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Abstrakt

Tato práce se zabývá okrajovou úlohou pro systém dvou obyčejných diferenciálńıch rovnic druhého
řádu s konkávńımi a konvexńımi nelinearitami a Dirichletovými okrajovými podmı́nkami. Jedna
z rovnic obsahuje kladný parametr λ. Ćılem práce je vyšetřit existenci a násobnost netriviálńıch řešeńı
úlohy na základě hodnot parametru λ. Práce nejprve prezentuje výsledky numerických experiment̊u,
d́ıky nimž čtenář źıská představu o chováńı zadaného systému. Stěžejńım výsledkem této části je
bifurkačńı diagram, který vykresluje závislost počtu netriviálńıch řešeńı na hodnotách parametru λ.
Ve zbytku práce jsou pak poznatky źıskané z numerických experiment̊u dokazovány analyticky. K
źıskáńı výsledk̊u je použita alternativńı formulace úlohy pomoćı jedné obyčejné diferenciálńı rovnice
čtvrtého řádu s Navierovými okrajovými podmı́nkami. Pomoćı variačńıch metod je nalezen omezený
interval pro parametr λ tak, aby úloha měla s jistotou alespoň dvě r̊uzná netriviálńı řešeńı. V závěru
práce jsou źıskané analytické výsledky porovnány s výsledky numerických experiment̊u.

Kĺıčová slova: okrajová úloha, parametr, systém obyčejných diferenciálńıch rovnic, Mountain Pass,
existence a násobnost řešeńı, bifurkačńı diagram

Abstract

This paper deals with a BVP for a system which consists of two ordinary differential equations of
the second order with concave and convex nonlinearities and Dirichlet boundary conditions. One of
the equations contains a positive parameter λ. The aim of this work is to examine existence and
multiplicity of nontrivial solutions of the system based on values of the parameter λ. The paper
presents results of numerical experiments which describe the behaviour of the system. The key result
of this section is a bifurcation diagram which shows dependence of multiplicity of nontrivial solutions
on values of the parameter λ. In the rest of the work, we tackle rigorously several of the features
revealed by the numerical experiments. For this purpose, the problem is described using a single
ordinary differential equation of the fourth order with Navier boundary conditions. Using variational
methods, an appropriate bounded range for λ is found such that the problem has at least two distinct
nontrivial solutions. At the end of the work, the analytical results are compared with the results
obtained from the numerical experiments.

Keywords: boundary value problem, parameter, system of ordinary differential equations, Mountain
Pass, existence and multiplicity of solutions, bifurcation diagram



Contents

Preface 1

1 Preliminaries 3
1.1 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Important statements for Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Sobolev space Xγ = W 2,γ(0, 1) ∩W 1,γ

0 (0, 1) . . . . . . . . . . . . . . . . . . . . . . 5

2 An elliptic system with concave-convex nonlinearities 9
2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Results of the numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Behavior of the energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Analytical results on existence and multiplicity of solutions 21
3.1 The Mountain Pass solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Solution near the origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Remarks on existence and multiplicity of solutions . . . . . . . . . . . . . . . . . . . . 30

Appendix 36

Bibliography 40



Preface

This work deals with a system of two ordinary differential equations of the second order
−u′′(x) = λ |v(x)|r−1 v(x) + |v(x)|p−1 v(x), 0 < x < 1

−v′′(x) = |u(x)|q−1 u(x),

u, v ≥ 0,

u(0) = u(1) = v(0) = v(1) = 0,

(∗)

