], (µ = 0.1[Pa], κ =

105[Pa]).

Other results are: p = −1
3
trT = 0.0425104[Pa], S11 = S22 = −0.0771563[Pa].

Therefore as far as the displacement is concerned, the kinematical equation holds
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4.3 The uniaxial strain problem

w(z) = (Jo − 1)z . (4.27)

However such relation can be directly obtained only using the purely incompress-
ible approach and does not satisfy relation (4.26). Therefore the displacement is
introduced in the following form

w(z) = (1− ε)(Jo − 1)z , ε > 0 . (4.28)

The condition (4.26) then becomes as follows

S33 =
µ

3
J

5
3
o F
−2
o33(Jo− ε(Jo− 1))

1
3 (2−F−2o33(F

−2
o11 +F−2o22)(Jo− ε(Jo− 1))−2)− p = 0 ,

(4.29)
with the internal pressure

p = −κε1− Jo
Jo

, (4.30)

which reaches a finite value |p| <∞. From this can be deduced that ε is a func-
tion of κ as ε = ε(κ) satisfying

ε −−−→
κ→∞

0 , and
1

ε
= O(κ) . (4.31)

This gives physically the reasonable property of the internal pressure in function
of the distortion

Fo11 < 1 and Fo22 < 1

Fo11 > 1 and Fo22 > 1
⇒

p < 0

p > 0
. (4.32)

The obtained information about the solution of problem (4.23) is sufficient to
determine the computational error.

All these results can also be obtained numerically on the cube in three-dimensional
frame. The tests performed by COMSOL provide the same values and response
as those obtained from the one dimensional problem.

When the distribution of the distortion in the body, as in figure 4.14, takes
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4 Problem formulation and its analysis

the form

Fo11(z) = Fo22(z) =

{
1.1 for 1/3 < z < 2/3

1 otherwise
and Fo33 ≡ 1 , z ∈ (0, 1) ,

(4.33)
then the effect in the displacement w(z), in the determinant of deformation gra-
dient J and in the stress

Sii = µJ
5
3
o F33(F

−2
oii −

1

3
(F 2

33F
−2
o33+F−2o11+F−2o22))+κ(F33/Jo−1)F33 i = 1, 2 , (4.34)

is sketched in figure 4.16.

(b)

(a)
z

w(z)[m], (J(z)− 1)/3[1]

−0.07

−0.035
0

0.035

0.07

1/3 2/3 1

(d)

(c) z

S11(z), S33(z)[Pa]

0
−0.02

−0.04

−0.06

−0.08

1/3 2/3 1

Figure 4.16: The solution of the one dimensional problem with the distortion
discontinuities from (4.33). On the left there are the green solid line (a), the
displacement w(z), the blue dashed line (b), the scaled Jacobian of elastic de-
formation (J(z) − 1)/3 and on the right, there are the green solid line (c), the
stress S33(z), the red dashed line (d) and the stress S11 = S22.

4.3.3 The formulation of the one dimensional schemes

In order to proceed with the analysis of the mixed and dVHW methods behaviour
the numerical schemes must be constructed following the simplified example from
figure 4.14 described by balance (4.23).

The compatible formulation:

The problem (4.23) expressed in the classic form can be reformulated in the weak
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4.3 The uniaxial strain problem

form in the one dimensional reference domain as follows

0 =

∫ 1

0

S ′33(w(z))w̃(z) dz = [S33(w(z))w̃(z)]10 −
∫ 1

0

S33(w(z))w̃′(z) dz =

= sw̃(1)−
∫ 1

0

S33(w(z))w̃′(z) dz .

(4.35)

Hence for s = 0 holds

−
∫ 1

0

S33(w)w̃′ dz = 0 , for all w̃ ∈ H1
0 (0, 1) . (4.36)

In a computational context the numerical scheme (4.36) corresponds to the vari-
ational formulation of the compatible method (3.16). It should be noted that the
form on the left side of balance (4.36) is neither symmetric nor linear in w.

