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1. Introduction
In structural health analysis, various techniques, including indirect measurement via monitor-
ing vehicles, often yield data with significant randomness and insufficient frequency separation.
Conversely, the desired attributes under scrutiny are periodic in nature. Thus, methodologies
designed to identify cyclo-stationary properties within noisy data can be adapted for such sce-
narios, assuming an adequate length of the recorded data.

The concept of determining a bridge’s natural frequency by utilizing a passing vehicle has
been a pursuit since the publication of a mathematical solution for a suspended mass on a beam,
[6]. For a comprehensive overview of progress in this area, consider referring to a recent review
of the Vehicle Scanning Method (VSM), previously known as ’drive-by identification’ [4].

However, it is essential to recognize that the idealized scenario presented in the closed-
form solution, upon which VSM is built, is often impractical in real-world bridge situations.
Several challenges arise, including the fact that the suspended mass cannot directly roll on the
road or rail—it typically needs to be either pulled by another vehicle or equipped with its own
drive. Furthermore, most bridges cannot be accurately represented as simple supported beams.
Additionally, damping effects cannot always be disregarded, and both the vehicle and the bridge
exhibit non-zero vibrations as the scanning vehicle enters the bridge.

These limitations prompted the development of finite element (FE) pre-processing-based
solutions. These solutions involve the use of specialized elements to simulate the interaction
between the vehicle and the bridge. They employ the Vehicle-Bridge Interaction (VBI) element
[7], the MINE element [5] or FE software programs implementing kinematic formulations, such
as LS-Dyna. These FE-based approaches aimed at creating models that reliably replicate the
simplified experimental setups in order to compare numerical results and measured data [1].

The experimental bridge model corresponds to the outline in Fig. 1. It is made of a steel U-
profile 0.21× 0.05× 0.004 m with L = 3.98 m and a total mass of 33.3 kg. These values imply
two first natural frequencies 6.99 and 27.63 Hz. Other structural parameters include viscous
proportional damping (α = 0.2, β = 2.5× 10−5) and damping ratio of cs = 0.01 for the spring
dash pot, the spring mass ms = 245 g and the vehicle mass mv = 631 g.

In the experimental case, the measured data display a pronounced random component,
which effectively obscures the frequency characteristics of the idealized experimental model.
The frequency content of the signal measured on the passing vehicle is highly influenced by
the vehicle’s velocity and boundary conditions, and to some extent, also by the vehicle’s posi-
tion on the beam. Nevertheless, for sufficiently long beams, it is reasonable to assume that the
boundary and positional effects can be considered negligible.
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Fig. 1. Schema of the test beam and a moving sprung mass

Despite making such an assumption, the response is non-stationary and displays periodically
repeating characteristics, as illustrated by the example plot of the measured response in Fig. 2.
In general, this process lacks both stationarity and ergodicity. Consequently, the application of
procedures commonly employed for evaluating stochastic parameters over time, as is typical in
the context of stationary ergodic processes, is effectively precluded.

2. Cyclo-stationary and cyclo-ergodic processes
The periodic nature of the stochastic moments suggests the application of Cyclo-Stationary
Process (CSP) theory. This approach describes situations in which consecutive quasi-periods
resemble those observed in synchronously running two or more parallel realizations of the pro-
cess. CSPs belong to a subclass of general non-stationary processes with periodically repeating
characteristics. At the same time, it can be shown that the properties mentioned above allow
non-ergodic CSPs to be understood as a ’Cyclo-Ergodic Process’ (CEP), as illustrated in Fig. 3.
Following the original definition of stochastic moments, they should be evaluated across indi-
vidual realizations of the process. For example, by summing relevant values of u(i)(t), where
the superscript (i) represents the realization number (e.g., black, red, blue in Fig. 3, correspond-
ing to quasi-periods along the i axis). However, in the context of CEP, the red or blue periods
along the t axis hold an equivalent stochastic value to those along the (i) axis.

The foundational works providing a theoretical background for CSP are primarily attributed
to Gardner, see, e.g., [2] or recent monograph [3]. CSPs that exhibit cyclo-stationarity in
second-order statistics, such as the autocorrelation function, are referred to as wide-sense CSP
and are analogous to wide-sense stationary processes.

