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a b s t r a c t

Diabetes mellitus is a metabolic disease involving high blood glucose levels that can lead to serious
medical consequences. Hence, for diabetic patients the prediction of future glucose levels is essential
in the management of the disease. Most of the forecasting approaches in the literature evaluate the
effectiveness of glucose predictors only with numerical metrics. These approaches are limited because
they evenly treat all the errors without considering their different clinical impact that could involve
lethal effects in dangerous situations such as hypo- or hyperglycemia.

To overcome such a limitation, this paper aims to devise models for reducing high-risk glucose
forecasting errors for Type 1 diabetic patients. For this purpose, we exploit a Grammatical Evolution
algorithm to induce personalized and interpretable forecasting glucose models assessed with a novel,
composite metric to satisfy both clinical and numerical requirements of the estimated predictions.

To assess the effectiveness of the proposed approach, a real-world data set widely used in
literature, consisting of data from several patients suffering from Type 1 diabetes, has been adopted.
The experimental findings show that the induced models are interpretable and capable of assuring
predictions with a good tradeoff between medical quality and numerical accuracy and with remarkable
performance in reducing high-risk glucose forecasting errors. Furthermore, their performance is better
than or comparable to that of other state-of-the-art methods.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Diabetes is an incurable disease rapidly spreading over a large
art of the population around the world [1]. It is linked to a
ancreas malfunction that causes high blood glucose levels over
protracted period. The accumulation of blood glucose can cause
amage to multiple organs with long-term severe medical com-
lications [2]. Among the diabetes pathogenesis, Type 1 Diabetes
ellitus (T1DM) occurs when the insulin-producing β-cells of

the pancreas are damaged and induce an absolute insufficiency
of insulin that provokes chronic hyperglycemia. Currently, the
most adopted therapy for T1DM treatment is represented by
an open-loop device consisting of a continuous subcutaneous
insulin pump directly managed by the patient. This device is
coupled with non-invasive Continuous Glucose Monitoring (CGM)
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systems [3] capable of measuring the current glucose in the
subcutaneous tissue.

In recent years, approaches based on Artificial Intelligence (AI)
and Machine Learning (ML) have been investigated to provide
patients with tools able to effectively predict future glucose lev-
els [4–10]. These tools consider forecasting horizons lasting at
most two hours and assist patients in managing insulin every day,
given that the involved forecasting horizon typically represents
the time a patient needs to decide on the insulin dose to assume
following a meal or a hyperglycemic event.

Despite such recent progress, given the complex nature of
glucose metabolism, an accurate prediction of future glucose
levels remains a challenge for diabetes treatment. This predic-
tion requires particular attention from a clinical viewpoint, as
mispredictions in the hypoglycemic and hyperglycemic zones can
be fatal for diabetic patients. However, although ML approaches
can play a crucial role in improving glucose prediction accuracy,
it should be evidenced that most of these approaches adopt
measures of performance aiming at only evaluating the numerical
accuracy while neglecting the clinical aspects of the estimated

predictions. Even the most popular and performing techniques
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xploited so far in this field, i.e., Deep Neural Networks (DNNs),
hile exhibiting an appealing numerical accuracy, make use of
paque models that yield difficult explaining what aspects of
he model input drive the decisions (explainability) and, more
mportantly, preclude domain experts from any possibility of
nderstanding how a prediction has been made (interpretabil-
ty) [11–13]. More specifically, intrinsic interpretability consists
f self-explanatory models that feature extremely clear expla-
ations but usually do not have outstanding performance. In
ontrast, post-hoc explainable systems, like DNNs, although keep-
ing high performance, must build a second model that explains
their decisions, but these explanations may be poor. When spe-
cific reference is made to the medical domain, it is well known in
the literature, e.g., [11,12], that black box models are complicated
to troubleshoot, which is a remarkably grave problem in this
specific field. Moreover, black box models transform computer-
aided resolutions into automated resolutions because physicians
are not provided with real knowledge of the reasoning processes
that take place in black box models. This lack of an explanation
on how a prediction is made for a specific patient can limit the
use of deep learning models in medical decision support [14]. At-
tempting to provide a posteriori an explanation to black boxes can
make this problem even worse because such an attempt might
yield deceiving or untrue descriptions, as this process might yield
post-hoc models that are, at least partially, not the same as the
model build internally. These problems are overcome with the
use of interpretable machine learning. In the following, the term
interpretability is used in the sense described above.

To evaluate the clinical accuracy of a glucose measurement
device, analytical accuracy relying on numerical metrics, e.g., Root
Mean Square Error (RMSE) or Mean Percentage Absolute Er-
ror (MAPE), is not suitable because it often fails to reveal sig-
nificant outliers. This problem is of paramount importance in
hypoglycemia and hyperglycemia situations. Rather, treatment
decisions should be considered, which is accomplished through
the use of error grid analysis (EGA). This latter consists in iden-
tifying a set of risk zones, considering pairs of corresponding
estimated - reference values, and computing the percentage of
pairs falling in the most dangerous zones. Several EGAs exist in
the literature; we can recall here the Clarke Error Grid (CEG) [15],
the Parkes Error Grid (PEG) [16], and the Surveillance Error Grid
(SEG) [17]. Although useful, these grids are overly simplistic
because they only reckon the single glucose values but do not
take glucose dynamics into account, meaning with this the way
successive values are tied in time. A step forward towards better
clinical accuracy assessment consists in the Continuous Glucose-
EGA (CG-EGA) [18], where not only errors in rate are considered,
but also those in the direction of blood glucose variation.

The situation changes completely when the accuracy should
be evaluated of a device that does not aim at measuring current
values but rather at performing predictions for future glucose
values. In this latter case, all the above-mentioned methods are
not appropriate. To evaluate the accuracy in predicting glucose
values, the direct use of CEG, PEG, SEG, or CG-EGA methodolo-
gies does not allow for correctly assessing the performance of
predictors. CEG, PEG, and SEG would suffer from the identical
drawback described above, i.e., they do not consider the glu-
cose dynamics. Even the use of the most sensitive measurement
estimator, i.e., CG-EGA, for prediction has the critical drawback
that the estimation of the rates for changes in glucose values
is performed backward, i.e., from past glucose readings, while
a predictor should yield glucose estimates ahead in time. This
drawback may involve inaccurate predictions of glucose vari-
ations that can confuse diabetic patients in understanding the
future glycemia evolution and lead to inadequate treatments in

risky situations.
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To overcome these limitations, in [19] Prediction-Error Grid
Analysis (PRED-EGA) was advanced, in which the estimation of
change rates takes place on predicted values so that it constitutes
a rigorous metric to assess prediction accuracy. It can be seen as
a particularization of CG-EGA to the prediction problem.

Nevertheless, up to now, PRED-EGA has only been utilized ei-
ther in conjunction with other ML methodologies such as regres-
sion and neural-network-based models [20], DNNs [21] only to
measure a posteriori the clinical acceptability of the attained pre-
dictions, or directly utilized to enhance the clinical acceptability
into DNNs, i.e., Long Short-Term Memory (LSTM), models [22].