The mixed displacement–pressure formulation:

When the stress component S33(z) = S33(w(z), p(z)) depends on both the dis-
placement w(z) and internal pressure p(z), the mixed formulation in the reference
domain z ∈ (0, 1) corresponding to (4.1–4.2) is∫ 1

0

−S33(w, p)w̃
′ dz + [S33(w)w̃]10 = 0 , for all w̃ ∈ H1

0 (0, 1) , (4.37)∫ 1

0

(
p

κ
+ J−1o (1 + w′)− 1)p̃ dz = 0 , for all p̃ ∈ L2(0, 1) . (4.38)

In the weak balance (4.8) (incompressibility) for the volumetric distortion (4.21)
and for the spherical part of the deformation energy (2.57) it has been used the
following form of the elastic deformation tensor

|Fe| =

F−1o11 0 0

0 F−1o22 0

0 0 (1 + w′(z))F−1o33

 . (4.39)

The de Veubeke–Hu–Washizu formulation:
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In the de Veubeke–Hu–Washizu formulation (4.5–4.8) for the incompressible ma-
terial the stress depends on the elastic deformation Fe = Fe(F) and on the inter-
nal pressure p = p(F). This leads to the dVHW formulation in one dimension as
follows∫ 1

0

−S33(Fe33, p)w̃
′ dz + [S33(Fe33, p)w̃]10 = 0 , for all w̃ ∈ H1

0 (0, 1) , (4.40)∫ 1

0

(S33(Fe33, p)Fo33 − JoSo33)F̃e33 dz = 0 , for all F̃e33 ∈ L2(0, 1) ,(4.41)∫ 1

0

(1 + w′ − Fe33Fo33)S̃33 dz = 0 , for all S̃33 ∈ L2(0, 1) , (4.42)∫ 1

0

(
p

κ
+ Fe33(Fo11Fo22)

−1 − 1)p̃ dz = 0 , for all p̃ ∈ L2(0, 1) , (4.43)

where So33 =
∣∣∣ ∂ψo

∂Fe

∣∣∣
33
. Hence

So33 = µ(Fo11Fo22)
2
3F
− 2

3
e33 (Fe33 −

1

3
(F−2o11 + F−2o22 + F 2

e33)F
−1
e33) +

∂ψo
∂Je

(Fo11Fo22)
−1 ,

(4.44)
with ∂ψo

∂Je
= −p and the here under form of the elastic deformation tensor is

applied

|Fe| =

F−1o11 0 0

0 F−1o22 0

0 0 Fe33

 . (4.45)

4.3.4 The numerical experiments

The numerical tests have been performed for the problem (4.23) with boundary
conditions (4.20), see figure 4.14. All the scheme formulations have been used: the
compatible one (4.36), the mixed one (4.37–4.38) and the dVHW method (4.40–
4.43). The values for the distortion have been set as in (4.33) to reproduce the
analytical solution like in subsection 4.3.2. First the numerical solution error has
been found using the mixed and dVHW method. The displacement w(z), the
Jacobian Je of the elastic deformation and the stress Sii, i = 1 or i = 2 have
been confronted. When the compatible and the mixed method were used then
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the stress component resulted to be

Sii = µJ
5
3
o F
− 2

3
33 (F−2oii −

1

3
(F 2

33F
−2
o33 + F−2o11 + F−2o22))− pF33 , (4.46)

where i = 1, 2 (there is no summation over the index i) for the mixed method
and p = −κ(F33/Jo − 1) for the compatible method. From the results obtained
using the dVHW scheme the stress component was determined as resulted to be

Sii = µJ
2
3
o F
−1
oii FojjF

1
3
o33F

− 2
3

e33 (1− 1

3
F 2
oii(F

2
e33 + F−2o11 + F−2o22))− pFo33Fe33 , (4.47)

where i = 1, 2 and j depends on i as follows: j = 2 when i = 1 and j = 1 when
i = 2. The errors ε in the energetic norm have been introduced as follows

εw = ‖w−wh‖H1
0 (B) , εJe = ‖Je−Jeh‖L2(B) , εS22 = ‖S22−S22h‖L2(B) . (4.48)

The elements in the proposed methods have been used as it is listed in table 4.2.

method\variable w p S33 Fe33

Compatible Lag2 – – –
Mixed Lag2 Lag1 – –
dVHW Lag2 Lag1 Dsc1 Dsc1

Table 4.2: Used elements in one dimensional schemes.

