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1. Introduction 

In the contribution, the expressions will be presented for semi-analytical calculation of normal 

and shear stresses in the tapered Functionally Graded Material (FGM) beams with spatially 

variable stiffness. This variability will be caused by the longitudinal continuous variation of the 

solid cross-section and spatial variation of material properties. These expressions will be 

applied to calculate stresses in the cantilever beam with longitudinally variable square cross-

section, while the material properties change continuosly in its three main axes. The beam will 

be loaded in tension, biaxial bending, and pure torsion. The results of the semi-analytical 

solution will be compared with the results of the numerical solution with 3D solid finite 

elements. Due to limited scope of this short article, we will present here only the expressions 

for calculation of the normal stresses caused by the axial force. The complete processing of the 

solved problem in this contribution will be carried  out in the prepared article for scientific 

journal. 

2. Calculation of the normal and shear stresses in the tapered FGM beam. 

In Fig. 1a the tapered FGM beam with spatial variability of material properties is shown. Using 

selected homogenization methods, we obtain homogenized FGM beam with longitudinal 

variability of effective material properties – Fig. 1b.  

 

 
 

Fig. 1. Tapered FGM beam: a) real beam and b) homogenized beam 
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Elastostatic deformation analysis of FGM beams (calculation of displacements and rotation 

angles as well as the internal forces and moments) can be performed on a beam with 

homogenized stiffnesses [3]. However, the stress calculation must be performed on a real beam 

[4]. 

The expressions for the stress calculation in the real FGM tapered beam depend among other 

things also on the cross-sectional area geometry and material properties variation. FGM is 

created by mixing two or more components so that at each material point the material is 

isotropic, while its properties  change in one, two or three directions. 

In the presentation, at the CM2023 conference, we will focus on derivation of the expression 

for calculation of the normal and shear stresses distribution on an arbitrary doubly symmetric 

cross-sectional area of the FGM beam with spatial variation of material properties. As an 

example of such cross-section is the rectangle (Fig. 2a).  

 

   
 

   a)                                                            b) 

 
Fig. 2. To calculating the stresses in the tapered FGM beam 

 

The tapered FGM cantilever beam with doubly symmetric rectangular cross-section at 

position x with doubly symmetric spatial variation of material properties is shown in Fig. 2b. 

At the centroid of the cross-sectional area at position x acts the normal force 𝑁(𝑥), the bending 

moments 𝑀𝑦(𝑥) and 𝑀𝑧(𝑥), which cause the normal stresses. The internal torsional moment is 

𝑀𝑥(𝑥). Further, 𝐴(𝑥) is the cross-sectional area, 𝐼𝑧(𝑥) and 𝐼𝑦(𝑥) are the quadratic moments of 

the cross-sectional area, and 𝐼𝑇(𝑥) is the torsion constant.  

Considered spatial variability of material properties is shown in Fig. 2b using a colour scale. 

On the neutral axis x of the beam is Aluminium and on the outer longitudinal surfaces of the 

beam is Tungsten. In each cross-section of the beam, the properties in the transverse and lateral 

directions change linearly from Aluminium to Tungsten. The longitudinally varying effective 

stiffnesses for tension-compression, bending, shear, and torsion have been obtained by the 

Reference Beam Method (RBM) [2]. 

Due to limited scope of this short article, we will present here only the expressions for 

calculation of the normal stresses caused by the axial force 𝑁(𝑥) = 𝐹𝑥 = 100 N. The results of 

their application will be presented as well, while a verification of the semi analytical results 

will be done by the ones obtained with the SOLID185 finite elements [1]. 

Considering the variation of material properties as shown in Fig. 2b, and with dimensions 

of the tapered beam with length 𝐿 = 0.1 m, and  𝑎𝑖 = ℎ𝑖 = 𝑏𝑖 = 0.01 m at node i and 𝑎𝑗 =

ℎ𝑗 = 𝑏𝑗 = 0.005 m  at node j, the effective axial stiffness has been obtained [2] 

 𝐸𝐴(𝑥) = 3.43 × 107 − 3.43 × 108𝑥 + 8.57 × 108𝑥2 − 1.11 × 10−3𝑥3 [N]. (1) 
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There,  the elasticity, and shear modulus for Tungsten is 4.8 ⋅ 1011 Pa, and  2.0 ⋅ 1011 Pa. The 

elasticity, and shear modulus for Aluminium is 0.69 ⋅ 1011 Pa, and  0.26 ⋅ 1011 Pa. 