In our opinion, a rigorous metric to assess the clinical accept-
ability in harmful situations, like PRED-EGA, should be exploited
to drive the learning process, but a performance measure based
on its exclusive use may lead to significant absolute prediction
errors.

Starting from the above considerations, the purpose of this
paper is:

• to improve the clinical acceptability, also termed clinical
quality, of the estimated predictions and, at the same time,
taking into account numerical criteria, to downsize the vari-
ation range of the errors;

• to automatically extract personalized and interpretable re-
gression models able to estimate glucose levels in future
prediction horizons.

The first goal has been accomplished by considering a linear
combination of clinical and numerical metrics as an objective
function for rating the accuracy of the glucose predictor. This
combination allows surmounting the limit of forecasting models
assessed by objective functions only based on numerical criteria
that assign the same clinical impact to all the prediction errors,
which may involve wrong diabetes treatments. The clinical crite-
rion for modeling the glucose predictors is based on PRED-EGA,
thus aiming at yielding discovered models more sensitive to risky
situations like hypo- and hyperglycemia.

With reference to this first goal, the novelty lies in the fact
that, for the first time in the literature, the clinical quality of
glucose prediction assessed through PRED-EGA methodology is
improved through the use of an evolutionary algorithm. It should
be remarked here that, up to now, evolutionary algorithms have
been used to explicitly optimize the clinical quality evaluated
either by adding a function that penalizes error prediction in
the most harmful zones [23] or other error grids as CEG [24,25],
which should be accounted for to assess measure precision in
devices, though.

The second goal has been fulfilled by exploiting the capability
of the Grammatical Evolution (GE) [26] to automatically evolve
interpretable regression models. The interpretability allows pro-
viding a rationale behind the decision-making process that can
help specialists in discerning the mechanisms and, consequently,
understanding what is happening. l

As regards this second goal, a further novelty of our paper,
tied to the specific GE implementation, is that these regression
models are based on the knowledge of current and past glucose
measurements, and only the current and future estimated insulin
and carbohydrate concentrations to be absorbed.

The discovered personalized models are tested and validated
over a real-world data set enclosing the clinical data for several
subjects suffering from T1DM.

The paper structure is the following. Section 2 exposes a
review of the glucose forecasting-related works in the litera-
ture. Section 3 illustrates the GE-based approach to tackle the
regression problem. The experimental results are presented, com-
mented on, and compared with other approaches in Section 4.
Section 5 reports the final remarks and some hints on future
work.
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. Glucose forecasting related works

The numerous forecasting models proposed for diabetes can
e classified into physiological, data-driven, and hybrid mod-
ls [27,28].
The physiological models concern glucose-insulin mathemati-

al models for mimicking human physiological behavior through
he description of the glucose dynamics in the course of insulin
reatment [29–31]. Unfortunately, these models are often inaccu-
ate due to the necessity of having prior knowledge for setting
he physiological constants [32].

The data-driven models provide glucose forecasting by learn-
ng patterns from data. Latest developments in data-driven tech-
iques, artificial intelligence, and machine learning have stimu-
ated the research interest in glucose level prediction models as
s reported in many recent survey papers [8–10].

Data-driven models typically rely on ML techniques. Several
lasses of ML methodologies have been utilized for glucose pre-
iction. The techniques employed are feed-forward and recurrent
eural networks [33,34], jump and deep neural networks [35–37],
utoregressive neural networks and neuro-fuzzy networks [38,
9], convolutional neural networks [40,41], support vector re-
ression (SVR) [42], random forests and kernel functions [43],
aussian processes and self-organizing maps [44], neuroevolu-
ion approaches [45], and evolutionary techniques [46–49].

The hybrid models merge physiological models with other
echniques for inferring glucose dynamic models. The majority
f these hybrid models combine data-driven and compartmental
odels [23,47,50–54]. Our approach belongs to this latter area.
The ML techniques employed to carry out the prediction evi-

ence that there is no common view about the number and type
f diabetes parameters employed as input for training the models.
ccording to the literature reviewed in [8], the set including
nput parameters such as glucose values, injected insulin, and
arbohydrate intake is the most used group of parameters to
erive prediction models.
The present paper falls in this set as regards the selection of

nput parameters and uses a GE as the ML approach to extract the
rediction models as in [23–25,47,55–61].
To enhance the performance in most of the above-referenced

apers, the standard GE is combined with other approaches or in-
estigated in several adaptations for dealing with different oper-
ting conditions. Moreover, the authors consider only numerical
etrics as objective functions with some exceptions in monobjec-

ive [46,56,57] and multiobjective approaches [24,25] in which a
EG-based metric is included in the objective function.
Differently from the above GE approaches, the clinical accu-

acy is evaluated in this paper through PRED-EGA able to capture
ot only the accuracy of the point predictions but also the dy-
amics of the predicted rate of changes between two consecutive
redictions.
We consider an objective function structured as a linear com-

ination to account for the clinical accuracy, assessed in terms of
RED-EGA, while at the same time safeguarding the numerical
ccuracy that allows reducing the prediction deviations from
arget values. In this way, our approach can provide a single
nd effective model to deal with the numerical and clinical per-
pectives rather than choosing among several equivalent models
roposed by Pareto multiobjective approaches.
As far as we know, only few recent papers consider a clinical

etric based on PRED-EGA, in addition to the numerical accuracy,
o directly evaluate [20,22] or ‘a posteriori’ estimate the glucose
redictors [21].
Without any pretense of being exhaustive, to immediately evi-

ence the positioning of our paper, Table 1 outlines a comparison
oncerning the main features only versus the above-referenced
3

glucose forecasting techniques using either GE or the same clin-
ical metric. In particular, the comparison is effected in terms
of the multiobjective approach adopted, the employment of an
evolutionary algorithm to perform the optimization, the explicit
use of a clinical metric in the objective function (Cl-Met) and not
as ‘a posteriori’ evaluation tool, and the use of PRED-EGA clinical
criterion in such a function. It should be noted that, P indicates
methods dealing with a Pareto-front multiobjective approach,
while LC refers to a multiobjective approach reduced to a single
objective function through an aggregation as a linear combination
with positive coefficients.

As it can be observed from Table 1, the optimization of PRED-
EGA through an evolutionary algorithm is exclusive to our paper.

The last three papers in Table 1, namely [20–22], are interest-
ing to test the effectiveness of our proposal.

De Bois et al. in [20] presented the numerical accuracy and
the clinical acceptability of nine models taken from literature.
The approach, named GLYFE (GLYcemia Forecasting Evaluations),
includes as models a baseline comparison (Base), a polynomial
regression model (Poly), two Auto-Regressive models (AR, ARX),
two more complex non-linear regression models, i.e., Support
Vector Regression (SVR) and Gaussian Process (GP), and three
models relying on neural networks, namely Extreme Learning
Machine network (ELM), Feed-forward Neural network (FFN), and
Long Short-term Memory (LSTM).