An equidistant discretization has been used for the domain B ≡ (0, 1). The
errors in figures 4.17–4.18 are expressed in function of the number of elements
present in the mesh which vary from 3 to 30. It is worth noting that the mixed
method has provided the same results for the one dimensional problem as the
dVHW scheme. Therefore only the errors of the compatible and dVHW methods
are compared.
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method\error εw(n > 15) min
3<n<30

εw εJe(n > 15) εS22(n > 15)

Compatible ≈ 10−4 ≈ 10−6 ≈ 10−1 ≈ 102

dVHW ≈ 10−3 ≈ 10−4 ≈ 10−1 ≈ 10−2

Table 4.3: The comparision between the error of the compatible and the dVHW
method.

In figures 4.17–4.18 one can see for both methods that for the elements number
n = 3k, k = 1, 2, . . . the error of displacement w reaches the local minima.
The comparison of the errors between the compatible and the dVHW method
are summarized in table 4.3. It is true that the displacement error εw is one
order higher using the dVHW than using the compatible method, but the error
regarding the determinant Je of the elastic deformation is not worse with the
dVHW method. And as far as the stress S22 is concerned, the error is even four
order lower for the dVHW method than for the compatible one.

(b)

(a)

n

log10 εw

−6

−5

−4

−3

−2

−1

3 12 21 30

(c)

(d)

n

log10 εJe−0.5

−0.6

−0.7

−0.8
3 12 21 30

Figure 4.17: The computational error vs the number of elements n. On the left:
the error of the displacement w(z), on the right: error of Jacobian Je of elastic
deformation. For both figures: in red the dVHW method line (a), in blue the
compatible scheme line (b).

It should be noted that for both methods when the error reaches the local minima
for the displacement then the local maxima can be observed as far as the other
quantities Je and S22 are concerned. This happens when the elements number
n = 3k, k = 1, 2 , . . .

As a consequence of the above observations and the fact that the same results
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4.3 The uniaxial strain problem

have been obtained for both the mixed and the dVHW method in one dimension,
the following hypothesis can be stated for a two and three dimensional frame.

Hypothesis 1. In problems involving the nearly incompressible neo-Hookean
isotropic material, described through the nonlinear elasticity characterized by
large deformations and discontinuous distortions, and treated in a two or three
dimensional manifold, the computational error in the kinematical quantities (like
the displacement u, or the Jacobian Je) is bigger using the dVHW method than
the mixed method, but is not bigger and even lower as far as the dynamic quan-
tities like the stress S are concerned.

log εS22

n
(a)

(b)

4

3

2

1

0

−1

−2

−3
3 12 21 30

Figure 4.18: The computational error of the stress S22 vs the elements number n.
In red the dVHW method line (a), in blue the compatible scheme line (b).
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Chapter 5

Conclusion

To conclude the rigorous state exam in Pilsen on 16th June 2010, several possi-
bilities were suggested including;

• Verify whether the oscillations depend on the form of the volumetric strain
energy;

• Extend the problem to the three dimensions;

• Enrich the homogeneous material by the preferred property direction (anisotropy);

• Simplify the benchmark example in order to obtain an exact solution and
observe the numerical error.

The forms of volumetric energy from (Hartmann and Neff, 2006) were imple-
mented and the tests given the same oscillating solution for the mixed method
as the volumetric energy (2.57) proposed in chapter 2. It should be noted that
when the perturbed Lagrange multiplier mixed method (Simo and Taylor, 1991;
Wriggers, 2008) and mixed method as outlined in (3.22–3.23) were used, then no
difference on the solution was observed.

An extension to three dimensions was performed; however, in order to ana-
lyse the problem, the two-dimensional plain strain formulation, which in terms
of degrees of freedom is much small than the three dimensional one, is sufficient.
Even though the dVHW formulation can be reduced by the weak stress term,
the full dVHW formulation (4.5–4.8) was prefered. This idea was based on the
fact that for anisotropic materials, both the full dVHW and its reduced version
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yield different results, but in the isotropic case, there are no differences. This
highlights another issue for the anisotropic materials; i.e. the verification of the
numerical solution obtained by the dVHW or its reduced version. The numerical
results from the solution obtained by the reduced dVHW method and the mixed
method are the identical. It is worth noting that the reduced dVHW formulation
is, generally, more robust than the mixed method; moreover it avoids the locking
effect, which appears particularly in the case of anisotropic materials. Although
the above summary is beyond the scope of this thesis, it illustrates the main
reasons for not considering the anisotropy; however applying anisotropy to the
constitutive law should be an area for further study. This could be explored by
using adaptive numerical methods.

