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Abstract
Reaction-diffusion equations serve as a basic framework for numerous dynamic phenomena
like pattern formation and travellingwaves. Spatially discrete analogues of Nagumo reaction-
diffusion equation on lattices and graphs provide insights how these phenomena are strongly
influenced by the discrete and continuous spatial structures. Specifically, Nagumo equations
on graphs represent rich high dimensional problems which have an exponential number of
stationary solutions in the case when the reaction dominates the diffusion. In contrast, for
sufficiently strong diffusion there are only three constant stationary solutions. We show that
the emergence of the spatially heterogeneous solutions is closely connected to the second
eigenvalue of the Laplacian matrix of a graph, the algebraic connectivity. For graphs with
simple algebraic connectivity, the exact type of bifurcation of these solutions is implied by
the properties of the corresponding eigenvector, the so-called Fiedler vector.

Keywords Nagumo equation · Dynamical systems on graphs · Bifurcations · Algebraic
connectivity · Fiedler vectors

Mathematics Subject Classification 35K57 · 39A12 · 39A28 · 05C40

1 Introduction

The need to describe dynamics of several natural phenomena in spatially heterogeneous
domains has attracted lot of attention to dynamical systems on graphs over the last few
decades. Motivated by the design of populations and natural habitats, epidemiological [15]
and evolutionary [16] models on structured social networks have been developed signifi-
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cantly. Mathematically, the heterogeneous discrete spatial structure allows, e.g., to form a
large number of spatially heterogeneous configurations, patterns, and large amount of other
dynamical phenomena. Reaction-diffusion systems on lattices and graphs have been used as
a guiding example of this behavior [13,17,27].

In this paper we focus on the emergence of heterogeneous stationary solutions of the
Nagumo reaction-diffusion differential equation on a graph G = (V , E). We denote by V
the set of vertices of G, by E its set of edges, and by N (i) = { j ∈ V : (i, j) ∈ E} the
neighborhood of a vertex i ∈ V . Our model has the form

u′
i (t) = d

∑

j∈N (i)

(u j (t) − ui (t)) + λg(ui (t)), i ∈ V , t ∈ R, (1.1)

in which d > 0 is the diffusion parameter, the sum corresponds to the graph Laplacian
describing the linear diffusion on G. The parameter λ > 0 represents the reaction strength,
g is considered to be the cubic bistable nonlinearity (the general case is discussed later in
Sect. 5)

g(u) = u(u − a)(1 − u), a ∈ (0, 1). (1.2)

The graph differential equation (abbreviated by GDE) (1.1) is a network analogue of the
well-known Nagumo reaction-diffusion PDE [22]

ut = duxx + λg(u), x ∈ R, t ∈ R, (1.3)

which serves as a primary example in the modeling of the spatial competition between
two stable states u ≡ 0 and u ≡ 1, see (1.2). Moreover, it is often used to illustrate key
dynamic phenomena, e.g., the existence and stability of traveling waves. The spatial Euler
discretization of (1.3) yields the Nagumo lattice differential equation (LDE)

u′
i (t) = d (ui−1(t) − 2ui (t) + ui+1(t)) + λg(ui (t)), i ∈ Z, t ∈ R, (1.4)

which has much richer set of equilibria [10,17] and enables intricate behavior of trav-
eling waves, including new phenomena like pinning [4,12,13,18] and the existence of
non-monotone (multichromatic) traveling waves [9,11].

Considering infinite graphs, theGDE (1.1) can be seen as a generalization of theLDE (1.4),
which is its special case with G = Z. Moreover, the analysis of the structure of equilibria of
the GDE (1.1) on cyclic graphs G = Cn , n ∈ Z, allowed to describe the behavior of periodic
equilibria of the LDE (1.4) [10] as well as to construct the non-monotone traveling waves
connecting these periodic equilibria [11].

We restrict our attention to the GDE (1.1) on finite and connected graphs with n = |V |. It
is well-known that for λ � d there are only three constant stationary solutions u ≡ 0, u ≡ a,
and u ≡ 1 corresponding to the fixed points of (1.2),whereas forλ � d there are 3n stationary
solutions out of which 2n are stable. It has been shown that for each graph G and fixed d
and a there exists a value λ > 0 such that there are no spatially heterogeneous solutions
for λ < λ. However, there are only rough estimates for the threshold λ, [25]. In this paper
we show that the emergence of these first non-constant solutions occurs via three different
mechanisms in the neighborhood of a critical value λB . Its exact value and the bifurcation
type depend on the interplay between the nonlinearity (1.2) and two graph characteristics –
the value of algebraic connectivity λ2 of G and properties of the corresponding eigenvector φ,
the so-called Fiedler vector. Our computations consequently provide closer approximations
of the value λ.

In order to formally introduce these two graph attributes we define an n × n Laplacian
matrix L of graph G by L = D − A in which D = diag{deg(v1), . . . , deg(vn)} is the
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diagonal matrix of vertex degrees and A is the adjacency matrix of G. The matrix L is
positive semidefinite and in the case of connected graphs, the eigenvalues of L satisfy

0 = λ1 < λ2 ≤ λ3 ≤ . . . λn .