In the other paper [22], the same authors tried to enhance the
clinical quality of the deep models by enriching LSTM with new
loss functions: the coherent mean squared error (cMSE) that is
the Mean Squared Error (MSE) weighted by the MSE of the pre-
dicted variations, and the coherent mean squared glycemic error
(gcMSE) based on an error grid analysis to deal with the predic-
tion errors and their variations during the training. In particular,
this last function relies on weighting coefficients of a metric able
to improve the clinical quality of the model to the detriment of
numerical accuracy. Therefore, the authors proposed the Progres-
sive Improvement of the Clinical Acceptability (PICA) algorithm
by considering these two contrasting objectives. Further details
can be found in [22].

Dudukcu et al. [21] exploited a combination of an LSTM, Gated
Recurrent Units, and WaveNet DNNs for glucose prediction by
only using the glucose values of patients’ history for the predic-
tion.

These three papers will represent the state-of-the-art compar-
ison carried out in Section 4.3.

3. Grammatical evolution for glucose forecasting

The proposed evolutionary approach falls within data-driven
models that exploit time series coming from CGM systems to
forecast future glycemic trends for T1DM patients. The problem
can be seen as a multivariate time series regression. Namely, let
us suppose that we have measured the glucose level G(t), the
administered insulin U(t), and the ingested amounts of carbohy-
rates Dg (t).
It is to note that the injected insulin corresponding to insulin

oluses plus insulin basal and the assumed carbohydrates are
iscrete signals that need to be converted into continuous signals
o estimate their effects on the glycemic trend over time. The
reprocessing of the injected insulin boluses is performed based
n the Hovorka model [62] delineating the absorption rate of the
njected insulin through a two-compartment chain. This model
llows adding the signal representing the absorption rate of the
oluses to the signal describing the absorption rate of subcuta-
eously administered long-acting insulin. Specifically, the model
or insulin absorption is:
dS1

= U(t) −
S1

(1)

dt tmaxI
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Table 1
Comparison of the main features of the referenced forecasting techniques in terms
of the multiobjective approach.
Paper Multiobjective EA Cl-Met PRED-EGA

Hidalgo et al. [55] No Yes No No
Contreras et al. [23] No Yes Yes No
Velasco et al. [46] No Yes Yes No
Hidalgo et al. [47] No Yes No No
Velasco et al. [56] No Yes Yes No
Velasco et al. [57] No Yes Yes No
De Falco et al. [48] No Yes No No
De Falco et al. [49] No Yes No No
Lourenco et al. [58] No Yes No No
Hidalgo et al. [59] No Yes No No
Joedicke et al. [24] Yes (P) Yes Yes No
De Falco et al. [60] No Yes No No
Contador et al. [25] Yes (P) Yes Yes No
De Falco et al. [61] No Yes Yes No
De Falco et al. [45] No Yes No No
De Bois et al. [20] No No Yes Yes
Dudukcu et al. [21] No No No No
De Bois et al. [22] No No Yes Yes
This paper Yes (LC) Yes Yes Yes
dS2
dt

=
S1 − S2
tmaxI

(2)

in which S1 and S2 are the two-compartment chain for modeling
the absorption of subcutaneously infused short-acting insulin,
U(t) [mU min−1] is the amount of administered insulin, tmaxI =

55 [min] is the constant indicating the time-to-maximum insulin
absorption, S1(t) [mU] and S2(t) [mU] are the amounts of insulin
in the two compartments. Then the plasma insulin concentration
I [mU l−1] is described as:
dI
dt

=
S2

VI · tmaxI
− ke · I (3)

here ke = 0.138 [min−1] is the fractional elimination rate of
he insulin from plasma and VI = 0.12 [l kg−1] is the insulin
istribution volume. All the considered constants are taken from
ovorka’s model [63].
Concerning the carbohydrate intake, in the presence of a meal,

he gut absorption rate is modeled according to [62] as:

(t) =
Dg · Ag · t · e−t/tmax

t2max
(4)

where tmax = 40 [min] is the time-of-maximum appearance
rate of glucose in the accessible compartment, Dg is the amount
f digested carbohydrates, and Ag = 0.8 is the carbohydrates
ioavailability [64]. This function quickly augments after the meal
nd then decreases to 0 in 2–3 h. Outside such a time span, the
issing carbohydrate values are filled with zeros.
At the end of the preprocessing, by integrating Eq. (3) and

xploiting Eq. (4), we have two signals, discretized every ∆t
inutes, for the absorbed insulin and carbohydrates, i.e., I(t)
nd C(t), respectively. More specifically, when there is an insulin
elivery or carbohydrate intake event at time t , their absorbed
mounts are spread over time through Eqs. (3) and (4) from
he current time t ahead and, eventually, added to the residual
uantity computed by the compartment model in the past.
As a consequence, by considering the values of G(t) every ∆t

inutes in a time offset of k∆t minutes before the current instant
, and the values of I(t) and C(t) every ∆t minutes in a time
ffset of h∆t minutes after the current instant t , we search for
n explicit regression model able to forecast the future glucose
alue Ĝ(t + h∆t) at a prediction horizon h∆t:

(t + h∆t) = Γ
(
G(t),G(t − ∆t), . . . ,G(t − k∆t)

)
− Θ

(
I(t), I(t + ∆t), . . . , I(t + h∆t)

)( ) (5)
+ Ω C(t), C(t + ∆t), . . . , C(t + h∆t)
4

where Γ , Θ and Ω are expressions on G, I , and C , respectively.
Note that, analogously to the work by Hidalgo et al. [59], the

model (Eq. (5)) we look for exploits past values for glucose while,
differently from it, only the amounts of insulin and carbohydrates
yet to be absorbed, and evaluated through the compartmental
model illustrated above, are taken into account. This choice comes
from the consideration that past amounts of insulin and carbohy-
drates have been absorbed in the current time t; therefore, the
current glucose value includes the effects of their absorption.

To extract an explicit regression model from the available
data, we exploit an evolutionary approach based on a GE algo-
rithm [26]. Such an algorithm evolves a population of regres-
sion models, i.e., expressions, obtainable through a context-free
Backus Naur Form-style (BNF) grammar to optimize (minimize in
this case) an objective function.

3.1. Objective function

The measurement of model prediction accuracy is indispens-
able for assessing the results’ reliability and the medical out-
come of diabetes therapy. Several metrics exist for the perfor-
mance evaluation of the forecasting models [8]. These metrics can
be subdivided into mathematical and clinical evaluation criteria,
accounting for numerical and clinical accuracy.

The mathematical criteria are employed to assess the numer-
ical accuracy without providing insights related to the clinical
importance. Within the category of mathematical criteria, we
have considered the RMSE and the MAPE.

