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Abstract. The attention of drivers is a serious issue and one of the critical factors of road safety.
The question is whether the electrical activity of the human brain can be correctly measured/collected
and utilized to monitor and interpret the driver’s attention during simulated driving. This article
summarizes four experiments that have been designed, performed, and evaluated in the neuroinformatics
laboratory at the University of West Bohemia. Simulated driving under various conditions in a car
simulator was organized, and electrophysiology, mainly electroencephalography, data were collected
from participants/drivers. The results include experience with the design of such experiments and the
suitability of methods based on the collection and interpretation of electroencephalography data for
driver attention detection.
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1. Introduction
The attention of drivers is a serious issue and one of the
critical factors of road safety. Inattentive drivers are
dangerous not only to themselves but mainly to their
surroundings and cause many accidents. However, the
decline of attention, especially during long rides, is
natural, and it is necessary to take this phenomenon
into account. This paper summarizes some of the
experiments that have been designed, performed, and
evaluated in the neuroinformatics laboratory at the
University of West Bohemia. Simulated driving under
various conditions in a car simulator was organized,
and electrophysiology (mainly electroencephalogra-
phy, event-related potential) data were collected from
participants/drivers.

Electroencephalography (EEG) is a method and
technique that records and evaluates the electrical
activity of the (human) brain. A set of electrodes is
placed at various (often predefined) locations on the
scalp. These electrodes capture voltages (resulting
from the firing of large neural circuits) that must
be amplified and recorded. Event-related potentials
(ERPs) are changes in the electrical brain activity that
are time-locked to particular events (stimuli). ERPs
are extracted from the underlying EEG data.

The main research objective of the presented set of
four experiments was to find and verify if the electrical
activity of the human brain (EEG/ERP data) could be
correctly measured/collected and utilized to monitor
and interpret the driver’s attention during simulated
driving.

The paper is organized as follows. The materials
and methods section deals with the fundamentals of
EEG/ERP methods and their benefits and drawbacks
in investigating driver’s attention. It further intro-

duces the neuroinformatics lab at the University of
West Bohemia and summarizes four performed ex-
periments. The results section provides the results
and conclusions from individual experiments. The
conclusion section summarizes experience from these
experiments and gives several cautious prospects for
the future.

2. Materials and methods
This section provides a fundamental insight into the
advantages and disadvantages of collecting, monitor-
ing and analyzing the electrical activity of the human
brain using the methods and techniques of electroen-
cephalography and event-related potentials when inter-
preting the driver’s attention during simulated driving.
Then the neuroinformatics lab at the University of
West Bohemia is introduced, and the description of
four experiments dealing with driver’s attention and
using the EEG/ERP methods is provided.

2.1. Electroencephalography and
event-related potentials

Electroencephalography has many advantages: afford-
ability, non-invasiveness, routine examination proto-
cols, and the opportunity to measure spontaneous ac-
tivity. However, it also has a significant disadvantage,
evident in scientific experiments. The resulting pic-
ture of brain activity (the EEG signal) is rough since
it represents many sources of neuronal activity. Thus
it is challenging to derive individual neurocognitive
processes from the measured brain activity. Another
disadvantage is the relatively difficult collection of a
quality EEG signal outside the laboratory since only
observable and clean data can be reasonably analyzed
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to interpret the driver’s attention during simulated
driving.

ERPs have two advantages compared to behavioral
methods. They help determine which stage or stages
of processing are influenced by a given experimental
manipulation; a detailed set of examples can be seen,
e.g. in [1]. The second advantage of ERPs is that they
can provide an online measure of stimuli processing,
even when there is no behavioral response [2].

ERP components are obtained from the EEG sig-
nal by averaging the epochs around the events. The
P300 (also labelled as P3) component depends en-
tirely on the task performed by the subject and is not
directly influenced by the physical properties of the
stimulus [1].

The P300 component is sensitive to the probability
of the target stimulus. P300 amplitude increases when
the probability of the target stimulus class decreases.
The amplitude of the P300 component becomes larger
when a greater number of non-target stimuli precedes
it. P300 amplitude is also larger when the subject
pays more attention to a task. On the other hand,
P300 amplitude is smaller if the subject does not know
whether a given stimulus is/is not a target. It means
that more complex tasks can increase P300 amplitude
because the subject pays more attention to these tasks
and simultaneously decrease P300 amplitude because
the subject is not certain of the stimulus category [1].