The eigenvalue λ2 is the above mentioned algebraic connectivity and provides estimates
both for edge and vertex connectivities of a graph [5]. There are numerous applications of
algebraic connectivity [20,21] and lot of attention has been devoted to its properties [1]. The
eigenvectors φ corresponding to λ2 are called the Fiedler vectors [6]. The Fiedler vector has
many interesting applications. For example, it splits the set of vertices V into two connected
nodal domains based on the signs of its entries [6], is connected to the fitness landscapes and
can be used for graph colorings [2]. Beside the listed papers, these notions are illustrated
in Sect. 4 which provides examples of Laplacian matrices and Fiedler vectors of specific
graphs.

Our results contribute to several studies involving the role of spectral properties of graphs
on dynamical systems. Most advanced can be found in the epidemiological models on net-
works, see, e.g., [3], where the interplay of eigenvalues of adjacency matrices and the degree
distributions is investigated. More specifically, the value of λ2 is known to be important in
the theory of randomwalks and linear diffusion processes on graphs [19], synchronization of
Kuramoto models [23], and Lotka-Volterra models on graphs [24]. Focusing on the graphs
with simple algebraic connectivity λ2 we show that the emergence of spatially heteroge-
neous solutions of the GDE (1.1) depends not only on the nonlinearity g and the algebraic
connectivity λ2 but also on the structural properties of the Fiedler vector φ.

Without loss of generality we shall consider the GDE (1.1) with normalized diffusion1,
d = 1,

u′
i (t) =

∑

j∈N (i)

(u j (t) − ui (t)) + λg(ui (t)), i ∈ V , t ∈ R. (1.5)

Finding stationary solutions of (1.5) is then equivalent to the problem of solving the nonlinear
algebraic equation

F(u, λ) := −Lu + λG(u) = 0, (1.6)

in which G(u) := (g(u1), g(u2), . . . , g(un))�.
Denoting a := (a, . . . , a)� and λB := λ2

a(1−a)
we study the solutions which bifurcate

from (a, λB) as a smooth curve γ : (u(s), λ(s)), s ∈ (−η, η), η > 0. At point (a, λB), the
first derivative of F with respect to u

Fu (a, λB) = −L + λ2 I (1.7)

is singular.We show that the bifurcation occurs in one of three possibleways – the transcritical
bifurcation,

γ1 :
{
u(s) = a + φs + O(s2),
λ(s) = λ2

a(1−a)
+ cs + O(s2), c 	= 0, s ∈ (−η, η), η > 0,

(1.8)

the supercritical pitchfork bifurcation,

γ2 :
{
u(s) = a + φs + O(s2),
λ(s) = λ2

a(1−a)
+ cs2 + O(s3), c > 0, s ∈ (−η, η), η > 0,

(1.9)

1 Alternatively we could fix λ = 1, which is more common, but we prefer to fix the diffusion parameter
because of the direct natural connection between the value of λ and the algebraic connectivity λ2.

123



2400 Journal of Dynamics and Differential Equations (2023) 35:2397–2412

or the subcritical pitchfork bifurcation,

γ3 :
{
u(s) = a + φs + O(s2),
λ(s) = λ2

a(1−a)
− cs2 + O(s3), c > 0, s ∈ (−η, η), η > 0.

(1.10)

Our main result states that all graphs with the simple algebraic connectivity λ2 can be
sorted into three groups. In each of these classes, different combinations of bifurcations (1.8)–
(1.10) occur based on the parameter a of the nonlinearity g. This classification depends on
the values of cubes of entries of the Fiedler vector

∑n
i=1 φ3

i , and a scalar product involving
the second Hadamard (element-wise) power of φ which we denote by

φ◦2 = (
φ2
1 , φ

2
2 , . . . , φ

2
n

)�

and the Moore-Penrose pseudoinverse (−L + λ2 I )+ of the singular matrix Fu (a, λB) =
−L + λ2 I .

Theorem 1.1 Let G = (V , E) be a graph with a simple algebraic connectivity λ2 and let φ be
its Fiedler vector. Then there exists a unique smooth curve γ : (u(s), λ(s)) of hetereogeneous

stationary solutions of (1.5) emanating from
(
a, λ2

a(1−a)

)
. Moreover,

1. if
∑n

i=1 φ3
i 	= 0 then γ has the form of

(a) γ1 provided a 	= 1
2 , or

(b) γ2 provided a = 1
2 ,

2. if
∑n

i=1 φ3
i = 0 and

(
(−L + λ2 I )+φ◦2, φ◦2) ≥ 0 then γ has the form of γ2 for all

a ∈ (0, 1),
3. if

∑n
i=1 φ3

i = 0 and
(
(−L + λ2 I )+φ◦2, φ◦2) < 0 then there exists δ ∈ (

0, 1
2

)
such that

γ has the form of

(a) γ2 provided
∣∣a − 1

2

∣∣ < δ, or
(b) γ3 provided

∣∣a − 1
2

∣∣ > δ.

The statement of Theorem 1.1 is visualised in Fig. 1. As its by-product we get that
λB = λ2

a(1−a)
is an upper bound for λ.