The most employed evaluation criterion to estimate the clin-
ical accuracy of the predictions is the error grid analysis [8].
Within this work, the clinical accuracy of the regression models
has been assessed through PRED-EGA [65,66]. PRED-EGA com-
bines two graphical grid representations: Point-Error Grid Anal-
ysis (P-EGA) for the clinical accuracy of point predictions and
Rate-Error Grid Analysis (R-EGA) for that of the predicted rate of
changes between two consecutive predictions. As a function of
the couple, G and Ĝ, each grid is partitioned into five zones from
A (best) to E (worst) that represent an increasing risk category
when making predictions. Specifically, zone A includes accurate
estimations and zone B refers to inaccurate predictions with little
outcome on diabetes management. Zone C entails potentially
risky treatments, zone D serious unpredicted hypo- or hyper-
glycemia events, while prediction in zone E corresponds to unpre-
dicted high-risk situations. According to the real glycemia regions
(hypoglycemia (G < 70 [mg dl−1

]), euglycemia (70 [mg dl−1
] ≤
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Table 2
Protected functions used in the grammar.
Function Protected function

plog(x) log(1 + |x|)
psqrt(x)

√
|x|

aq(x, y) x√
1+y2

G ≤ 180 [mg dl−1
]), and hyperglycemia (G > 180 [mg dl−1

])),
oth markers of P-EGA and R-EGA are employed to establish
hether a prediction is an Accurate Prediction (AP), a Benign Er-
or (BE), or an Erroneous Prediction (EP). A model with acceptable
linical quality should have a high AP rate and a low EP rate in
he dangerous hypo and hyper zones.

To assess the forecasting model taking into account the clinical
uality without neglecting the numerical accuracy, the following
inear combination of objective functions to be minimized has
een devised:

3(G, Ĝ) = α · Φ1(G, Ĝ) + Φ2(G, Ĝ) (6)

where

Φ1(G, Ĝ) = RMSE(G, Ĝ) (7)

only relies on a numerical evaluation, and

Φ2(G, Ĝ) = EPi + EPe + EPh (8)

only focuses on clinical evaluation criteria concerning EPi, EPe,
nd EPh representing the ratios between the number of erroneous
redictions and the number of samples in hypoglycemia, eug-
ycemia, and hyperglycemia zones, respectively. This last assess-
ent function assumes noticeable importance in hypoglycemia
nd hyperglycemia regions since the risk associated with erro-
eous predictions in such regions can be critical. This reduces
he eventuality that diabetic patients are not warned of these
otentially dangerous events.
As regards Φ3, being the RMSE numerical metric value much

reater than EPi + EPe + EPh, to avoid the numerical component
an be predominant, RMSE is multiplied by a modulation factor
< α < 1. The clinical component aims to drive the objective

unction in providing acceptable predictions that make sense
rom a medical point of view; this can be obtained by avoiding
ispredictions before all in the most critical hypoglycemia and
yperglycemia regions. The numerical component, in its turn,
llows retaining the capability to lower the absolute prediction
rrors in all the zones.
Henceforth the objective functions Φ1 and Φ2 are employed

n this paper only for comparison purposes.

.2. Grammar

The syntax of the expressions to be evolved by the GE is spec-
fied by the context-free grammar depicted in Fig. 1, where ⟨gluc⟩
epresents the glucose levels in the past while ⟨ins⟩ and ⟨cho⟩ are
hose of insulin and carbohydrates in the future, respectively. In
ur grammar, psqrt and plog are protected functions that return
he square root of the absolute value of the argument and the
ogarithm of the summation of 1 and the absolute value of the ar-
ument, respectively, while aq represents the protected analytic
uotient operator [67]. Table 2 shows the protected functions
sed in the grammar.

. Experimental results

.1. Experimental framework setting

The experiments are conducted on the Ohio T1DM data set,
eleased in 2018 [68], that gathers eight weeks of data for six
5

1DM patients subject to insulin pump therapy. This specific data
et has been chosen to perform a comparison with other papers
n the literature that employ the same values for past offset and
redicting horizon, and to evaluate the effectiveness of the dis-
overed forecasting models with the same numerical and clinical
etrics. The data set includes glucose measurements obtained
y a CGM system with a sampling interval of ∆t = 5 minutes
nd self-measurements by finger pricking; bolus and basal in-
ulin doses; self-reported information concerning mealtimes and
arbohydrate estimates, times of sleep, physical activity, work,
llness; and several other physical variables, including aggrega-
ions of heart rate, galvanic skin response, skin temperature, air
emperature, and psychological stress.

From all the variables in the data set, we only examined those
ncluded in a standard CGM profile, i.e., the glucose level, the
njected insulin (basal plus boluses), and the carbohydrates as-
umed during the day. Since the Ohio T1DM data are not specific
o nights, instead they span over all 24 h, and since the glucose
evel is affected by physical and psychological variations [69],
hese data are adequate to evaluate the robustness of the model
nder different disturbances.
To perform supervised learning, the data series of each patient

s partitioned into training and testing sets used to extract the
odel during the learning phase and assess its quality over un-
een samples. The number of training and testing items for each
atient is reported in [68].
During the preprocessing, the problem of missing glucose

ata arises. We have decided to throw away samples with miss-
ng glucose readings in training and testing sets to prevent the
orecasting models from being the result of artificial observations.

.2. Findings

PonyGE2, a freely downloadable and patent-free GE imple-
entation in Python, has been used for the regression prob-

em [70]. The parameters used for all the experimental trials have
een set after a preliminary tuning: population size and genera-
ions equal to 200 and 1,000, respectively; codon size equal to
00,000, tournament selection with size 4, mutation probability
qual to 10%, one-point crossover probability equal to 90%, int
lip per codon mutation with one mutation event, and Position
ndependent Grow method for the individual initialization.

Each of the three fitness functions defined in Section 3.1 has
een used as the objective function. This leads to the design of
hree GE algorithms: the generic algorithm containing the fitness
unction Φi is denoted as GEΦi . The modulation factor α related
o GEΦ3 is set to 0.025 [dl mg−1] after performing a preliminary
uning.

The adopted prediction horizon is h∆(t) = 30 minutes be-
ause the prediction accuracy becomes worse and less reliable
s the forecasting horizon increases [47]. A horizon longer than
0 min, e.g., two or four hours, is only practical for time spans that
ontain almost steady-state situations as nocturnal predictions
hen sleeping. Any external event can cause a significant and
npredictable glucose level change during these long intervals.
he considered past time offset is k∆(t) = 30 minutes for the
istorical samples exploited for the prediction. The time interval
or the historical data is chosen based on the consideration that
0-minute data in the past are enough to make an effective
rediction [60].
For each patient, indicated with the identifier ID, twenty runs

ave been carried out to reduce the randomness in the initial-
zation of the GE algorithm. The evaluation is performed in all
nstances for which a glucose measurement is available over the
rediction period. The average outcomes for each run and patient
re evaluated at the end of the evolution.
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Fig. 1. The grammar for the glucose forecasting model (Eq. (5)).
a