P300 latency is associated with stimulus catego-
rization; it increases when stimulus categorization is
postponed. Since P300 latency does not depend on
consequent processes (e.g. response selection, in our
case, the driver’s reaction), it can be used to determine
if a performed experiment influences the processes of
stimulus categorization or other processes related to
a response (driver’s reaction).

The experimental design of EEG/ERP experiments
is a challenging and often critical step that influences
other technical issues related to EEG/ERP research.
An apparent and detailed description of ERP exper-
imental design as a set of rules and strategies (e.g.
focusing on specific, large, and easily isolated compo-
nents or comparing only ERPs elicited by the same
physical stimuli) is also provided in [1]. Although
these rules and strategies constrain the experimental
design, they are not a standard part of the software
tools used to design ERP experiments, and they are of-
ten violated in many published studies. Consequently,
it was not easy to get inspired by the published stud-
ies when we designed the first experiments related to
drivers’ attention.

2.2. Related studies
While most studies examining the attention of drivers
use behavioral methods (i.e. the behavior of the driver
under certain conditions is investigated – e.g., how of-
ten he/she leaves his/her lane), not many experiments
also use EEG and ERP methods and techniques.

The suitability of EEG-based techniques for record-
ing drivers’ activity during simulated driving was in-
vestigated in [3] where oscillations of brain electrical
activity (frequency bands) were analyzed. As a result,
an increase in alpha activity was interpreted as less
attentional activity and a decrease in alpha activity
as more attentional activity. Significant differences
between drivers were observed.

The ERP method (P300 amplitude) is utilized in [4]
where the impact of the secondary task performance
(an oddball auditory task) on a primary driving task
(lane keeping) was investigated. The study showed
that when performing a simple secondary task during
driving, the performance of the driving task and this
secondary task were unaffected. However, analysis of
brain activity showed reduced cortical processing of
irrelevant and potentially distracting stimuli from the
secondary task during driving.

The use of EEG data for the evaluation of driver
fatigue was provided in [5]. Energy parameters were
computed, and finally, the evaluation model for driver
fatigue was created based on the EEG data from
the electrodes Fp1 and O1. Muscle artifacts were
minimized by the experimental protocol design, and
all trials showing artifacts linked to eye movements
or blinks were removed before averaging ERPs. The
model accuracy was about 92.3 %.

The impact of a surrogate forward collision warning
system and its reliability according to the driver’s at-
tentional state was introduced in [6]. Both behavioral
and electrophysiological (amplitudes and latencies of
several ERP components) data were recorded and
evaluated. These results showed electrophysiological
data as a valuable tool to complement behavioral data
allowing a better understanding of how these systems
impact the driver.

Using the ERP technique, it was found in [7] that
the brain activity associated with processing the in-
formation necessary for the safe operation of a motor
vehicle was suppressed when drivers were talking on
a cell phone. The P300 amplitude was reduced, and
the P300 latency was delayed when participants were
engaged in phone conversations and reacted to inter-
mittent lead vehicle deceleration.

The effect of regular and prior sleep restricted to
five hours during simulated driving was studied in [8].
The study was carried out on 20 younger and 19 older
healthy men. After a short sleep, younger drivers
showed significantly more sleep-related deviations and
greater 4 to 11 Hz EEG power, indicative of sleepi-
ness [8].

A systematic framework for measuring and under-
standing cognitive distraction in three experiment
settings (laboratory control, driving simulator, and
instrumented vehicle) was presented in [9]. Partici-
pants completed eight tasks commonly performed by
the driver; primary, secondary, subjective, and physio-
logical measures (the P300 component) were collected
and integrated into a cognitive distraction scale. They
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concluded that impairments in driving were directly
related to the cognitive workload of these activities.

Simultaneous recording of EEG and eye-tracking
to investigate situation awareness and working mem-
ory load in distracted driving was introduced in [10].
The driver-vehicle-environment state-space related to
drivers’ conditions and environmental factors around
the vehicle were described using (also) an ontology.

