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1. Introduction
Practical experience shows that the random excitation component can affect the system response
and its dynamic stability not only negatively but also positively. For example, the presence
of a certain artificially generated turbulence component can have a positive effect against the
occurrence of resonance. Such mechanisms are usually developed heuristically and are often
not sufficiently justified theoretically. On the other hand, the presence of random excitation can
lead to dangerous interactions with deterministic processes and thus cause a reduction in the
level of dynamic stability in conditions that do not seem serious at first sight (icing on cables or
power lines, road roughness, etc.).

This contribution delves into the application of first integrals in the construction of Lya-
punov functions (LF) for analyzing the stability of dynamic systems in stochastic domains. It
emphasizes the distinct characteristics of first integrals that warrant the introduction of addi-
tional constraints to ensure the essential properties required for a Lyapunov function. These
constraints possess physical interpretations associated with system stability. The general ap-
proach to testing stochastic stability is illustrated using the example of a 3-degrees-of-freedom
system representing a gyroscope.

2. The stochastic Lyapunov function
In the sense presented by Bolotin [1], the deterministic LF, is replaced in the stochastic domain
by the adjoint Fokker-Planck (FP) operator

L{λ(t,u)} =
∂λ(t,u)

∂t
+
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∂λ(t,u)

∂ui
κi +
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∂ui∂uj
κij, (1)

where κi, κij are the drift and diffusion coefficients of the n-dimensional Markov process and
m depends on the system structure

κi =
m∑
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Aik(t)fik(u) +
1
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∂fik(u)
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fip(u) · siklp , κij =

m∑

k,l=1

fik(u)fjl(u) · sikjl . (2)

Equations (1)–(2) relate to the original stochastic system, the stochastic stability of which is
being assessed

u̇i =
m∑

k−1

(Aik(t) + wik(t))fik(u), u(t0) = u0, (3)
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where λ(t,u) is the LF candidate, Aik(t) are the nominal values of the system coefficients,
wik(t) is the Gaussian white noise of cross-intensity sikjl, and fik(u) are the continuous non-
decreasing functions.

Function λ(t,u) should be a continuous positive definite. Its derivatives ∂tλ(t,u) and
∂u,uλ(t,u) should be continuous as well. Let ψ(t,u) = L{λ(t,u)} < 0 in u ∈ Ω and
ψ(t, 0) = 0 or ψ(t, 0) is not defined. Then λ(t,u) can be considered a Lyapunov function.
Thus, for any ||u0|| 6= 0 function λ(t,u) decreases for t → ∞ and, consequently, the trivial
solution of (3) is stable in terms of probability.

3. Construction of the Lyapunov function
Let us denote J1, . . . Js the following first integrals which satisfy the equations of motion,

J1(u) = C1, ..., Js(u) = Cs . (4)

The Lyapunov function can be selected as a linear combination of J1, . . . Js and their functions.
A convenient selection of the λ may be

λ(u) =
s∑

i=1

ai (Ji(u)− Ji(0)) + bi
(
J2
i (u)− J2

i (0)
)
, (5)

where ai, bi are constants of the linear combination that have to be selected so that the function
(5) is positive definite.

4. Gyroscope
A rotationally symmetrical gyroscope rotates around its z axis along with its massless shaft,
which is hinged at the origin of coordinates. The centroid of the gyroscope is positioned above
the point where the shaft is fastened. The primary motion of the gyroscope can be affected
by perturbations resulting from potential parasitic rotations around horizontal axes. The mov-
ing coordinate system x, y, z associated with the gyroscope deviates from the fixed coordinate
system x0, y0, z0 by the Euler angles α and β, as shown in Fig. 1.