Corollary 1.2 Let G = (V , E) be a graph with a simple algebraic connectivity λ2. Then
λ ≤ λB = λ2

a(1−a)
. Moreover, if the assumptions of cases 1a or 3b in Theorem 1.1 are

satisfied then the strict inequality holds.

The paper is organized as follows. In Sect. 2 we use the Crandall-Rabinowitz theorem to
show the existence of a unique smooth branch emanating from (a, λB). In Sect. 3 we prove
the exact bifurcation type for each of the three cases in Theorem 1.1. Each is then illustrated
by an example in Sect. 4. Sect. 5 provides a generalization to arbitrary nonlinearity g and the
general role of Fiedler vectors is emphasized by an example. In Sect. 6, numerical simulations
are performed to indicate that case 1 of Theorem 1.1 is prevalent among all graphs and we
conclude with few conjectures.

2 Preliminaries and Unique Bifurcating Branch

We prove Theorem 1.1 in several steps. In this preliminary section, we introduce basic
notations and concepts and prove the existence and uniqueness of the bifurcating branch. As
indicated, the stationary solutions of (1.5) solve the algebraic problem
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Fig. 1 Illustration of Theorem 1.1. Bifurcation schemes of spatially heterogeneous solutions from the constant

solution a = (a, . . . , a)� at λB = λ2
a(1−a)

. The theorem classifies three cases, each of them groups together
graphs with given properties of the Fiedler vector φ

F(u, λ) = −Lu + λG(u) = 0, (2.1)

in which

G(u) = (g(u1), g(u2), . . . , g(un))
� ,

with the cubic nonlinearity g defined by (1.2). Firstly recall that the graph Laplacian matrix
L has the one-dimensional kernel, provided the graph G is connected, and (see [2])

Ker L = span
{
(1, 1, . . . , 1)�

}
.

Therefore,
(
(0, 0, . . . , 0)� , λ

)
,
(
(a, a, . . . , a)� , λ

) = (a, λ), and
(
(1, 1, . . . , 1)� , λ

)
with

arbitrary λ ∈ R are homogeneous stationary solutions of (1.6), since g(0) = g(a) = g(1) =
0.

We are interested in the heterogeneous solutions (u, λ) with u 	= a, which bifurcate from
the solution branch (a, λ), λ ∈ R. The necessary condition for (uB , λB) to be a bifurcation
point is that the derivative Fu(uB , λB) is singular, which follows from the implicit function
theorem. Since

Fu(a, λ) = −L + λa(1 − a)I ,

the eigenvalues μi of Fu(a, λ) are shifted eigenvalues of −L , specifically, μi = −λi +
λa(1 − a). The eigenvalue μ2 of Fu(a, λ) vanishes at

λB = λ2

a(1 − a)
,

and we consequently study the bifurcation from the point (a, λB). Our assumption on sim-
plicity of λ2 implies

dim Ker Fu (a, λB) = 1, Ker Fu (a, λB) = span {φ} , (2.2)

in which φ is the Fiedler vector (the eigenvector of L corresponding to λ2). Without loss of
generality, we assume from now on that

‖φ‖ = 1.

We prove the existence and uniqueness of the bifurcating branch from the following
version of the Crandall–Rabinowitz local bifurcation theorem (see, e.g., [14, Thm. I.5.1,
Cor. I.5.2]).

Theorem 2.1 (Crandall–Rabinowitz) Let F ∈ Ck (Rn × R,Rn) with k > 1, F(0, λ) = 0
for all λ ∈ R, and

dimKer Fu(0, λB) = 1, Ker Fu(0, λB) = span {φ} , ‖φ‖ = 1, (2.3)

Fuλ(0, λB)φ /∈ Im Fu(0, λB). (2.4)
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Then there is a nontrivial Ck−1-curve γ : (u(s), λ(s)), s ∈ (−η, η), η > 0, such that
(u(0), λ(0)) = (0, λB), F(u(s), λ(s)) = 0 for all s ∈ (−η, η), and

u′(0) = φ. (2.5)

Moreover, all solutions of F(u, λ) = 0 in a neighborhood of the point (0, λB) are on the
trivial solution curve, or on γ .

Applying this theorem to (2.1) we get the uniqueness of a smooth solution branch ema-
nating from (a, λB).

Lemma 2.2 Let the assumptions of Theorem 1.1 be satisfied. Then there exists a unique
C∞-curve γ : (u(s), λ(s)) of hetereogeneous stationary solutions of (1.5) emanating from(
a, λ2

a(1−a)

)
. Moreover, u′(0) = φ.

Proof The statement is an immediate consequence of Theorem 2.1. The function F(u, λ)

defined by (1.6) is of class C∞, F(a, λ) = 0 for all λ ∈ R, and (2.3) is verified by (2.2).
Further, there is

Fuλ(a, λB)φ = a(1 − a)φ ∈ Ker Fu(0, λB) = (Im Fu(0, λB))⊥ .