where p > 1, q > 1, and r ∈ (0, 1) are fixed exponents and λ > 0 is a controlled parameter. The system
(∗) features a concave (near the origin) and convex (at infinity) nonlinearities. This work examines
a connection between existence (and multiplicity) of solutions of (∗) and values of the parameter λ.
Systems of this type describe phenomena which occur naturally for instance in population dynamics,
astrophysics or fluid dynamics. In astrophysics, similar equations have occured since 19th century and
they have been used for capturing behavior of density of a gas sphere [5, 10]. Known results for the
topic of the systems with concave-convex nonlinearities can be found for example in [2] (for a related
single equation) and [6] (for the system (∗) in higher dimensions). This work brings an insight to this
topic in one dimension providing wide theoretical and numerical results. We emphasize that studies of
such boundary value problems in dimension one often yield more precise information. Nevertheless as
far as we know, this has not been explored yet for the systems of our type. In this regard, the numerical
experiments presented in this work are a novel, insightful and (we believe) versatile approach to study
system (∗). The numerical experiments represent a generalization of ideas in [11].
Our theoretical approach is motivated by the one in [2], in contrast with the approach in [6].
Chapter 1 deals with preliminary statements used later in this work as supporting arguments in proofs.
A few of the statements refer to known results in the theory of Sobolev spaces. Most of the claims
are, however, formulated and proved specifically for purpose of this work.
Chapter 2 first formulates the problem (∗) and sets out a path for answering the question of how
many solutions exist for a given value of the parameter λ. Then it provides a section with numerical
experiments. This section contains a detailed description of scripts designed in Matlab specifically for
this work. Briefly, the scripts treat the problem (∗) as an initial value problem setting u(0) = v(0) = 0
and values of u′(0) and v′(0) are left as parameters. Systematically choosing different combinations
of these parameters, the scripts compute thousands of solutions of initial value problems that do not
necessarily satisfy the boundary condition of (∗) at x = 1. If such solutions satisfy u(1) = v(1) = 0,
they are considered to be solutions to the original problem (∗). The major results of the section about
numerical experiments is a bifurcation diagram which points out reasonable choices of values of the
parameter λ if we try to obtain a solution of the problem.
Results from the numerical section were then used as a starting point in the development of analyt-
ical statements in Chapter 3 which rigorously examine existence and multiplicity of solutions of (∗).
Therefore, most of the chapter is filled with proofs of analytical claims using among others the Moun-
tain Pass theorem and the Minimization theorem as key tools for proving existence of two distinct
solutions. The claims are then utilized to prove the main theorem, which sums up all the analytical
results provided in this work.
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At the very end of the paper, a few paragraphs are dedicated to a comparison of the analytical and
the numerical results presented in Chapters 2 and 3.
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Chapter 1

Preliminaries

Throughout this work we assume that the reader is familiar with basic concepts of Lp spaces and
functional analysis. This chapter mentions crucial terminology and well-known statements and fur-
thermore, it provides a theoretical background for the following chapters.
In this chapter, unless stated otherwise, we assume 1 ≤ p ≤ +∞, k ∈ N, and I ⊂ R is an open
bounded interval.

1.1 Sobolev spaces

Definition 1.1 (Weak derivative). Let u ∈ L1
loc(I). A function v ∈ L1

loc(I) is the k-th weak derivative
of u if for every φ ∈ C∞

0 (I) ∫
I

u(x)
dkφ(x)

dxk
dx = (−1)k

∫
I

v(x)φ(x) dx.

We denote the k-th derivative by u(k).

Remark 1.2. The function u(k) is also called the weak derivative of order k. The function φ is usually
called a test function. If both weak and classical derivatives exist, they coincide. For simplicity, we
denote u′ = u(1) and u′′ = u(2).

Definition 1.3 (Sobolev space). The Sobolev space W k,p(I) is the space of all u ∈ Lp(I) such that
u(i) ∈ Lp(I) for any i ∈ {1, . . . , k}.

Remark 1.4. It is known that the mapping

∥.∥Wk,p(I) : u 7→ ∥u∥Lp(I) +
k∑

i=1

∥u(i)∥Lp(I)

is a norm in W k,p(I).

The following theorem sums up Theorems 3.3 and 3.6 in [1], p. 60–61.

Theorem 1.5. The Sobolev space W k,p(I) is Banach for any k ∈ N and p ∈ [1,+∞]. Furthermore it
is separable for p ∈ [1,∞) and reflexive for p ∈ (1,∞).

The following definition allows us to work with homogeneous Dirichlet boundary conditions in the
framework of Sobolev spaces.

Definition 1.6. Let 1 ≤ p < +∞. W 1,p
0 (I) is defined as the closure of C1

c (I) in W 1,p(I) with respect
to ∥.∥W 1,p(I).
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A convenient description of the space W 1,p
0 (I) is given in the following theorem.

Theorem 1.7. Let u ∈ W 1,p(I). Then u ∈ W 1,p
0 (I) if and only if u = 0 on ∂I.

The proof of this Theorem is provided in [4], Th. 8.12, p. 217.

1.1.1 Important statements for Sobolev spaces

We also mention some important results from the theory of Sobolev spaces.
The following theorem describes a crucial property of the Sobolev functions in one dimension.

Theorem 1.8 (Continuity of the Sobolev functions in R). Let u ∈ W 1,p(I). There exists a function
ũ ∈ C(Ī) such that

u = ũ a.e. in I

and for any a, b ∈ Ī

ũ(a)− ũ(b) =

b∫
a

u′(x) dx.

For the proof of Theorem 1.8, see [4], Th. 8.2, p. 204.

Remark 1.9. The following holds for any u ∈ W k,p(I):

(a) u ∈ C(Ī),

(b) u(i) ∈ C(Ī) for any i ∈ {1, . . . , k − 1}.