.2.1. Algorithm performance
The quality of the forecasting models is estimated in terms of

oth clinical and numerical accuracy. To be coherent with most
f the results in the literature, the clinical accuracy is expressed
n percentage, while the numerical accuracy is reported in [mg
l−1] for RMSE and percentage for MAPE. Namely, for each of
he three GE algorithms, Table 3 reports for each subject the
verage percentages on the testing set of the nine PRED-EGA
linical parameters together with their standard deviations over
he 20 runs. A further row shows the values of the parameters
veraged over the six subjects. High AP, low BE, and EP rates
ttest to acceptable clinical quality.
As concerns the numerical accuracy, i.e., RMSE and MAPE, for

ach GE version, Table 4 reports the results on the testing set
or each subject in terms of the average values with the related
tandard deviations over the 20 runs. The last row shows the
umerical values averaged over the six subjects.
About the quality of the GE-based forecasting model for the

umerical (only evaluated according to RMSE) and the comple-
entary clinical accuracy, from Table 3, GEΦ1 turns out to have

he worst behavior from a clinical viewpoint witnessed by a low
alue of the average AP rate (61.24%) and a very high value of
he average EP rate (35.28%) in the critical hypoglycemia region.
n contrast, GEΦ1 presents the best average numerical accuracy
ver all the patients (21.41 [mg dl−1]) as shown in Table 4.
A dual behavior can be observed as concerns the clinical qual-

ity of GEΦ2 that exhibits the best average AP percentage and very
low average EP rate in the hypoglycemia region. This algorithm is
characterized by a noticeable worsening in the average numerical
accuracy (41.40 [mg dl−1]) as evidenced in Table 4. It is worth
noting that the good performance in the critical hypoglycemia
region of this algorithm is of paramount importance from a
clinical perspective. On all the twenty runs, it never makes serious
errors (EP = 0.0%) over three subjects.
 i

6

The last algorithm GEΦ3 combines the numerical and clinical
qualities. It presents acceptable values for the average AP and
BE, but before all low EP rates in all the regions and a good
value for the average numerical accuracy (24.37 [mg dl−1]). This
demonstrates that the predictor assessed through a combination
of numerical and PRED-EGA-based clinical metrics still allows
for reducing the predicted errors in high-risk situations while
safeguarding the numerical accuracy of the predictions. It could
represent a good compromise when we want to privilege the
medical aspect without penalizing the numerical one.

About the performance stability1 of the algorithms, it can
be inferred by looking at the low standard deviations over the
different patients for each region.

The observations above evidence very good features of our
forecasting tools in different operating conditions.

It would be too lengthy to describe and analyze the models
obtained for all the investigated subjects. Therefore, in the rest of
this paper, we will only consider one of them as an exemplary
case. To avoid discussing the behavior of borderline subjects, we
have chosen subject 559 because they exhibit an intermediate
number of hypoglycemic, euglycemic, and hyperglycemic cases
among all the patients.

In Fig. 2 we report the PRED-EGA (P-EGA and R-EGA) on the
testing set regarding the patient with ID=559 for the algorithms
GEΦ1 (top), GEΦ2 (middle), and GEΦ3 (bottom). The R-EGA panes
show that the algorithm GEΦ2 makes a lower number of serious
prediction errors (represented by red points), especially in the
dangerous zone E where predicted rates of change are opposite
to what happens. This is to be expected, as these algorithms
are designed to avoid predictions in E. Instead, algorithms GEΦ1

1 With the term stability we refer to the characteristic of an evolutionary
lgorithm regarding its sensitivity to perturbations of the initial conditions,
.e., the randomness related to the initialization of the initial population.
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Table 3
Average clinical quality of glucose predictive models (with standard deviation) on the testing set for the three algorithms.

ID PRED-EGA

Hypoglycemia Euglycemia Hyperglycemia

AP (%) BE (%) EP (%) AP (%) BE (%) EP (%) AP (%) BE (%) EP (%)

GEΦ1

559 85.48 (0.69) 1.39 (0.00) 13.13 (0.69) 94.74 (0.18) 3.00 (0.19) 2.25 (0.10) 87.65 (0.19) 8.83 (0.24) 3.53 (0.13)
563 49.64 (1.56) 0.36 (1.56) 50.00 (2.26) 91.69 (0.13) 6.13 (0.13) 2.19 (0.08) 88.44 (0.21) 8.37 (0.22) 3.20 (0.13)
570 16.67 (11.91) 10.00 (4.84) 73.34 (8.89) 96.07 (0.60) 3.67 (0.62) 0.25 (0.13) 92.01 (0.44) 6.63 (0.29) 1.36 (0.18)
575 64.89 (2.28) 3.88 (0.83) 31.23 (2.28) 91.15 (0.15) 5.32 (0.17) 3.54 (0.16) 85.56 (0.41) 7.44 (0.36) 7.00 (0.21)
588 90.00 (23.80) 0.00 (0.00) 10.00 (23.80) 89.71 (0.24) 7.26 (0.25) 3.04 (0.21) 88.23 (0.30) 9.35 (0.26) 2.42 (0.17)
591 60.73 (1.91) 5.26 (0.00) 34.01 (1.91) 85.81 (0.16) 9.81 (0.20) 4.37 (0.15) 82.47 (0.25) 13.98 (0.20) 3.56 (0.22)

Avg 61.24 3.48 35.28 91.53 5.87 2.61 87.39 9.10 3.51

GEΦ2

559 94.93 (1.26) 2.78 (0.00) 2.29 (1.26) 94.57 (0.16) 3.08 (0.16) 2.35 (0.06) 87.17 (0.31) 8.89 (0.33) 3.94 (0.13)
563 92.86 (0.00) 7.14 (0.00) 0.00 (0.00) 91.61 (0.12) 6.03 (0.30) 2.37 (0.25) 87.26 (0.38) 7.84 (0.35) 4.90 (0.32)
570 87.78 (5.98) 12.22 (5.98) 0.00 (0.00) 95.67 (0.37) 3.87 (0.28) 0.46 (0.20) 91.20 (0.34) 6.87 (0.30) 1.93 (0.10)
575 89.89 (1.30) 6.31 (0.76) 3.81 (1.60) 90.98 (0.22) 5.51 (0.17) 3.52 (0.15) 83.84 (0.70) 7.91 (0.50) 8.24 (0.46)
588 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 89.17 (0.23) 7.34 (0.17) 3.49 (0.21) 85.68 (0.42) 9.30 (0.26) 5.02 (0.30)
591 87.69 (2.00) 6.46 (1.07) 5.85 (1.23) 85.39 (0.28) 10.20 (0.24) 4.40 (0.37) 79.36 (3.40) 13.92 (2.46) 6.72 (0.98)

Avg 92.19 5.82 1.99 91.23 6.01 2.76 85.75 9.12 5.12

GEΦ3

559 90.28 (0.00) 1.39 (0.00) 8.33 (0.00) 94.87 (0.07) 2.93 (0.08) 2.21 (0.04) 87.64 (0.12) 8.79 (0.12) 3.56 (0.11)
563 83.93 (7.45) 7.14 (0.00) 8.93 (7.45) 91.71 (0.16) 6.09 (0.15) 2.20 (0.15) 88.21 (0.26) 8.33 (0.32) 3.46 (0.31)
570 86.11 (6.92) 11.11 (0.00) 2.78 (6.92) 95.61 (0.39) 3.77 (0.35) 0.62 (0.14) 91.58 (0.40) 6.95 (0.36) 1.47 (0.11)
575 75.75 (1.82) 4.96 (0.49) 19.29 (1.76) 91.03 (0.24) 5.43 (0.20) 3.54 (0.13) 85.18 (0.28) 7.59 (0.27) 7.24 (0.23)
588 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 89.78 (0.31) 7.11 (0.18) 3.11 (0.26) 88.09 (0.41) 9.34 (0.33) 2.57 (0.19)
591 79.91 (1.62) 5.50 (0.43) 14.59 (1.45) 85.55 (0.18) 9.89 (0.14) 4.56 (0.15) 82.16 (0.31) 13.76 (0.31) 4.08 (0.26)