Hence, the assumption (2.4) is also satisfied and the existence and uniqueness of the nontrivial
C∞-curve γ from Theorem 1.1 with u′(0) = φ follows from the application of Theorem 2.1
for u − a. ��

3 Transcritical, Sub- and Supercritical Pitchfork Bifurcation

The second part of the proof of Theorem 1.1 consists of careful investigation of particular
situations in which the bifurcation is transcritical, sub- and supercritical. By Lemma 2.2
there exists C∞-curve γ : (u(s), λ(s)), s ∈ (−η, η), such that (u(0), λ(0)) = (a, λB),
λB = λ2

a(1−a)
,

F(u(s), λ(s)) = 0 for all s ∈ (−η, η), (3.1)

and u′(0) = φ by (2.5), which bifurcates from the homogeneous solution (a, λ), λ ∈ R, at
the point (a, λB).

The parametrization of the curve γ has the following Taylor expansion at s = 0:

γ :
{
u(s) = a + φs + O(s2),
λ(s) = λ2

a(1−a)
+ λ′(0)s + 1

2λ
′′(0)s2 + O(s3), s ∈ (−η, η).

(3.2)

Following [8,14], we derive precise formulas for λ′(0) and λ′′(0) in the parametrization of
the bifurcating curve (3.2). We distinguish among three possibilities, specifically, λ′(0) 	= 0
(transcritical); λ′(0) = 0 and λ′′(0) < 0 (subcritical); λ′(0) = 0 and λ′′(0) > 0 (supercriti-
cal).2 Let us firstly derive the formula for λ′(0). Differentiating (3.1) twice with respect to s
at s = 0 we obtain

Fuu(a, λB)[u′(0), u′(0)] + 2Fuλ(a, λB)u′(0)λ′(0) + Fλλ(a, λB)(λ′(0))2

+Fu(a, λB)u′′(0) + Fλ(a, λB)λ′′(0) = 0. (3.3)

2 We omit the case λ′(0) = 0 and λ′′(0) = 0, since the behavior of bifurcation depends on higher order

terms for which we do not obtain representing formulas. Consequently, the case
∣∣∣a − 1

2

∣∣∣ = δ is missing in the

statement of Theorem 1.1, case 3.
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By the definition of F (1.6) we obtain

Fλ(a, λB) = 0, Fuu(a, λB) = 2λ2(1 − 2a)

a(1 − a)
I3,

Fuλ(a, λB) = a(1 − a)I2, Fλλ(a, λB) = 0, (3.4)

the symbol Ik denotes the identity tensor, i.e., a (k − 1)-linear mapping defined for
v(1), v(2), . . . , v(k−1) ∈ R

n by
(
Ik

[
v(1), v(2), . . . , v(k−1)

])

i
= v

(1)
i v

(2)
i . . . v

(k−1)
i , i = 1, 2, . . . , n,

which can be reformulated via the so-called Hadamard (element-wise) product

v(1) ◦ v(2) =
(
v

(1)
1 v

(2)
1 , v

(1)
2 v

(2)
2 , . . . , v(1)

n v(2)
n

)�

of v(1), v(2) ∈ R
n as

Ik

[
v(1), v(2), . . . , v(k−1)

]
= v(1) ◦ v(2) ◦ . . . ◦ v(k−1).

Therefore, we can use u′(0) = φ (cf. (2.5)) and simplify (3.3) into

2λ2(1 − 2a)

a(1 − a)
φ◦2 + 2λ′(0)a(1 − a)φ + Fu(a, λB)u′′(0) = 0, (3.5)

with φ◦2 = φ◦φ = (
φ2
1 , φ

2
2 , . . . , φ

2
n

)�
being the secondHadamard power of the Fiedler vec-

tor φ. Since φ ∈ Ker Fu(a, λB) = (Im Fu(a, λB))⊥ and ‖φ‖ = 1, the scalar multiplication
of (3.5) by φ yields

λ2(1 − 2a)

a(1 − a)

n∑

i=1

φ3
i + λ′(0)a(1 − a) = 0.

Consequently, we get the formula

λ′(0) = λ2(2a − 1)

a2(1 − a)2

n∑

i=1

φ3
i . (3.6)

If this quantity is non-zero, the transcritical bifurcation occurs at (a, λB).

Lemma 3.1 (case 1a) Let the assumptions of Theorem 1.1 be satisfied with
∑n

i=1 φ3
i 	= 0

and a 	= 1
2 . Then γ has the form of γ1 given by (1.8).

Proof The statement follows from the Taylor expansion (3.2) and the formula (3.6). In (1.8)
we set

c := λ′(0) = λ2(2a − 1)

a2(1 − a)2

n∑

i=1

φ3
i 	= 0.

��
In all other cases in Theorem 1.1 we have

λ′(0) = 0, (3.7)
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thanks to either
∑n

i=1 φ3
i = 0 or a = 1

2 . The type of bifurcation (sub-/supercritical) is then
given by the sign of λ′′(0). Computing the third derivative of (3.1) at s = 0 we obtain

Fuuu(a, λB)[u′(0), u′(0), u′(0)] + 3Fuuλ(a, λB)[u′(0), u′(0)]λ′(0)
+3Fuλλ(a, λB)u′(0)(λ′(0))2 + Fλλλ(a, λB)(λ′(0))3 + 3Fuu(a, λB)[u′(0), u′′(0)]
+3Fuλ(a, λB)u′′(0)λ′(0) + 3Fuλ(a, λB)u′(0)λ′′(0) + 3Fλλ(a, λB)λ′(0)λ′′(0)
+Fu(a, λB)u′′′(0) + Fλ(a, λB)λ′′′(0) = 0. (3.8)