The amplitude of the P300 component reflecting
individual differences in navigation performance in
a driving task was investigated in [11]. Two groups
of navigators with good and poor navigation perfor-
mance participated in a driving task; the P300 ampli-
tude was measured while two types of triggers were
presented (intersections and street signs). In general,
poor navigators showed a larger P300 amplitude than
good navigators.

To identify EEG oscillatory parameters for cognitive
mechanisms involved in high and low controllability
tasks, time spent on a task, task load, and cognitive
controllability (using either re-active or pro-active
driving task) in simulated driving scenarios were in-
vestigated in [12]. The results on thirty healthy par-
ticipants demonstrated that the controllability of a
driving situation had a similar effect on oscillatory
EEG activity like time on task and task load.

The drivers’ fatigue was measured in [13] where
EEG and forehead EOG were fused. The percent-
age of eye closure was calculated using eye movement
data (recorded by eye tracking glasses as the indicator
of drivers’ fatigue level). The prediction correlation
coefficient and root mean square error between the
estimated and real fatigue levels were used to evaluate
the performance of a single modality and fusion modal-
ity. The experimental results on twenty-one healthy
subjects showed that this fusion could improve the
performance of driving fatigue detection.

A real-time driving fatigue detection system based
on a wireless dry EEG acquisition system was pre-
sented in [14]. The prediction of fatigue in ten healthy
subjects was consistent with the observation of reac-
tion time recorded during simulated driving.

The study in [15] concluded that the EEG signal
from the prefrontal brain region (forehead area) could
be used to detect fatigue of drivers, although the signal
classification accuracy (the SVM algorithm used for
classification) was not high.

A survey on EEG-based driver state detection sys-
tems and their corresponding analysis algorithms over
the last three decades was provided in [16]. The au-
thors concluded that the current EEG-based driver
state monitoring algorithms were promising for safety
applications, but many improvements were still re-
quired in EEG artefact reduction, real-time processing,
and between-subject classification accuracy.

A two-level learning hierarchy radial basis function
model was used to detect EEG-based driving fatigue
in [17]. The authors concluded that the proposed
model achieved a better classification performance

compared to other used artificial neural networks.
Multi-channel EEG recordings during a sustained-

attention driving task were presented in [18]. They
included 62 sessions of 32-channel EEG data for 27
subjects driving on a four-lane highway.

A recurrent residual network used to analyze EEG
data captured during simulated sustained attention
driving tasks was presented in [19]. The authors
demonstrated the competitive results achieved by com-
paring this network with other benchmark models.

An attention-based multiscale convolutional neu-
ral network with a dynamical graph convolutional
network proposed to detect driving fatigue was in-
troduced in [20]. The authors concluded that their
model outperformed six widely used competitive EEG
models with a high accuracy of 95.65 %.

An EEG-Based Spatio–Temporal Convolutional
Neural Network for Driver Fatigue Evaluation was
introduced in [21]. Fatigue driving experiments were
conducted to collect EEG signals from eight subjects
alert and in fatigue states. The results indicated that
the network fulfilled a better classification accuracy
of 97.37 % than the eight methods it was compared
with.

The study [22] investigated whether measures from
low-cost devices monitoring peripheral physiological
states (eye-tracker, heart rate monitor, and a high-
fidelity 32-channel quick-gel EEG system) were compa-
rable to standard EEG measures in predicting lapses in
attention to system failures. Twenty-five participants
were engaged in a fully autonomous lane-changing
driving task. The results showed that current low-
fidelity technologies were not sensitive enough to reli-
ably model reaction time to critical signals.

To summarize the related studies section, we can
conclude that EEG and ERP methods and techniques
are promising for detecting driver fatigue and the im-
pact of various disturbing events and tasks on driver’s
attention. Although the studies usually work with
fatigue, vigilance or cognitive performance, we will use
the term attention to align with the fundamental ex-
planation of EEG/ERP methods. We were surprised
that many studies did not pay too much attention to
design issues of such experiments since only a well-
prepared design can lead to relatively clean data and
reasonable interpretation.

2.3. Neuroinformatics laboratory
equipment

The neuroinformatics laboratory at the University of
West Bohemia is equipped with all necessary hardware
infrastructure for driving simulations and recording
EEG/ERP signals and additional biosignals. The
experimental car simulator (a front part of a real
Škoda Octavia car, Figure 1) is equipped with the
Logitech G27 wheel, accelerator, and brake. These
are connected to the control computer via the USB
port. The tracks are prepared mainly using the World
Racing 2 game produced by the Synetic Company [23].
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Figure 1. Car simulator.