One of the key parameters characterizing a measured CSP is the length of one quasi-period
(QPL). Typically, this value is not known in advance, but any a priori knowledge gained from
analytical or numerical analysis can significantly enhance the identification process. When we
consider the measured data as a quasi-periodic random process, the QPL becomes a stochastic

Fig. 2. Measured (red) and calculated (blue) response of the sprung mass
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Fig. 3. Cyclo-Stationary and Cyclo-Ergodic Process; superscript in u(i)(t) means number of the process
realization; n is number of the subsequent period of the length T0

variable, as depicted in Fig. 4. The spread or variance of the QPL depends on various factors
and tends to be sensitive on the presence of non-linear effects in the model. Consequently,
these processes are referred to as Almost Cyclo-Stationary Processes (ACSP). It is evident that
the variability of the QPL (within the context of a single parameter setting) should be taken
into consideration. Nonetheless, it is worth noting that the variance of this statistic is typically
small, allowing for a reasonable approximation of QPL variability with a suitable value.

Fig. 4. TCSP – sampling with respect to QPL
variability

Let each of the N quasi-periods is rescaled to
the same number of steps δn = T0n/Ns. Here,
δn represents the time increment within the n-th
quasi-period, where T0n is the length of the quasi-
period, and Ns is a constant representing the num-
ber of steps within each quasi-period, cf. Fig. 4.
This assumption allows δn and T0n to be univer-
sally denoted as δ and T0.

The M -order cyclo-stationarity signifies peri-
odically time-varying stochastic moments up to
order M . In accordance with the aforementioned
sampling style, primary stochastic characteristics
can be defined under the CEP assumption, based
on two-point statistics, as follows:
• Mathematical mean value:

mu(t1) = lim
N→∞

1

2N + 1

N∑

n=−N
u(t1 + nT0) = mu(t1 + T0) . (1)

• Auto-correlation function:

Ru(t1, t2) = lim
N→∞

1

2N + 1

N∑

n=−N
u(t1+nT0+

1

2
t2)·u(t1+nT0−

1

2
t2) = Ru(t1+T0, t2) . (2)

• Cross-moment of two processes u(t), v(t) of the (M = r + s)-th order:

Crs
uv(t1, t2) = lim

N→∞

1

2N + 1

N∑

n=−N
ur(t1+nT0+

1

2
t2)·vs(t1+nT0−

1

2
t2) = Crs

uv(t1+T0, t2) , (3)

where r + s = M, t1, t2 ∈ (0, T0).
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In (1)–(3), both coordinates t1, t2 are considered within one quasi-period (0, T0). Processes
u(t), v(t) in (2), (3) are assumed to be centred.

The shape of the Probability Density Function (PDF) p(u, t) of the u(t) process depends on
time t ∈ (0, T0). It can be deduced from a relative density of occurrence of a mean value us(t)
within a sample small interval ∆u(t) = umax − umin for every point t ∈ (0, T0)

p(u, t) = lim
∆u→0

lim
N→∞

nu(t)

2N + 1
, and p(u, t1, t2) = lim

∆u→0
lim

N→∞

nu(t1, t2)

2N + 1
, (4)

where nu(t) is the number of occurrences of a particular value u(t) within the interval ∆u(t)
at the instant t during all 2N quasi-periods. Similarly, nu(t1, t2) is the number of occurrences
of a particular value of u(t) at moment t1 and another value of the process u(t) at moment
t2, considering all 2N quasi-periods. It should be noted that the order of limits in (4) is not
interchangeable.

The stochastic moments of the cyclo-stationary process can be evaluated either using the
formulas in (1)–(3), or by employing their definitions with the PDF as described in (4)

mu(t1)=

∞∫

−∞

u(t1)p(u, t1) du, or Ru(t1, t2)=

∞∫∫

−∞

u(t1)u(t2)p(u, t1, t2) du(t1)du(t2) . (5)

3. Conclusions
The theory of cyclo-stationary and cyclo-ergodic processes, along with their corresponding
procedures, enables users to enhance frequency identification from data acquired through the
vehicle scanning method. The assumption of cyclo-stationarity implies a restricted variability
of system parameters within the recorded data, which could pose challenges in certain setups.
It seems that, e.g., the wavelet-based approach may offer advantages in such situations. This
topic warrants further investigation.
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