The movement of the gyroscope, as described in [2], is characterized by five coordinates,
whose values in the absence of perturbations are

α = 0 , α̇ = 0 , β = 0 , β̇ = 0 , ϕ = ϕ0 , ϕ̇0 = ω . (6)

Fig. 1. Gyroscope outline with coordinates
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The kinetic and potential energy of the unperturbed system can be determined as

T =
1

2
Ix(α̇

2 + β̇2 cos2 α) +
1

2
Iz(ϕ̇− β̇ sinα)2 ,

Π = Mgl cosα cos β ,
(7)

where Ix = Iy, Iz represent the moments of inertia of the gyroscope, M denotes its mass, and
l represents the distance between the centroid and the origin. The system possesses three first
integrals. The first one is given by the simple sum of both energies, as expressed in (7),

T + Π =
1

2
Ix(α̇

2 + β̇2 cos2 α) +
1

2
Iz(ϕ̇− β̇ sinα)2 +Mgl · cosα cos β = C1 . (8)

Since the coordinate ϕ is cyclic, the corresponding Lagrange equation simplifies considerably
so that the second first integral is

∂T

∂ϕ̇
= Iz(ϕ̇− β̇ sinα) = Iz · C2 . (9)

The third first integral can be introduced, for example, as the integral of the angular momentum
of the gyroscope with respect to the fixed axis zo. It can be written in the following form:

Ix(−α̇ sin β + β̇ cosα sinα cos β) + Iz(ϕ̇− β̇ sinα) cosα cos β = C3 . (10)

Random perturbations of the individual components will be introduced as the coordinates
u = [u1, u2, u3, u4, u5] in the following form:

α = u1 , α̇ = u2 , β = u3 , β̇ = u4 , ϕ̇ = ω + u5.

The first integrals of the movement with perturbations take the form

J1(u) =
1

2
Ix(u

2
2 + u24 cos2 u1) +

1

2
Iz(ϕ̇o + u5 − u4 sinu1)

2 +Mgl · cosu1 cosu3 = C1 ,

J2(u) = ω + u5 − u4 sinu1 = C2 , (11)
J3(u) = Ix(−u2 sinu3 + u4 cosu1 sinu1 cosu3)+

+ Iz(ϕ̇o + u5 − u4 sinu1) cosu1 cosu3 = C3 ,

where only J1 is positive definite. Therefore, the LF has the form of (5) with bi = 0 and
a1 = 1. Assuming small values of perturbations, i.e., keeping only two terms of the sin, cos
Taylor expansions, the (approximate) LF is introduced as follows:

λ(u) = −1
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2
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2
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2
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2
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2
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1

2
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2
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(ωIz + a2 + a3Iz)u5 − (ωIz + a2 + a3Iz − a3Ix)u1u4 − a3Ixu2u3 , (12)

where coefficients a2, a3 remain to be determined. To ensure that the function in (12) is positive
definite, it is necessary to set the coefficient of the first power of u5 to zero, i.e.:

ωIz + a2 + a3Iz = 0 . (13)

Such assumption changes (12) to the form
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, (14)
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where δ = −(Mgl + a3ωIz). The last term λ3(u) is positive definite in the variable u5. Func-
tions λ1(u) and λ2(u) are the quadratic forms which are positive, according to Sylvester’s
conditions, for non-vanishing u1, u4 and u2, u3, when

∆1 = δ > 0 , ∆2 =

∣∣∣∣
δ ±a3Ix

±a3Ix Ix

∣∣∣∣ = Ix(δ − a23Ix) > 0 . (15)

This implies

a3 < −
Mgl

ωIz
∧
∣∣∣∣2a3 + ω

Iz
Ix

∣∣∣∣ <
√(

Iz
Ix

)2

ω2 − Mgl

Ix
. (16)

Therefore, e.g., for a sufficiently high angular velocity of the gyroscope, that is, for |ω| >
2
√
MglIx/Iz, there exist real coefficients a3 and a2 that satisfy (16) and (13), respectively,

so that the function λ(u) defined in (12) is positive definite and can be used as the Lyapunov
function.

The further analysis continues by assembly of the FP equation, see Eq. (1), using the drift
and diffusion coefficients defined in (2). The stochastic equation form follows from the La-
grange equations based on the energy balance. This approach shows that when investigating
the stochastic stability of the system, one can start from the characteristics of the deterministic
system and examine only the characteristics of the last term of the FP operator according to (1)
with respect to its contribution to the positive or negative values of the function ψ(u).

5. Conclusion
The Lyapunov function constructed on the basis of first integrals provides a possibility to work
with the stochastic part of the problem with a much greater overview and to construct math-
ematical models with regard to the stabilizing or destabilizing effects of parametric random
noises. This type of analysis is applicable to a variety of dynamic stability problems, including
naturally the problem of signal and noise separation in structural health monitoring and various
indirect measuring methods.
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