Avg 86.00 5.02 8.99 91.43 5.87 2.71 87.14 9.13 3.73
Table 4
Average numerical accuracy (with standard deviation) on the testing set for the three algorithms.
ID GEΦ1 GEΦ2 GEΦ3

RMSE ([mg dl−1]) MAPE (%) RMSE ([mg dl−1]) MAPE (%) RMSE ([mg dl−1]) MAPE (%)

559 21.98 (0.11) 10.24 (0.09) 41.00 (1.64) 25.76 (1.28) 25.50 (0.31) 13.22 (0.28)
563 19.93 (0.18) 8.95 (0.06) 38.64 (2.15) 21.66 (1.48) 24.34 (1.38) 11.40 (0.67)
570 18.32 (0.17) 6.69 (0.13) 43.92 (2.36) 20.13 (1.33) 20.64 (0.59) 7.37 (0.31)
575 24.69 (0.51) 11.54 (0.24) 36.43 (3.40) 21.55 (2.89) 25.11 (0.52) 11.75 (0.57)
588 19.94 (0.22) 8.78 (0.14) 46.24 (1.87) 24.38 (1.12) 24.61 (1.28) 11.10 (0.70)
591 23.60 (0.12) 13.22 (0.11) 42.14 (4.06) 27.52 (2.48) 26.00 (0.31) 14.28 (0.20)

Avg 21.41 9.90 41.40 23.50 24.37 11.52
ˆ

a

G

G

G

and GEΦ3 have a greater amount of non-dramatic errors (orange
oints) in the C zone of the R-EGA, so they show over-correction
or changes, which could lead to over-treatment problems. This
roblem is less grave for GEΦ2 , for which a higher number of

points lies in the D zone, meaning that it is less effective at
detecting rapid glucose falls or, more abundantly, rises, which
may cause problems as well.

As anticipated in Section 3.1, in Fig. 3 we can appreciate
the advantage of using a combination of clinical and numerical
criteria in the predictor assessment. The predictor based only
on GEΦ1 is capable of yielding the estimated predictions enough
adherent to the actual values. Nevertheless, evaluating the pre-
diction errors independently of the risk zone, this predictor is
inappropriate from a clinical perspective because it assigns the
same clinical risk to all the prediction errors. Therefore, the
resulting forecasting model can be unable to timely advise the
patient of all the possible adverse hypoglycemic or hyperglycemic
events. It must be considered that some prediction errors in
harmful situations, like hypo- or hyperglycemia, are potentially
very dangerous. The predictor assessed by clinical metrics (GEΦ2 )
prevents this flat evaluation. As can be observed from the fig-
ure, this model tends to markedly underestimate hypoglycemic
values so over-alerting the patient. Simultaneously, it does not
overestimate hyperglycemic values so neglecting possible dan-
gerous situations that could necessitate corrective actions. The
proposed linear combination of objective functions, i.e., GEΦ3 ,
inheriting mathematical features, allows for reducing the abso-
lute prediction errors in all the zones. At the same time, the
clinical component permits a less marked underestimation in the
7

hypoglycemic zone and a better estimation in the hyperglycemic
region to warn the patient in time to take the right decision in
both high-risk situations.

4.2.2. Discovered personalized models
According to the Eq. (5), the GE-based evolutionary algo-

rithm allows extracting an intrinsically interpretable personalized
model in the form:

G(t + 30) = Γ (G) − Θ(I) + Ω(C) (9)

In the case of patient 559, the above forecasting model results
in the following three models (the unit is mmol/l), i.e., Eqs. (10),
(11), and (12), depending on the algorithms used, i.e., GEΦ1 , GEΦ2 ,
nd GEΦ3 :

EΦ1 ⇒

⎧⎨⎩
Γ (G) = G(t)
Θ(I) = 0.70 · |I(t)|
Ω(C) = 0.75 · |exp(sin(C(t + 15)))|

(10)

EΦ2 ⇒

⎧⎪⎨⎪⎩
Γ (G) = G(t)
Θ(I) = 53.29 · |aq(61.36, 18.80

· (78.77 + sin(I(t + 20))))|
Ω(C) = 26.3 · |aq(C(t + 30), −29.97)|

(11)

EΦ3 ⇒

⎧⎪⎪⎨⎪⎪⎩
Γ (G) = G(t)
Θ(I) = 0.60 · |I(t)|
Ω(C) = 0.83 · |aq(C(t), C(t + 5) + C(t + 15)

(12)
− pqsrt(exp(C(t + 30))))|
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Fig. 2. The PRED-EGA on the testing set for patient 559: GEΦ1 (top), GEΦ2 (middle), and GEΦ3 (bottom).
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In general, insulin absorption causes a glucose concentration
ecrease, while carbohydrate absorption produces an increase
n this concentration. It is worth noting that the structures of
he models detected for all the other patients are similar. In our
pinion, these explicit personalized models could offer an addi-
ional aid to physicians in calibrating a personalized treatment
or each patient once they are transformed into a user-friendly
ool to observe individual reactions to events such as food intake.
s it might be expected, all the extracted models evidence an
utomatic selection of the current glucose amount G(t) with the
ddition of other amounts of I(t) and C(t) to be absorbed in time
teps successive to t .
Fig. 4 shows the insulin and carbohydrate signals and their

ombined effect after the rearrangement performed by the differ-
nt algorithms. These graphics allow us to consider the dynamics
nduced by insulin and carbohydrate absorption on the glycemic
rend of the respective discovered models. The rearranged carbo-
ydrate and insulin signals and their combination are similar for
8

EΦ1 and GEΦ3 . In particular, this latter ranges between positive
nd negative values resulting in a real adjustment of the glucose
oncentration. The carbohydrate signal for GEΦ1 is always greater
han zero with a minimum at 13.5 mg/dl, while this does not
ccur for GEΦ2 and GEΦ3 , thus evidencing the limits of a purely

numerical approach. As regards GEΦ2 , the whole effect results in
a strong downward shift of the glucose signal. Such a behavior
depends on the very low number of hypoglycemic events with
respect to euglycemic and hyperglycemic events for the subject
559 and on the specific fitness that only takes into account the
sum of the error percentages on the three zones. Vice versa, in the
case of a dataset with fewer hyperglycemic than hypoglycemic
and euglycemic cases, the combined signal would only have
positive values. Nevertheless, the prediction of high-risk glucose
events could be penalized with a dataset with fewer cases in the
euglycemic zone than in the other two zones. The problem cannot
be easily solved using a weighted sum since it is difficult to
establish how to effectively balance the different risk errors. This
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Fig. 3. The glucose forecasting results (in red and blue the actual G(t) and the estimated Ĝ(t) respectively) on the testing set for patient 559: GEΦ1 (top left), GEΦ2
top right), and GEΦ3 (bottom).
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ehavior of GEΦ2 algorithm evidences very well the drawbacks
f a fitness function using just the PRED-EGA. On the contrary,
EΦ3 has none of the limitations highlighted above. Indeed, the
arbohydrate signal correctly ranges from zero to positive values,
nd the combined signal involves an acceptable underestimation
n the hypoglycemic zone. Finally, it is to remark that a similar
ehavior holds for all the patients in the dataset.