The track is projected on the wall in front of the car
simulator.

The stimuli were presented either using a custom
programmable hardware stimulator (for visual stimu-
lation with LEDs) placed on the car windshield or the
Presentation software tool (for auditory stimulation)
produced by Neurobehavioral Systems, Inc. [24].

V-Amp produced by the Brain Products company
was used as an EEG amplifier. It also served as
an input of the sensors (also produced by the Brain
Products company) capturing other biosignals. The
BrainVision Recorder [25] was used for recording and
local storing EEG/ERP and other biosignal data (e.g.
respiration rate or skin conductance). MATLAB,
EEGLAB, ERPLAB, BrainVision Analyzer software
tools, and Python tools (especially the MNE library)
were used to process and analyze experimental data.

Standard EEG caps (the 10-20 system defining lo-
cations of scalp electrodes) were used depending on
the size of the participants’ heads. The reference
electrode was placed approximately 0.5-1 cm above
the nose, and the ground electrode was placed on the
ear. The biosignal sensors and the EEG cap were
connected to the V-Amp amplifier.

Three computers were usually used: the first for
the presentation of auditory stimuli (if they were pre-
sented), the second for storing recorded data, and the
third for the track presentation. The diagram of the
standard experimental setup is depicted in Figure 2.

EEG/ERP data were recorded with the sampling
frequency 1 kHz; no filters were used during data
recording. The resulting signal was stored in three
files: .eeg file containing raw data; .vhdr file containing
metadata that describe raw data in .eeg file, and .avg
file containing the averaged signal around the used
stimuli. IIR filter was applied to data from the Fz, Cz
and Pz electrodes. These three electrodes were also
selected for further processing.

2.4. Methodology – Experiments
Four already published EEG/ERP-based experiments
investigating driver’s attention during simulated driv-
ing are presented to show the evolution of our exper-
imental work in EEG-based simulated driving. Al-
though we could theoretically include dozens of mostly
unpublished experiments in this work, various driving
scenarios and overall driving conditions would confuse
the article.

An appropriate experiment design (including the
choice of the event-related component, type of stimuli,
driven track, or entire data collected) has to be set and
evaluated to achieve research objectives. When observ-
able and clean data are collected, it is reasonable to
interpret the driver’s attention during simulated driv-
ing. The event-related component P300 was selected
based on its nature, use in related studies, and the
outcomes of our preliminary unpublished experiments.

In the first presented experiment, we proposed and
tested the constraints related to the complexity of
the experimental design. The experiment design was
improved in the second presented paper. The third
paper introduced more tiresome conditions for par-
ticipants; not only a monotonous track but various
daytime conditions and sleep deprivation were part of
the experiment protocol. The last experiment used
two signals collected in parallel to detect the driver’s
attention during a simulated drive – brain electrical
activity and respiration.

EEG/ERP data were recorded with the sampling
frequency of 1 kHz; no filters were used during data
recording. The resulting signal was stored in three
files: .eeg file containing raw data, .vhdr file containing
metadata that describe raw data in the .eeg file, and
.avg file containing the averaged signal around the
used stimuli. Various IIR filters were applied to data
from the Fz, Cz and Pz electrodes in the processing
phase, typically in the frequency range 0.01-20 Hz.
The Fz, Cz and Pz electrodes were also selected for
further processing. The segmented data containing
artifacts were first automatically and then manually
rejected.

2.4.1. Experiment 1
The main objective of this work [26] was to deter-
mine if EEG/ERP methods and techniques and the
event-related P300 component itself can be success-
fully utilized to investigate how the mental load of
drivers affects their attention during a simulated drive.
The second objective was to test the constraints of
the experimental protocol complexity.

A relatively challenging virtual track containing
sharp turns and allowing for potential collisions with
oncoming cars (target stimuli) was designed and
tested on two groups (nine volunteers) of drivers (af-
fected/unaffected by alcohol). The occurrence of the
P300 component was investigated. Then, an alterna-
tive protocol relying on simpler target stimuli (flashing
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Figure 2. Experimental setup for simulated driving.

diodes and simple sounds) was proposed, implemented,
and tested.