Using (2.5), (3.4), (3.7), and

Fuuu(a, λB) = − 6λ2
a(1 − a)

I4, Fuuλ(a, λB) = 2(1 − 2a),

Fuλλ(a, λB) = 0, Fλλλ(a, λB) = 0, (3.9)

we simplify (3.8) into

− 6λ2
a(1 − a)

φ◦3+6λ2(1 − 2a)

a(1 − a)
(φ◦u′′(0))+3a(1−a)λ′′(0)φ+Fu(a, λB)u′′′(0) = 0, (3.10)

in which φ◦3 is the third Hadamard power of φ. By the scalar multiplication of (3.10) with
φ we obtain

− 2λ2
a(1 − a)

‖φ‖44 + 2λ2(1 − 2a)

a(1 − a)
(φ◦2, u′′(0)) + a(1 − a)λ′′(0) = 0,

inwhichwe apply (φ◦u′′(0), φ) = (φ◦2, u′′(0)) andφ ∈ Ker Fu(a, λB) = (Im Fu(a, λB))⊥,
‖φ‖ = 1 once again. The formula for λ′′(0) now reads as

λ′′(0) = 2λ2
a2(1 − a)2

(‖φ‖44 + (2a − 1)(φ◦2, u′′(0))
)
. (3.11)

In the symmetric case a = 1
2 we can reduce this formula to get the supercritical bifurcation

at (a, λB).

Lemma 3.2 (case 1b) Let the assumptions of Theorem 1.1 be satisfied with
∑n

i=1 φ3
i 	= 0

and a = 1
2 . Then γ has the form of γ2 given by (1.9).

Proof The formula (3.6) implies that λ′(0) = 0 for a = 1
2 . We then obtain from (3.11) that

λ′′(0) = 32λ2‖φ‖44 > 0.

Therefore, the statement follows again from the Taylor expansion (3.2) which yields the
curve (1.9) with c := 1

2λ
′′(0) = 16λ2‖φ‖44 > 0. ��

In the remaining cases, λ′′(0) in (3.11) can be both positive and negative.

Lemma 3.3 (cases 2, 3) Let the assumptions of Theorem 1.1 be satisfied with
∑n

i=1 φ3
i = 0.

Then,

(i) if
(
(−L + λ2 I )+φ◦2, φ◦2) ≥ 0 then γ has the form of γ2 given by (1.9),

(ii) if
(
(−L + λ2 I )+φ◦2, φ◦2) < 0 then there exists δ ∈ (

0, 1
2

)
such that γ has the form of

(a) γ2 given by (1.9) if
∣∣a − 1

2

∣∣ < δ, or
(b) γ3 given by (1.10) if

∣∣a − 1
2

∣∣ > δ.
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Proof Since
∑n

i=1 φ3
i = 0, the formula (3.6) yields that λ′(0) = 0 again. We thus obtain

from (3.5)

Fu(a, λB)u′′(0) = 2λ2(2a − 1)

a(1 − a)
φ◦2. (3.12)

From the decomposition Rn = Ker Fu(a, λB) ⊕ Im Fu(a, λB) we can write

u′′(0) = αφ + ψ, α ∈ R, ψ ∈ Im Fu(a, λB),

and (3.12) then yields that

Fu(a, λB)u′′(0) = Fu(a, λB)ψ = 2λ2(2a − 1)

a(1 − a)
φ◦2.

Then applying the Moore–Penrose pseudoinverse matrix F+
u (a, λB) of Fu(a, λB) we get

ψ = F+
u (a, λB)Fu(a, λB)ψ = 2λ2(2a − 1)

a(1 − a)
F+
u (a, λB)φ◦2

and thus,

u′′(0) = αφ + 2λ2(2a − 1)

a(1 − a)
F+
u (a, λB)φ◦2. (3.13)

Furthermore, if we put (3.13) into (3.11) and use (φ◦2, φ) = ∑n
i=1 φ3

i = 0, we get

λ′′(0) = 2λ2
a2(1 − a)2

(
‖φ‖44 + 2λ2(2a − 1)2

a(1 − a)

(
F+
u (a, λB)φ◦2, φ◦2)

)
.

Let us denote further

σ := (
F+
u (a, λB)φ◦2, φ◦2) = (

(−L + λ2 I )
+φ◦2, φ◦2) .

Note that the value of σ depends only on the graph properties and does not depend on
a ∈ (0, 1). Therefore,

λ′′(0) = 2λ2
a2(1 − a)2

(
‖φ‖44 + 2λ2(2a − 1)2σ

a(1 − a)

)
. (3.14)

If σ > 0, there is immediately λ′′(0) > 0. Then the former statement of lemma follows
from the Taylor expansion (3.2) setting c := 1

2λ
′′(0) > 0 in (1.9).

Assume now that σ < 0 and define the function

r(a) = −2λ2(2a − 1)2σ

a(1 − a)
.

