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Software for simulating multibody systems’ (MBS) dynamics allows engineers to study and
investigate mechanical and mechatronic systems’ motion. It enables them to generate and solve
virtual 3D models to predict and visualise motion, coupling forces, or stresses [2].

Because simulation of MBS dynamics is usually quite time demanding, MBS software must
be efficient in calculations if it is to be employable in practice. This work focuses on joint for-
mulations and their evaluation efficiency, as these expressions are evaluated many times during
simulations. Moreover, the contribution investigates effects of joint imperfections (friction and
clearance) on the resulting motion of a 2-D slider-crank mechanism.

The mathematical basis of the in-house developed MBS software is formed by Lagrange’s
equations of the first kind that represent a set of findings achieved by applying Hamilton’s
principle. The dynamics of a spatial system of n interconnected rigid bodies can be described
according to [3] by a system of 6n+ r differential-algebraic equations (DAEs)

[
M CT

q

Cq 0

] [
q̈
λ

]
=

[
Qe +Qv

Qd

]
, (1)

where M is the system mass matrix, q is the vector of generalised coordinates of all bodies
consisting of generalised coordinates qi = [Ri,Φi]T of particular bodies (Ri are the absolute
Cartesian coordinates and Φi are the orientation angles), λ is the vector of Lagrange multipli-
ers, Qe is the vector of generalised applied forces, and Qv is the quadratic velocity vector. The
constraint Jacobian matrix Cq and the vector Qd are products of time derivatives of kinematic
constraints (kinematic relationships describing mechanical joints or specified motion trajecto-
ries) represented by an algebraic system of r constraint equations

C(q, t) = 0, (2)

where C is the constraint vector. If system (2) is twice partially differentiated with respect to
time t, the kinematic acceleration equations are obtained, forming the last r equations in (1),
where the vector Qd can be expanded to

Qd = −Ctt − (Cqq̇)qq̇− 2Cqtq̇ . (3)

Lower indices ·t and ·q indicate partial derivatives with respect to time and with respect to
generalised coordinates.

One of many possible approaches to solve the problem of MBS dynamics is, for instance,
to convert system (1) of DAEs of index 1 to the underlying system of ordinary differential

78



equations (ODEs) and subsequent usage of some standard ODE solver. The transformation of
(1) to a system of ODEs can be done via the elimination of Lagrange multipliers, obtaining

q̈ = M−1CT
q (CqM

−1CT
q )

−1[Qd −CqM
−1(Qe +Qv)] +M−1(Qe +Qv). (4)

System (4) of ODEs can be solved directly, and it is possible to improve numerical accuracy via
stabilization techniques, e.g., Baumgarte’s stabilization, which can be found in [1].
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Fig. 1. Two approaches to modeling a revolute joint

There are two basic ways how to define a connection (usually called a joint) between two
bodies. First approach is to use kinematic constraints representing restrictions on the relative
motion between connected bodies. For instance, a revolute joint visualised in Fig. 1a eliminates
relative translation between two bodies, or a prismatic joint eliminates relative rotation between
two bodies. There are several other joint constraints and some of them have realistic meaning
only in 3-D space such as a cylindrical joint or a spherical joint. All joints defined as kinematic
constraints are included in the constraint vector C. In Fig. 1a, a revolute joint constraint is visu-
alised, where Ri,j are absolute coordinate vectors of linked bodies, ui,j

J are coordinate vectors
of the joint J in local coordinate systems with origins Oi,j , and ri,j are coordinate vectors of the
joint in absolute coordinate system with origin O0. The constraint equation is simple in case of
the revolute joint: riJ − rjJ = 0.

The idea of the second approach is in specifying contact forces that are generated when
surfaces of two particular bodies touch each other. Similarly to the kinematic approach, there
are different definitions of contact forces depending on the type of a joint. All joints that are
represented by contact forces are simply included the vector Qe of generalised applied forces.
Fig. 1b contains visualization of a revolute joint with contact forces Fji

n and Fji
t applied on the

body i (contact forces applied on the body j are not shown, as they can be trivially derived by
applying Newton’s third law), where R is the radius of the bearing, and r is the radius of the
journal.

The advantage of the contact approach lies in the fact that it naturally contains parameters
of joint imperfections (friction and clearance). In case of kinematic constraints, additional
equation defining friction force has to be included in the model, and it is obviously impossible
to include joint clearance. In this work, the first approach is used only in case of ideal joints
without any imperfections. If it is needed to incorporate joint imperfection, the second approach
is utilised.
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During the implementation of any joint kinematic constraint to MBS software, it is neces-
sary to have access not only to the constraint vector C but mainly to its derivatives Cq and Cqq,
while the second expression is included in the modified form of (3). Equation (3) also contains
derivatives with respect to time t, but since joint kinematic constraints are usually scleronomic,
all time derivatives of C are zero. Nevertheless, evaluation of Cq and Cqq is generally quite
time consuming operation and represents a significant portion of total simulation time. On
the other hand, evaluation of contact forces is not as time consuming as kinematic constraints,
however, those forces bring important non-linearities to the mathematical model. This has to be
taken into account when choosing and setting the numerical solver, and simulating non-linear
system is generally more time consuming than solving the linear one.

Fig. 2. A 2-D slider-crank mechanism

This work compares time demand for simulating the motion of a 2-D slider-crank mecha-
nism, which is depicted in Fig. 2, without imperfections in two different model versions. Both
versions differ in the approach used for modeling the joint between the crank and the connecting
rod. All other joints (revolute between the frame and the crank, revolute between connecting
the rod and the slider, prismatic between the slider and the frame) are defined as kinematic
constraints in both models.

Furthermore, the effects of imperfections of the joint linking the crank and the connecting
rod are investigated in a separate study. Specifically, the influence of the clearance sizeR−r and
the amount of friction are examined during various working conditions defined by the angular
velocity of the crank.
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