2.4.2. Experiment 2
This paper’s [27] objective was to detect changes in
a driver’s attention during a monotonous simulated
drive. It was done using EEG/ERP techniques, per-
forming auditory stimulation, and investigating prop-
erties of the P300 component related to attention.

The ERP experiment was designed to investigate
the driver’s attention changes during monotonous 40
minutes long simulated drive. The experiment was
performed on 14 participants who drove a car sim-
ulator on a monotonous track (a motorway without
disturbing obstacles). The participants were audi-
bly stimulated (simple beeps of various duration and
the sound of a crying child). The data were prepro-
cessed (filtering, artefact rejection, epoch extraction,
and baseline correction) and investigated for the P300
component’s occurrence and peak latency in subse-
quent eight-minute intervals.

2.4.3. Experiment 3
The objective of the experiment [28] was to introduce
more tiresome conditions for participants. Not only
a monotonous track but also various daytime and
sleep deprivation were part of the experiment proto-
col to detect changes in the driver’s attention during
a monotonous simulated drive. EEG and ERP tech-
niques and auditory stimulation were utilized; changes
in the peak latency of the P300 component over time
were investigated.

The same hypothesis as in the previous experiments
(the peak latency of the P300 component increases over
time as the driver becomes more tired) was considered,
but the experiment design differed and evolved in time.

A monotonous track was constructed in this ex-
periment, and a simple auditory experiment was de-
signed (three stimuli – simple target and non-target
stimuli of 500 ms duration time and different frequen-
cies, a rare stimulus of 1000 ms duration time). Each
participant (11 participants in total) underwent four
twenty-minute drives held over two days; each day,
morning and afternoon sessions were held; on the
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first day, the participant usually slept, and on the
second day, he/she suffered from sleep deprivation.
Each drive was divided into time intervals of the same
length (the stimulation was provided only in some
time intervals to ensure relaxation time and prevent
participants from familiarity with the presented stim-
uli). The latencies of the averaged P300 components
were compared depending on the daytime and sleep
deprivation.

2.4.4. Experiment 4
The paper’s [29] objective was to consider two bio-
signals collected in parallel to detect the driver’s at-
tention during a simulated drive; these bio-signals
were the electrical activity of the human brain (as in
the previous experiments) and respiration. Moreover,
the collected data were validated using a stacked au-
toencoder to guarantee their quality and annotated
to make them publicly available and reusable.

The experiment was built on the previous experi-
ments, considering the basic assumptions related to
the P300 component and driving a car simulator on a
monotonous track. The experiment (simulated drive)
was prolonged to 60 minutes and divided into three
sessions. Auditory stimulation was performed (target
and non-target stimuli of the same length), and the
background sound of drizzling imitated the natural
environment. The respiration rate was captured par-
allel with the brain’s electric activity using the same
hardware amplifier. The data from a group of 15 par-
ticipants were annotated, stored, preprocessed, vali-
dated, and partly analyzed (classified using a stacked
autoencoder).

3. Results
The first experiment [26] brought significant results –
the proposed track appeared too complex to provide
experimenters with the observable occurrence of the
P300 component, but its simplified alternative version
was more promising. The P300 component was not
observed in the grand average waveforms when the
more complex target stimuli (sharp turns and possible
collisions) were part of the virtual track. A similar
trend of the grand average waveforms for both groups
of subjects (affected/unaffected by alcohol) was ob-
served. When target stimuli were elicited by external
hardware devices (flashing diodes or sound genera-
tors), the P300 component was easily observable.

It was shown that the experiment design had to be
relatively simple; otherwise, the event-related P300
component could not be identified. It is necessary to
be sure if and when the P300 component is elicited.
The subsequent experiments thus followed a more
simple design.

The experiment design was improved in the sec-
ond driving experiment [27]. As a result, the P300
component was easily observable in the grand average
waveforms. However, both variants of the experiment

design (using a different location of the reference elec-
trode) did not show gradually increasing peak latency
concerning the length of the simulated drive. There
were 30 % of artifacts in the epochs related to target
stimuli. The target stimulus (a 600 ms long sound of a
crying child) was too long and finally made the P300
component less analyzable.