The function r(a) is continuous, strictly decreasing for a ∈ (
0, 1

2

)
, strictly increasing for

a ∈ ( 1
2 , 1

)
, r

( 1
2

) = 0, and r(a) → ∞ for a → 0+ or a → 1−. Consequently, there exist
two intersections of r(a) with the constant ‖φ‖44, which can be computed as

ai = 1

2
∓ ‖φ‖24

2
√(‖φ‖44 − 8λ2σ

) ∈ (0, 1), i = 1, 2.

Moreover, r(a) > ‖φ‖44 for a ∈ (0, a1) ∪ (a2, 1), or r(a) < ‖φ‖44 for a ∈ (a1, a2). If we
denote

δ := ‖φ‖24
2
√(‖φ‖44 − 8λ2σ

) <
1

2
, (3.15)
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Fig. 2 Three graphs illustrating different bifurcation behavior of the GDE (1.5) in Sect. 4

we obtain from (3.14) that λ′′(0) > 0 for
∣∣a − 1

2

∣∣ < δ, or λ′′(0) < 0 for
∣∣a − 1

2

∣∣ > δ. Thus,
the latter statement of lemma follows again from (3.2) putting c := 1

2λ
′′(0) > 0 in (1.9) for∣∣a − 1

2

∣∣ < δ, or c := − 1
2λ

′′(0) > 0 in (1.10) for
∣∣a − 1

2

∣∣ > δ. ��
This lemma is the last ingredient to the proof of our main result.

Proof of Theorem 1.1 The existence and uniqueness of the smooth bifurcating branch is
provedbyLemma2.2. Furthermore,Lemmas3.1 –3.3 verify the particular cases 1–3depend-
ingongraphproperties, i.e., the sum

∑n
i=1 φ3

i and the scalar product
(
(−L + λ2 I )+φ◦2, φ◦2),

and on the critical value a ∈ (0, 1) from the bistable nonlinearity. This finishes the proof of
Theorem 1.1. ��
Remark 3.4 Note that the proofs of Lemmas 3.1 – 3.3 provide exact values of c in bifurcation
curves (1.8)–(1.10) and the value of δ (see (3.15)) which determines the behavior in case 3.
We omitted these detailed expressions in the statement of Theorem 1.1 for the sake of clarity.

4 Examples and Numerical Simulations

In this section we illustrate Theorem 1.1 by three examples of the Nagumo GDE (1.5) on
graphs with six vertices (see Fig. 2). Each corresponds to one of the three different bifurcation
behavior described by Theorem 1.1.

In order to visualize the spatially heterogeneous solutions in higher dimensions (R6 in
these three cases), we compute numerically and depict the coordinates

Pφ(u) = (u, φ) (4.1)

of a solutionu in the subspace generated by the normalizedFiedler vectorφ, which determines
the direction of bifurcation curves, see (1.8)–(1.10).

Example 4.1 (case 1) Let us consider the graph G1 in Fig. 2a. The Laplacian matrix

L =
⎛

⎜⎝

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

⎞

⎟⎠

has the second eigenvalue λ2
.= 0.325 with multiplicity one and the Fiedler vector φ

.=
(−0.419,−0.419,−0.283, 0.081, 0.419, 0.621)� satisfying

6∑

i=1

φ3
i

.= 0.144.

Consequently, Theorem 1.1, case 1, implies that there is the transcritical bifurcation at(
a, λ2

a(1−a)

)
if a 	= 1

2 and the supercritical pitchfork bifurcation for a = 1
2 . See Fig. 3a

and b for a numerical illustration.
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(a)

(b)

(c)

(e)

(d)

Fig. 3 Bifurcation diagrams of the GDE (1.5) on graphs G1 –G3 at (a, λB ), see Examples 4.1 – 4.3. The value
a is fixed and Pφ(u) given by (4.1) is the coordinate of solution u in the projection to the subspace generated
by the Fiedler vector φ. The solutions lying on the solid lines have n − 1 negative eigenvalues, those on the
dashed lines have n − 2 negative eigenvalues

Example 4.2 (case 2) Let the graph G2 be given by Fig. 2b. The Laplacian matrix

L =
⎛

⎜⎝

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 1 0
0 0 0 −1 0 1

⎞

⎟⎠

also has a simple algebraic connectivity λ2
.= 0.438. However, the Fiedler vector φ

.=
(−0.465,−0.465,−0.261, 0.261, 0.465, 0.465)� satisfies

6∑

i=1

φ3
i = 0.

Since
(
(−L + λ2 I )+φ◦2, φ◦2) .= 0.369 > 0, Theorem 1.1, case 2, yields that there is the

supercritical pitchfork bifurcation at
(
a, λ2

a(1−a)

)
for all a ∈ (0, 1). See Fig. 3c for a numerical

bifurcation diagram.

Example 4.3 (case 3) Let us consider the graph G3 in Fig. 2c represented by the Laplacian
matrix

L =
⎛

⎜⎝

1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 0 −1 0
0 −1 0 2 −1 0
0 0 −1 −1 3 −1
0 0 0 0 −1 1

⎞

⎟⎠.