The normal stresses at the cross-section point (x, y, z) with the elasticity modulus 𝐸(𝑥, 𝑦, 𝑧), 

is expressed by  

 𝜎𝑁(𝑥, 𝑦, 𝑧) =  𝜀𝑁(𝑥)𝐸(𝑥, 𝑦, 𝑧) =
𝑁(𝑥)

𝐸𝐴(𝑥)
𝐸(𝑥, 𝑦, 𝑧), (2) 

where 𝜎𝑁(𝑥) =
𝑁(𝑥)

𝐴(𝑥)
 is the effective normal stress in the homogenized cross-section while 

constant effective normal strain 𝜀𝑁(𝑥) =
𝜎𝑁(𝑥)

𝐸𝐿
𝑁𝐻(𝑥)

  over the whole cross-sectional area is 

assumed. Here, 𝐸𝐿
𝑁𝐻(𝑥)is the effective elasticity modulus for tension-compression, which is a 

part of the effective axial stiffness 𝐸𝐴(𝑥).  

In Fig. 3 and Table 1, results of the normal stresses calculation by the FGM beam using the 

expression (2) is drawn: a) on the outer surfaces, and b) on the neutral axis of the beam, for 

𝑁(𝑥) = 𝐹𝑥 = 100 N. Figs. 3c and 3d show a map of the normal stresses in the cross-section of 

the beam at a distance of 𝑥 = 0.001 and 𝑥 = 0.05 m obtained from the solution using SOLID 

185 finite elements.The normal stresses obtained by SOLID185 finite elements, in MPa, agree 

very well with the ones obtained with the author's  semi-analytical solution. This agreement 

was also achieved in cross-sections along the entire length of the beam. Some dicrepancies 

achieved at the free end of the beam affected by the different way of the load insertion. 

 

         
   a)       b) 

 

    
 

    c)     d) 

 

Fig. 3. Longitudinal distribution of the tensile normal stresses, in [Pa], on the outer surfaces: a) and on neutral axis, 

b) calculated semianalytically (FGM beam), and the maps of the stresses at distances of x = 0.001 m,                              

c) and x = 0.05 m, d) calculated  by SOLID185 finite elements 
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Table 1. Comparison of the normal stresses on the outer surfaces, 𝜎𝑁(𝑥, 𝑦, 𝑧)𝑜𝑢𝑡, and on the neutral axis, 

𝜎𝑁(𝑥, 𝑦, 𝑧)𝑛𝑎𝑥, of the beam calculated by semianalytical method and with ANSYS [1] – red numbers 

x [m] 0 0.05 0.1 

𝜎𝑁(𝑥, 𝑦, 𝑧)𝑜𝑢𝑡/SOLID 185 [Mpa]    1.40/1.34 2.49/2.41 5.6 

𝜎𝑁(𝑥, 𝑦, 𝑧)𝑛𝑎𝑥/SOLID 185 [Mpa] 0.20/0.26 0.36/0.45 0.80 

 

The expressions for calculation of the stresses caused by the bending moments, shear forces, 

and torsion moment have been established by a similar way. In all the load cases, a very well 

agreement of the normal s shear stresses calculated by the author´s method and SOLID185 

finite elements has been obtained. 

3. Conclusions 

The elastostatic analysis of FGM beams using 3D solid finite elements is very demanding in 

terms of the need for their fine mesh and processing of the auxiliary program for assigning real 

functionally graded material properties to individual finite elements. However, these 

procedures are suitable for comparative calculations used to assess the effectiveness and 

accuracy of other, more effective solutions. Presented original semi-analytical relations for 

calculation of normal and shear stresses in FGM tapered beams represent a sufficiently accurate 

and effective tool. They are also part of our new tapered FGM beam finite element with variable 

stiffness, which was subjected to deformation analysis of the beam shown in Fig. 2b). This 

cantilever in Fig. 2b) was modeled by a single FGM beam finite element. The complete 

processing of the solved problem in this contribution will be carried  out in the prepared article 

for scientific journal. 
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