Selecting a long target stimulus (a crying child) was
probably not a good design solution since it stretched
the P300 component length. Stretched components
are less analyzable; their absolute coordinates are
distorted. There were also not many target stimuli,
and because of the removal of the artifacts, only 70 %
of them entered the averaging process. The experi-
ment’s prolongation and introducing more tiresome
conditions (e.g., exposing participants to heat, ab-
sence of sleep, or placing them in a darkened room)
were further considered.

The P300 component was clearly identified in all
experimental sessions of the third experiment [28].
Figure 3 shows the grand averages on the electrode
Fz (frontal central electrode) for all experimental ses-
sions. On the other hand, the prolongation of the
peak latency of the P300 component overtime was not
observable when the grand average measure of each
participant was investigated. However, the prolonga-
tion of the peak latency of the P300 component was
observable when the techniques of peak latency and
fractional 50 % area latency were applied to compute
the grand average for each experimental session. The
latency of the P300 component was not influenced by
the time of day. The latency of the P300 component
increased with sleep deprivation.

The experiment showed that the P300 component’s
prolongation was identifiable when the techniques of
peak latency and fractional 50 % area latency were
applied. We concluded that for the following experi-
ments, it would be beneficial to have a larger number
of target stimuli (i.e., the simulated drive has to be
prolonged) and more participants.

In the fourth experiment [29], the P300 component
was identified in most participants during all driving
sessions. A high amplitude of the N2 component,
when compared to the amplitude of the P300 com-
ponent, was detected in some cases. Prolongation of
the peak latency of the P300 component was evident
in most participants when their peak latencies were
averaged. However, prolongation of peak latency in
time was not clearly observed when grand averages
for all participants were investigated. Average respira-
tion rate and respiration rates for most participants
showed a decreasing trend during the experiment.

In this experiment, the trend of the increasing la-
tency of the P300 component and decreasing respi-
ratory rate was relatively clearly visible (Note: the
data were not statistically evaluated). Since the ex-
perimental results were naturally affected (e.g., by
different brain reactions of participated drivers, the
sensibility of captured data to the environmental noise,
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Figure 3. Grand average on the electrode Fz – experimental sessions differ in the daytime and duration of sleep [28].

or participants’ overall mental conditions), there was
a significant effort to eliminate these circumstances
by experiment design, setting of experimental condi-
tions, and appropriate use of data preprocessing and
processing methods. Moreover, the data were finally
validated using the stacked autoencoder.

4. Conclusions
Various experiment protocols were designed (dozens
of experimental protocols were tested, and four pub-
lished ones were presented in this paper) to set and
verify constraints significant for the successful investi-
gation of drivers’ attention utilizing the human brain’s
electrical activity and the EEG/ERP methods and
techniques.

The initial experiments were over-specified; the ex-
periment protocols were too complicated, naive, and
unrealistic, given the method used. Over time, the
experiment design was improved; the event-related
P300 component was finally easily identifiable. The
interesting results regarding the latency of the P300
component were observed, e.g., its increase with over-
all fatigue or sleep deprivation of drivers was detected.

On the other hand, we had to cope with the trou-
bles related to participants’ willingness to wear an
EEG cap for a longer time, handle a longer drive
in the simulator, or reduce unnecessary movements.
The number of produced artifacts finally put time
constraints on the designed experiments.

All the work related to the collection, long-term
storage, processing, and interpretation of EEG/ERP
data/metadata and publication of results also revealed
the troubles with the data/metadata descriptions, pro-
cedures, and reproducibility of the findings. Even

reproducing a single experiment by the same experi-
menter proved practically impossible in a few months.
The need for standardized data annotations and for-
mats, procedures, and workflows turned out to be
enormous to share the data, procedures, and outcomes
with the community and understand data, procedures,
and conclusions after a particular time.

The investigation of driver’s attention has finally be-
come interesting for automotive in-car assistance sys-
tems and self-driving car development. The assistance
systems that prevent drivers from causing accidents
have been improved and can monitor drivers’ behav-
ior and vital signs (mainly related to attention) such
as movements, eye blinks, and heartbeat. Moreover,
self-driving cars are being developed to spare or even
prevent people from driving. However, the data collec-
tion methods presented here are still complicated and
impractical, and the results are not so reliable to be
used in cars during actual driving. On the other hand,
these methods can be used for verification purposes
in laboratory conditions.
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