Thealgebraic connectivityλ2
.= 0.586 is simple and theFiedler vectorφ

.= (−0.653,−0.271,
0, 0, 0.271, 0.653)� also satisfies

6∑

i=1

φ3
i = 0.
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In contrast toG2 in Example 4.2we have
(
(−L + λ2 I )+φ◦2, φ◦2) .= −0.018 < 0. Therefore,

we can use (3.15) to compute δ
.= 0.451. Consequently, Theorem 1.1, case 3, yields that

there is the supercritical pitchfork bifurcation at
(
a, λ2

a(1−a)

)
for all a ∈ ( 1

2 − δ, 1
2 + δ

) .=
(0.049, 0.951) and the subcritical pitchfork bifurcation for all a ∈ (

0, 1
2 − δ) ∪ ( 12 + δ, 1

) .=
(0, 0.049)∪ (0.951, 1). See Fig. 3d and e for two numerical bifurcation diagrams illustrating
both situations.

5 Generalization

The ideas and techniques of the proof of Theorem 1.1 in Sect. 3 can be straightforwardly
applied to the problem (1.5) with arbitrary nonlinearity g(u). The following result gives a
more detailed insight about the way the derivatives of g at its stationary points, the algebraic
connectivity of a graph, and the structure of its Fiedler vector determine the bifurcations
of spatially heterogeneous solutions for small λ. On the other hand, we lose the interesting
dependence on a parameter a, see Theorem 1.1, case 3, in the general setting.

Theorem 5.1 Let G = (V , E) be a graph with a simple algebraic connectivity λ2 and φ be
its Fiedler vector. Let g satisfy for some a ∈ R:

(g1) g is sufficiently smooth (at least of class C3),
(g2) g(a) = 0,
(g3) g′(a) 	= 0.

Then there exists a unique smooth curve

γ :
{
u(s) = a + φs + O(s2),
λ(s) = λ2

g′(a)
+ c1s + c2s2 + O(s3), c1, c2 ∈ R, s ∈ (−η, η), η > 0,

(5.1)

of hetereogeneous stationary solutions of (1.5) emanating from
(
a, λ2

g′(a)

)
. Moreover,

1. if
∑n

i=1 φ3
i 	= 0, then

(a) if g′′(a) 	= 0, then c1 	= 0, or
(b) if g′′(a) = 0, then c1 = 0 and

(i) c2 > 0 provided g′′′(a) < 0, or
(ii) c2 < 0 provided g′′′(a) > 0,

2. if
∑n

i=1 φ3
i = 0, then c1 = 0 and

(a) c2 > 0 provided
3λ2(g′′(a))

2

g′(a)

(
(−L + λ2 I )+φ◦2, φ◦2) > g′′′(a)‖φ‖44, or

(b) c2 < 0 provided
3λ2(g′′(a))

2

g′(a)

(
(−L + λ2 I )+φ◦2, φ◦2) < g′′′(a)‖φ‖44.

To illustrate the application of Theorem 5.1, we present the following example in which
we show that the properties of the Fiedler vector φ can determine the type of bifurcation at(
a, λ2

g′(a)

)
also for symmetric bistable nonlinearities.

Example 5.2 Our main result, Theorem 1.1, implies that the bifurcation for the symmetric
bistable nonlinearity gcub(u) = u(1 − u)

(
u − 1

2

)
at (a, 4λ2) is always supercritical (given
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by γ2 in (1.9), see Fig. 2) once we consider graphs with a simple algebraic connectivity. Note
that

gcub
( 1
2

) = 0, g′
cub

( 1
2

) = 1

4
> 0, g′′

cub

( 1
2

) = 0, g′′′
cub

( 1
2

) = −6 < 0. (5.2)

We use Theorem 5.1 to prove that this is not the case if we consider a more complicated
quintic (but still symmetric) bistable nonlinearity

gqui(u) = u(1 − u)
(
u − 1

2

) (
4 + 200

(
u − 1

2

)2)
, u ∈ R, (5.3)

in GDE (1.5). We can readily compute

gqui
( 1
2

) = 0, g′
qui

( 1
2

) = 1 > 0, g′′
qui

( 1
2

) = 0, g′′′
qui

( 1
2

) = 276 > 0.

In contrast to g′′′
cub

( 1
2

)
< 0 in the cubic case (5.2), the inequality g′′′

qui

( 1
2

)
> 0 in combi-

nation with Theorem 5.1 ensures different types of bifurcations at (a, λ2) based on the value
of

∑n
i=1 φ3

i in the quintic case (5.3).
First, let us consider G2 from Fig. 2b. The Fiedler vector satisfies

∑n
i=1 φ3

i = 0 (see
Example 4.2). Consequently, the bifurcation at (a, λ2) is supercritical aswell byTheorem5.1,
case 2a.

However, the situation changes if we consider the graph G1 from Fig. 2a. The Fiedler
vector φ satisfies

∑n
i=1 φ3

i 	= 0 (see Example 4.1). We can apply Theorem 5.1, case 1b(ii),
to show that the bifurcation at (a, λ2) is subcritical (c1 = 0 and c2 < 0 in (5.1)).

Remark 5.3 Considering the common cubic bistable nonlinearity g(u) given by (1.2), Theo-
rem 5.1 provides also information about bifurcations from constant solutions (0, 0, . . . , 0)�
and (1, 1, . . . , 1)�. However, the negative derivatives g′(0) = −a < 0 and g′(1) = a−1 < 0
imply that the bifurcations occur at λB = − λ2

a < 0 and λB = λ2
a−1 < 0. Consequently, they

are irrelevant since we assume λ > 0. The same holds for general bistable nonlinearities,
e.g., the quintic gqui(u) given by (5.3) from Example 5.2.