The analytical results for computational error in chapter 4, show that the dVHW
method behaves better than the mixed method in the most of problem configura-
tions, similar to those described in chapter 4, especially in terms of the quantities
of stress, see figure 4.18.

From the numerical tests on the two dimensional benchmark it was concluded
that the first order discontinuous elements for the elastic deformation and the
first Kirchhoff–Piola stress is the best choice. The coarse mesh provides satisfac-
tory results. When the computation on the finer mesh is performed good results
are obtained and it follows that the geometrical adaptation should be the subject
of future research.

One of the advantages of the dVHW approach, is its ability to damp the oscilla-
tions near the zones of discontinuity. The disadvantage of this is the computa-
tional cost of the solved problem due to the number of degrees of freedom, which
in three dimensional calculations is extremely high. The other possible issue to
consider in this problem, is the suitability of the combined approaches: i.e. hp-
FEM adaptivity (Šolín et al., 2003); isogeometric finite elements (Hughes et al.,
2005); stabilization technique based on using of bubble functions (Codina, 1998;
Franca and Farhat, 1995); or domain decomposition (Smith et al., 1996).

The application of the combined approach of implemented isogeometric FE
and domain decomposition method is described in works (Daněk and Kutáková,
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2008). This method of research can only be used for cases with a well defined
position of zone of the discontinuity in the analysed manifold and for isotropic
materials only. When the material with preferred stiffened direction is considered,
the combined approach is not appropriate. The most suitable way to analyse
general problems is therefore hp-FEM adaptivity, which automatically follows
steep gradient zones. The preliminary research including the usage of the hp-
FEM adaptivity can be described as follows

• To solve the 2D problem with the compatible formulation.

• When the compatible formulation does not converge, then use the mixed
method.

• To apply the dVHW formulation and compare the results with the compat-
ible/mixed approach.

Some possible generalization of my results are:

• The derived dVHW scheme is also suitable to be applied to all hyperelastic
materials with distortions.

• It is applicable to the diffusion-convection-reaction problems.

• One-dimensional benchmark case can be formulated to more general cases,
e.g. materials with exponential law for matrice or the anisotropic one.

55



5 Conclusion

56



Appendix A

Convention and integration rules

In the volume and surface integrals the differentials are automatically considered
and for a practical reason are omitted in the text. The volumetric integrals in
the reference and actual configuration are∫

P⊂B

(·) :=

∫
P⊂B

(·) dV and
∫

Pt⊂Bt

(·) :=

∫
Pt⊂Bt

(·) dv (A.1)

and the surface integrals are∫
∂P⊂∂B

(·) :=

∫
∂P⊂∂B

(·) dA and
∫
∂Pt⊂∂Bt

(·) :=

∫
∂Pt⊂∂Bt

(·) da . (A.2)

the derivative, used in per partes rule, on the reference and actual configuration
is

Div (ATa) = DivA · a + A · ∇a , div (ATa) = divA · a + A · grad a . (A.3)

The Stokes identity on the reference and actual configuration is∫
B

Div a =

∫
∂B

a ·m ,

∫
Bt

div a =

∫
∂Bt

a · n . (A.4)
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Appendix B

Implementation to COMSOL

For the implementation with COMSOL Multiphysics 3.5a the partial differential
equation (PDE) modes module was used for the equation-based modelling. In the
illustration example the implementation of the problem of non linear elasticity
is shown in a three dimensional frame using the nearly incompressibile isotropic
neo-Hookean material. The numerical scheme is the mixed method (3.22–3.23)
as it is mentioned in chapter 3.

First as far as the model explorer is concerned the problem dimension is to be
chosen and then it is necessary to continue with physics . In order to define
a Time-dependent analysis it is possible to choose from the Application modes
tree the following option: COMSOL Multiphysics , PDE Modes and Weak form
Subdomain. Every balance in the problem determines the proper physics and
dependent variables, which can be called u, v and w for the displacement in the
balance (3.22) in three dimensions and p for the pressure in the balance (3.23).
Only the choice of the elements likely to change later remains.