Hence u ∈ Ck−1(I).

The following theorem proved in [4] (Corollary 8.10, p. 215) allows us to use the integration by parts
in W 1,p(I).

Theorem 1.10 (Integration by parts). Let f1, f2 ∈ W 1,p(I) for 1 ≤ p ≤ +∞. Then

f1 f2 ∈ W 1,p(I)

and for any a, b ∈ Ī we have

b∫
a

f ′
1 f2 dx = f1(a) f2(a)− f1(b) f2(b)−

b∫
a

f1 f
′
2 dx. (1.1)

Remark 1.11. We point out that if Theorem 1.10 is used for f1, f2 ∈ W 1,p(I) and a, b ∈ Ī such that
for both of the points a, b, at least one of the function f1, f2 vanishes, equation (1.1) simplifies to the
form

b∫
a

f ′
1 f2 dx = −

b∫
a

f1 f
′
2 dx.

Theorem 1.12 (Morrey’s inequality). Let u ∈ W 1,p(I) and 1 < p ≤ +∞. Then u ∈ C
0,1− 1

p (Ī) and
for all x, y ∈ Ī,

|u(x)− u(y)| ≤ |x− y|1−
1
p ∥u′∥Lp(I).
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The proof of Morrey’s inequality can be found in [8], Th. 4, p. 280.
The following Remark allows us to present the result of the Morrey’s inequality in a broader context.

Remark 1.13. Let us assume I = (a, b), s ∈ [1,∞), and u ∈ L∞(a, b). Since I is a bounded interval,
the following estimate holds

∥u∥Ls(a,b) =

 b∫
a

|u|sds


1
s

≤ (b− a)
1
s ∥u∥L∞(a,b).

Remark 1.14 (Morrey’s inequality revisited). Let us assume I = (a, b).

(a) If u ∈ W 1,p(a, b) and u(x1) = 0 for some x1 ∈ [a, b], the result in Theorem 1.12 yields that
u ∈ L∞(a, b) and in addition

∥u∥L∞(a,b) ≤ (b− a)
1− 1

p ∥u′∥Lp(a,b). (1.2)

(b) If u ∈ W 2,p(a, b) and u′(x2) = 0 for some x2 ∈ [a, b], then

(b1) u′ ∈ W 1,p(a, b) and we get (1.2) for the derivative of u, in other words, u′ ∈ L∞(a, b) and

∥u′∥L∞(a,b) ≤ (b− a)
1− 1

p ∥u′′∥Lp(a,b); (1.3)

(b2) Remark 1.13 gives

|u(x)− u(y)| ≤ (b− a)
1− 1

p ∥u′∥Lp(a,b) ≤ (b− a)
1
p (b− a)

1− 1
p ∥u′∥L∞(a,b) (1.4)

and applying (1.3) for inequality (1.4), the Morrey’s inequality can be further iterated as
follows

|u(x)− u(y)| ≤ (b− a) (b− a)
1− 1

p ∥u′′∥Lp(a,b)

for any x, y ∈ [a, b]. Thus,

∥u∥L∞(a,b) ≤ (b− a)
2− 1

p ∥u′′∥Lp(a,b).

Theorem 1.15. Let I be bounded and let 1 < p ≤ +∞. Then the following embeddings are compact:

(a) W 1,p(I) ⊂ C(Ī),

(b) W 1,p(I) ⊂ Lp(I).

For proof see [4], Th. 8.8, p. 213 and [4], Th. 9.16, p. 285.
Provided the assumptions of Theorem 1.15 are satisfied, for a bounded sequence (un) ⊂ W 1,p(I), there
exist a subsequence (unk

) ⊂ (un) and u ∈ W 1,p(I) such that unk
converges to u uniformly in [a, b] and

strongly in Lp(I).

1.2 The Sobolev space Xγ = W 2,γ(0, 1) ∩W 1,γ
0 (0, 1)

For γ > 1, let us consider the space

Xγ := W 2,γ(0, 1) ∩W 1,γ
0 (0, 1). (1.5)

Remark 1.16. From Theorems 1.7 and 1.8, if u ∈ Xγ , we know that:

• u, u′, and u′′ belong to the space Lγ(0, 1);

• u ∈ C1([0, 1]);

• u(0) = u(1) = 0.

Let us now describe further properties of Xγ .
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Properties of Xγ

Xγ is clearly a subset of the linear vector space W 1,γ
0 (0, 1). Consider the mapping ∥.∥Xγ : Xγ → R

defined by

∥v∥Xγ :=

 1∫
0

|v′′(x)|γ dx


1
γ

.

Now, we show that
(
Xγ , ∥.∥Xγ

)
is a normed space.