6 Graph Theoretical Aspects and Conjectures

Our main result Theorem 1.1 and the examples from Sect. 4 lead us to two natural questions.
How common are the graphs with a simple algebraic connectivity λ2? How common are the
three cases of Theorem 1.1 among those? We do not have definite answers but the following
insights and numerical experiments not only connect our results to very interesting questions
in algebraic graph theory but also indicate that graphswith simple λ2 are prevalent and among
those, graphs with

∑n
i=1 φ3

i 	= 0 (i.e., case 1 in Theorem 1.1) dominate.
Our main result Theorem 1.1 is based on the application of Crandall-Rabinowitz theorem

and rely thus on the simplicity of λ2. Despite the broad applicability of both the algebraic
connectivity λ2 and Fiedler vectors φ, there exist only scarce results regarding simplicity of
λ2. It can be shown that special classes of graphs have a simple algebraic connectivity λ2
(paths Pn , complete graphs without an edge Kn \ e, graphs C1 −v −C2 with a cutting vertex
v and Perron components C1,C2, all minimal asymmetric graphs, etc.) and there are other
classes which have λ2 with higher multiplicity (complete graphs Kn , cyclic graphs Cn , star
graphs Sn , bipartite graphs Bm,n , etc.).

However, there is no proven connection between the simplicity of λ2 and other graph char-
acteristics. To illustrate, let us discuss one of the most natural candidate - graph asymmetry.
A graph G is symmetric if there exists a nontrivial (i.e., nonidentical) graph automorphism
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Fig. 4 Numerical simulations illustrating the descending ratio rmult(n) of graphs with n vertices whose
algebraic connectivity λ2 is not simple (left panel) and the distribution of cases from Theorem 1.1 among
graphs with simple λ2 (right panel)

a : V → V such that if (u, v) ∈ E then (a(u), a(v)) ∈ E . Graphs with only trivial automor-
phisms are called asymmetric. All above examples of graphs with λ2 with higher multiplicity
are symmetric graphs. However, symmetric graphs can have simple λ2 as well, pathgraphs
or a graph Kn − v − Kn are two elementary examples.

On the other hand, not all asymmetric graphs have simple λ2. In this case we must search
deeper among larger and more complicated graphs. The so-called strongly regular graphs
can be constructed from Latin squares [7, Chapter 10]. All small Latin squares (and conse-
quently small strongly regular graphs) have several automorphisms. However, starting from
dimension 7, there exist Latin squares without nontrivial automorphisms. Such Latin squares
of dimension 7 can be used to construct a graph on 49 vertices, which is strongly regular – it
is 18-regular, every two adjacent vertices have 7 common neighbors, every two non-adjacent
vertices have 6 common neighbors. More importantly, this graph is due to lack of automor-
phism of the Latin square also asymmetric and the corresponding algebraic connectivity λ2
has multiplicity 18.

To conclude, despite the fact that graphs with λ2 of higher multiplicity are common, it
seems likely that their ratio tends to zero as the graph size n = |V | tends to infinity. The left
panel in Fig. 4 shows the ratio of graphs with simple algebraic connectivity among all graphs
with given |V |. Theoretically, [26] proved that almost all random graphs have adjacency
matrices with simple spectrum. Given the relationship between adjacency and Laplacian
matrices, this result suggests that a similar statement could hold for Laplacian matrices as
well.

Our numerical simulations (see the right panel in Fig. 4) indicate that the majority of
graphs has not only a simple algebraic connectivity but also satisfies

∑n
i=1 φ3

i 	= 0, i.e., case
1 in Theorem 1.1.

Going back to the Nagumo GDE (1.5) with the specific cubic nonlinearity (1.2), there are
still delicate questions to be investigated. In the case of parameters leading to the supercritical
bifurcation, the numerical results (e.g., Example 4.2) indicate that there are no spatially
heterogeneous solutions for λ < λB = λ2

a(1−a)
which would imply that λ = λB . Note

that our proof provides only a local information of one of the solution curves and thus the
following statement is a mere conjecture.

Conjecture 1 et G = (V , E) be a graph with a simple algebraic connectivity λ2 and let the
assumptions of Theorem 1.1 cases 1b, 2 or 3a hold. Then λ = λB = λ2

a(1−a)
.

123



Journal of Dynamics and Differential Equations (2023) 35:2397–2412 2411

In other cases, the numerical experiments (e.g., Examples 4.1 and 4.3 ) suggest the existence
of saddle-node bifurcations at a value λ < λB , see Fig. 3. Our paper does not provide any
technique on the localization of λ in this case. Similarly, the bifurcation behavior for graphs
with λ2 of higher multiplicity remains to be described. Crandall-Rabinowitz theorem cannot
be applied in this case.

Finally, the reverse question could be of interest as well. If λ � d , the problem (1.1)
has 3n solutions. Define λ as an infimum of all values of λ for which there are 3n stationary
solutions. What is the value of λ? There are only rough estimates on λ, [25].
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