.3. Comparison with literature

To perform a fair comparison, we only consider papers in
hich the forecasting model is tested over all the six patients

ncluded in the 2018 version of the OhioT1DM data set. Many
apers exist in the literature facing this data set, yet the vast
ajority only report results in terms of numerical accuracy,
hereas a much lower number contains results in terms of
linical accuracy. To our knowledge, just three papers investigate
oth numerical and clinical accuracy relying on PRED-EGA, i.e.,
20–22]. Hence, in the following Tables 5 and 6, the results on
he testing set of our three GE approaches are compared with
hose presented in De Bois et al. [20], with the best approach
utlined in Duducku et al. [21], and the three best deep models
ncluded in De Bois et al. [22]. Specifically, these three models are
pcLSTMCA with the lowest EP value in the hypoglycemia region
nd gpcLSTM∗

CA with the lowest EP value in the hyperglycemia
egion that assess the prediction based on clinical metrics, and
pcLSTM∗

PICA using the PICA algorithm which represents a com-
romise between the numerical and clinical metrics. As concerns
udukcu et al. [21] that exploited all the 12 patients included
n the 2020 version of the updated OhioT1DM data set, we only
onsider the six patients investigated by De Bois et al. and also in
he current paper. Therefore, the best average results for these six
atients achieved in correspondence with the most performing
pproach over the training set, namely LSTM + WaveNet + GRU

LWG) fusion models, are reported in the tables.

9

For the sake of comparison, the results of our models on the
esting are those corresponding to the best objective function
alue over the training set for each patient. Analogously to the
ther models, the tables show the averages of these results over
ll the six patients.
The overall comparison is carried out in terms of clinical crite-

ia, i.e., PRED-EGA (Table 5), and numerical metrics, i.e., RMSE and
APE (Table 6). The best clinical and numerical metrics values
ith their corresponding standard deviations are shown in bold.
The compared approaches are grouped regarding the opti-

ization function used to make the predictions, i.e., based only on
umerical metrics (G1), only on clinical evaluation criteria (G2),
r on the combination of these two metrics (G3).
Looking at Table 5 related to the clinical quality, our algorithm

EΦ1 has a performance that is the best in the hypoglycemia
nd hyperglycemia regions, and not too far from the best in the
uglycemia region with respect to the other models in the same
roup. In general, by comparing the three algorithms focusing on
mproving the clinical quality in the G2 group, i.e., gpcLSTMCA,
pcLSTM∗

CA, and our algorithm GEΦ2 , this latter has the best aver-
age rate in the hypoglycemia region as regards the AP and, most
importantly, the EP which represents a critical issue for evalu-
ating the clinical quality of the predictions. Furthermore, GEΦ2
has similar results in the other two regions. Our combined algo-
rithm GEΦ3 performs much better than the analogous algorithm
gpcLSTM∗

PICA in the critical hypoglycemia region with comparable
results for the euglycemia and hyperglycemia regions.

To reduce the clinical risk, our attention has been concentrated
on searching for models capable of lowering the erroneous pre-
dictions which involve danger for the patient independently of
the occurrence zone. Naturally, errors in the hypoglycemic region
could result in wrong treatment decisions with potentially short-
term fatal implications. Nevertheless, erroneous predictions in
hyper- or euglycemic zones are also risky in the medium or long
term if considered reliable estimations. To better highlight the

ability of our forecasting models in reducing prediction errors,
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Table 5
Average clinical quality (with standard deviation) on the testing set computed by averaging the best glucose predictive models for each patient on the training set.
PRED-EGA

Group Papers Models Hypoglycemia Euglycemia Hyperglycemia

AP (%) BE (%) EP (%) AP (%) BE (%) EP (%) AP (%) BE (%) EP (%)

G1

[20]

Base 39.24 (16.93) 2.82 (4.17) 57.94 (18.85) 90.25 (3.40) 7.11 (2.44) 2.64 (1.15) 84.40 (3.88) 11.44 (2.59) 4.16 (1.83)
Poly 0.00 (0.00) 0.00 (0.00) 100.00 (0.00) 94.54 (1.74) 5.20 (1.84) 0.27 (0.55) 75.71 (6.30) 7.00 (2.82) 17.29 (5.72)
AR 38.11 (21.40) 5.30 (3.87) 56.59 (22.30) 85.42 (5.40) 11.47 (4.22) 3.10 (1.32) 79.18 (2.98) 16.06 (3.16) 4.75 (1.67)
ARX 38.32 (23.33) 4.88 (3.92) 56.80 (23.69) 85.10 (5.41) 11.67 (4.25) 3.23 (1.34) 78.96 (2.91) 16.26 (3.00) 4.78 (1.69)
SVR 46.89 (23.72) 6.62 (4.97) 46.49 (23.87) 86.44 (4.25) 10.64 (3.22) 2.92 (1.25) 80.90 (3.31) 14.64 (3.03) 4.46 (1.90)
GP 46.00 (26.35) 6.31 (3.93) 47.69 (27.28) 84.61 (5.39) 12.22 (4.16) 3.18 (1.41) 78.35 (3.63) 16.83 (3.28) 4.82 (1.60)
ELM 34.81 (23.43) 6.81 (4.22) 58.39 (23.88) 78.85 (4.32) 17.25 (3.18) 3.91 (1.57) 73.32 (4.41) 20.79 (3.54) 5.89 (1.73)
FFNN 51.88 (21.65) 3.58 (3.23) 44.54 (21.63) 82.57 (5.22) 13.73 (4.00) 3.70 (1.40) 74.60 (4.19) 19.55 (3.64) 5.84 (2.28)
LSTM 38.37 (23.17) 3.97 (3.72) 57.67 (24.23) 83.78 (5.33) 12.70 (4.06) 3.52 (1.47) 76.86 (3.70) 17.87 (2.73) 5.27 (2.21)

[21] LWG 20.31 (17.17) 3.10 (3.81) 76.59 (16.52) 88,03 (3.46) 8.89 (2.43) 3.08 (1.20) 81.98 (3.18) 13.89 (2.24) 4.12 (2.36)