The nonlinear elasticity:
At that point the computational domain is created, while the governing (balance)
equations with BC and expressions containing the constitutive law is specified.
The domain is defined in the Draw menu and the unitary cube (rectangle or
line) is constructed with a corner at the origin. It is necessary to implement the
mechanical balance (3.22) in the Subdomain Settings in which the following
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physics is defined: ∫
B

u̇ · ũ =

∫
B

−∇u · ∇ũ +

∫
B

d · ũ , (B.5)

where the displacement u, test function ũ and their gradients ∇u, ∇ũ have the
following components

u =

u

v

w

 , ∇u =

ux uy uz

vx vy vz

wx wy wz

 (B.6)

and

ũ =

test(u)

test(v)

test(w)

 , ∇ũ =

test(ux) test(uy) test(uz)

test(vx) test(vy) test(vz)

test(wx) test(wy) test(wz)

 (B.7)

The “balance” (B.5) in COMSOL is schematically expressed as dweak=weak. In
the case of elasticity the stationary problem is solved, therefore all the time
derivative terms, the dweak ones, are automatically to be set to zero. Our goal
is to implement the balance (3.22), thus the expressions in Subdomain Settings
will be

-S11*test(ux)-S12*test(uy)-S13*test(uz)+d1*test(u)
-S21*test(vx)-S22*test(vy)-S23*test(vz)+d2*test(v)
-S31*test(wx)-S32*test(wy)-S33*test(wz)+d3*test(w)

Table B.1: Implementation of governing terms of “physics” – elasticity.

Because no bulk loads d = (d1, d2, d3)
T are considered everyone of its compo-

nent d1, d2 and d3 is zero. Then every dweak term is set to zero and Element is
chosen Lag2 to every displacement components according to table B.2.
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elem. Lag1 Lag2 Dsc1

impl. shlag(1,’fun’) shlag(2,’fun’) shdisc(3,1,’fun’)
int. ord. 2 4 2

Table B.2: An example of finite element specification in three dimensions for
a dependent variable fun.

To fix the bottom and the top base of the cube in all directions it is automatically
set in Boundary Settings every component row in constr equal to zero, thus it
is sufficient to leave -u, -v and -w in the proper row. For every remaining choice
of the faces zero is set everywhere.

Nearly incompressibility:
The following weak equation in the Subdomain Settings is inserted

(p/kappa+(Je-1))*test(p)

and the element in according to table B.2 has to be Lag1 for the pressure p.
It should be noted that in the case of the implementation of the dVHW method
the elements for the stress components Sij and the elastic deformation Feij are
defined as Dsc1.

Boundary conditions are free in constr of Subdomain settings, thus zero for
every face.

Variables and constants:
In the Global variables the values of every component of the first Piola–
Kirchhoff stress tensor S are fixed according to the gradient of displacement ∇u.
In the Scalar variables the input for the distortion is given by

Fo33=1+(dist-1)*(1/3<z)*(z<2/3)

In the Constants are fixed the material parameters mu, kappa and is defined the
distortion dist.
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Mesh
The optimized tetrahedral and triangular mesh generated by the Delaunay trian-
gulation algorithm is used in the three and two dimensional domains. The mesh
of the cube is set according to table B.3. For the two dimensional square domain
the mesh loaded from GMSH generator is used and on the line for the simplicity
the uniform mesh is used.

parameter coarse mesh finer mesh
max. el. scal. fact. 1.5 0.75
el. growth rate 1.6 1.45
mesh curv. fact. 0.7 0.5
mesh curv. cut. 0.04 0.02

resol. of narrow reg. 0.4 0.6

Table B.3: Mesh parameters for the cube.

When the GMSH generator is used in two dimensions, then the MeshAdapt al-
gorithm is applied. An optimization was performed in order to try to decrease
the number of 4-triangle nodes which lead to ≈ 90◦ angle between their sides.
Then the mesh is carried to COMSOL through the Mesh from file menu and
the new geometry based on the imported mesh is defined. Anyway because of
missing documentation about the COMSOL mesh format this traffic is not di-
rect and consists first in entering the mesh data into the fem structure and then
in saving it in a file for a later elaboration.

Solver
The nonlinear and nonsymmetric problem is solved. In the Stationary solver
the damped Newton method is used together with UMFPACK linear solver. The
relative tolerance is equal to 10−6.

Postprocessing
The element refinement is 1 and in the Subdomain plot the option Coloring and fill
is set to be Interpolated.
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Any further information about the implementation or the mesh format and the prop-
er algorithm of its generation in GMSH can be to found in (COM, 2008; Geuzaine
and Remacle, 2009, 2010).
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