GEΦ1 60.17 (34.71) 3.58 (4.24) 36.25 (31.24) 91.50 (3.65) 5.82 (2.46) 2.68 (1.46) 87.41 (3.07) 9.04 (2.71) 3.54 (1.90)

[22] gpcLSTMCA 91.17 (8.50) 1.26 (2.08) 7.57 (8.01) 91.61 (2.03) 6.62 (1.39) 1.77 (0.74) 87.97 (5.00) 8.67 (2.64) 3.36 (2.63)
gpcLSTM∗

CA 91.02 (8.49) 1.21 (1.97) 7.77 (8.00) 91.71 (2.02) 6.55 (1.34) 1.75 (0.77) 87.95 (5.05) 8.69 (2.69) 3.36 (2.62)G2
GEΦ2 91.86 (4.57) 5.57 (3.82) 2.57 (2.87) 91.09 (3.63) 5.97 (2.38) 2.94 (1.43) 85.86 (3.59) 9.10 (2.34) 5.04 (2.17)

G3 [22] gpcLSTM∗

PICA 61.30 (20.12) 2.92 (2.38) 35.79 (20.23) 90.84 (3.57) 7.04 (2.57) 2.11 (1.07) 86.48 (3.95) 10.07 (2.66) 3.45 (2.31)
GEΦ3 86.94 (10.27) 5.31 (4.09) 7.75 (9.59) 91.23 (3.82) 5.92 (2.56) 2.85 (1.44) 86.96 (3.25) 9.36 (2.48) 3.68 (1.96)

10
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Fig. 4. Carbohydrate and insulin signals (left side) and their combined effect (right side) after the rearrangement by GEΦ1 (top pane), GEΦ2 (middle pane), and GEΦ3
bottom pane).
Table 6
Average numerical accuracy (with standard deviation) on the testing set computed by averaging
the best glucose predictive models for each patient on the training set.
Group Paper Model RMSE ([mg dl−1]) MAPE (%)

Ref 28.32 (2.38) 13.51 (2.72)
Poly 57.27 (6.59) 31.09 (6.71)
AR 20.70 (2.23) 9.62 (2.26)
ARX 20.61 (2.20) 9.59 (2.19)
SVR 20.10 (2.34) 9.08 (2.12)
GP 20.01 (2.33) 9.16 (2.16)
ELM 25.38 (1.60) 11.56 (2.43)
FFNN 21.00 (2.24) 9.33 (2.19)

[20]

LSTM 20.46 (2.08) 9.24 (2.10)

[21] LWG 22.31 (2.51) 10.96 (2.81)

G1

GEΦ1 21.34 (2.46) 9.91 (2.34)

gpcLSTMCA 47.70 (6.31) 22.43 (2.76)[22] gpcLSTM∗

CA 47.82 (6.27) 22.47 (2.76)G2
GEΦ2 39.86 (4.11) 22.65 (3.34)

[22] gpcLSTM∗

PICA 23.50 (2.49) 10.46 (2.09)G3
GEΦ3 23.54 (2.32) 11.25 (2.57)
further specific considerations can be synthesized from Table 5
about the average percentages of error predictions EP in all the
zones, namely, EPi, EPe, and EPh, with their corresponding stan-
dard deviations. It is worth noting that the model discovered by
11
GEΦ2 shows very good performance in terms of EPi and grants as
an inheritance this capability to the model extracted through the
algorithm GEΦ3 which presents a very low value of EPi. These last
two algorithms present the best results in the respective groups
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s concerns the error prediction in the hypoglycemic zone. In
ddition to lowering the error predictions in the riskiest zone,
EΦ2 and GEΦ3 also guarantee acceptable percentages of error
redictions within euglycemic and hyperglycemic zones in their
espective groups.

Further considerations related to the stability of the evolu-
ionary algorithms can be advanced. The algorithm GEΦ1 does
ot have optimal performance in G1, ranking as the worst and
he best for the average standard deviations concerning EPi and
Ph, respectively. Differently, the algorithms GEΦ2 and on GEΦ3
how the best average standard deviations for EPi and EPh in the
espective groups.

Table 6 reports the comparison of the different approaches
egarding numerical accuracy: GEΦ1 has a value of RMSE (21.34
mg dl−1]) close to all the best algorithms optimizing only a
numerical metric in G1. Also, compared with the algorithms by De
Bois et al. focused on improving the clinical quality, i.e., gpcLSTMCA
nd gpcLSTM∗

CA included in group G2, our analogous algorithm
EΦ2 presents a better RMSE value. Finally, for the algorithms in
roup G3, our proposal GEΦ3 has an RMSE similar to gpcLSTM∗

PICA.
All the above results confirm that the algorithm GEΦ3 can

epresent a good compromise to save the clinical validity of the
rediction without penalizing the numerical prediction accuracy,
hich is a very sensitive issue from a medical point of view to
rovide diabetic people with appropriate personalized therapy.
urthermore, as underlined above, the combination of the objec-
ive functions represents a reasonable compromise also in terms
f stability.
Apart from the issue related to the clinical and numerical

ccuracies, for most of the above approaches, the best-performing
orecasting models are obtained by leveraging different deep
earning networks along with decision-level fusions of different
rchitectures. Therefore, their prediction techniques are black
oxes unable to provide explicit models. Furthermore, the fusion
f the different techniques, including a deep neural network,
equires a computational effort undoubtedly superior to that
f a GE-based approach, not to mention the higher number of
arameters to be set. For example, the LSTM model, employed
s the basis of the gpcLSTM∗

PICA approach, contains two hidden
ayers of 256 LSTM units, besides not providing an interpretable
odel. This last neural architecture exemplifies the complexity of
lack-box models compared to those induced by GEΦ3 .

. Conclusions

This work introduces a methodology to enhance the clinical
uality of glucose predictors for diabetic patients, which also
onsiders the numerical aspect. The improvement consists in
ssessing the forecasting models through an objective function
hat is a linear combination of clinical and numerical metrics.
pecifically, the clinical metric relies on an advanced error grid
nalysis, i.e., PRED-EGA, which can perform accurate predictions
f glucose variations preventing diabetic patients from being
onfused about the future glycemia evolution.
As a novel contribution, an evolutionary algorithm is exploited

o improve the clinical quality of a glucose predictor evaluated
hrough the PRED-EGA. Namely, a Grammatical Evolution al-
orithm has been harnessed for discovering personalized and
nterpretable prediction models for estimating future glucose val-
es.
The evaluation of the discovered models over a real data set

or a 30-minute time horizon has confirmed the reliability of
he forecasting concerning clinical and numerical accuracy. In
articular, the clinical metric has reduced the high-risk glucose
orecasting errors, significantly improving confidence in predict-
ng hypo- or hyperglycemic events. The numerical metric has
12
contributed to keeping the absolute prediction errors low in all
the regions. It is worth noting that the predicting ability of the
models in the hypoglycemia region is of considerable significance
from the medical side for establishing a suitable personalized
diabetic therapy.

In future work, we plan to validate the proposed methodology
over a broad set of clinical data to have a more and more reliable
tool for minimizing the clinical risk of prediction errors in unsafe
zones.
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