Clearly, for any v ∈ Xγ and k ∈ R, we have

∥v∥Xγ ≥ 0, (1.6)

∥v∥Xγ = 0 ⇔ v′′ = 0 a.e. in (0, 1), (1.7)

∥k v∥Xγ = |k|

 1∫
0

|v′′(x)|γ dx


1
γ

. (1.8)

Furthermore, v′′ = 0 if and only if v′ = const., i.e. v is a linear function. However, since any v ∈ Xγ

is zero on a boundary1, (1.6)–(1.7) necessarily imply

∥v∥Xγ ≥ 0 and ∥v∥Xγ = 0 ⇔ v = 0 on [0, 1].

Finally, the Minkowski inequality in Lγ(0, 1) yields for any u, v ∈ Xγ ,

∥u+ v∥Xγ ≤ ∥u∥Xγ + ∥v∥Xγ . (1.9)

Consequently, from (1.6)–(1.9), Xγ endowed with ∥.∥Xγ satisfies all axioms of a normed space.

For purpose of further work, we present the following lemmas.

Lemma 1.17. If u ∈ Xγ, then u ∈ L∞(0, 1) and

∥u∥L∞(0,1) ≤ ∥u∥Xγ . (1.10)

Moreover, for any s ∈ (1,∞], the linear embedding

i : Xγ → Ls(0, 1)

i(u) = u
(1.11)

is continuous with ∥i∥ ≤ 1.

Proof. If u ∈ Xγ , then from Remark 1.16 and Rolle’s Theorem2 we know the following:

• u ∈ W 2,γ(0, 1),

• u(0) = 0 = u(1),

• both u and u′ are continuous in [0, 1],

• there exists ξ ∈ (0, 1) such that u′(ξ) = 0.

1See Theorem 1.7.
2See [13], p. 215, Prop. 1
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Using the above stated properties, we obtain (1.10) directly from Remark 1.14.
Remark 1.13 further yields

∥u∥Ls(0,1) ≤ ∥u∥Xγ ,

which proves the properties of (1.11). The proof is now complete.

Lemma 1.18. The norms ∥.∥Xγ and ∥.∥W 2,γ(0,1) are equivalent in Xγ.

Proof. For u ∈ Xγ , Remarks 1.13 and 1.14 imply

∥u′∥Lγ(0,1) ≤ ∥u∥Xγ . (1.12)

Furthemore, from Lemma 1.17 we have

∥u∥Lγ(0,1) ≤ ∥u∥Xγ , (1.13)

which yields
1

3
∥u∥W 2,γ(0,1) ≤ ∥u∥Xγ ≤ ∥u∥W 2,γ(0,1).

Lemma 1.19. Space Xγ is Banach for any γ > 1.

Proof. Let us consider a Cauchy sequence (un) ⊂ Xγ , that is, for any ε > 0 there exists n0 ∈ N such
that for any k, l ∈ N it holds that

if k > n0 and l > n0, we have ∥uk − ul∥Xγ < ε. (1.14)

First we prove that (un) is Cauchy both in W 1,γ
0 (0, 1) and W 2,γ(0, 1). Let us consider k, l satisfying

assumptions in (1.14). Since uk − ul ∈ Xγ , Remark 1.16 and Rolle’s Theorem imply that for some
ξ ∈ (0, 1), u′k(ξ)− u′l(ξ) = 0.
Therefore, Remarks 1.13 and 1.14 yield

∥u′k − u′l∥Lγ(0,1) ≤ ∥uk − ul∥Xγ . (1.15)

Since ∥u′∥Lγ(0,1) and ∥u∥W 1,γ(0,1) are equivalent norms in W 1,γ
0 (0, 1) and since k, l ∈ N satisfying (1.14)

were chosen arbitrarily, inequality (1.15) gives that (un) is Cauchy in W 1,γ
0 (0, 1).

The sequence (un) is also Cauchy in W 2,γ(0, 1) from Lemma 1.18.

Since the spaces W 2,γ(0, 1) and W 1,γ
0 (0, 1) are Banach spaces, there exist functions û1 ∈ W 2,γ(0, 1)

and û2 ∈ W 1,γ
0 (0, 1) such that

∥un − û1∥W 2,γ(0,1) → 0 and ∥un − û2∥W 1,γ
0 (0,1)

→ 0

as n approaches infinity.
Since for any n ∈ N,

∥un − û1∥W 1,γ(0,1) ≤ ∥un − û1∥W 2,γ(0,1),

û1 = û2 a.e. in (0, 1).
This implies that for an arbitrary Cauchy sequence (un) ⊂ X, there exists û1 ∈ Xγ such that (un)
converges to û1 strongly in Xγ . The proof is complete.

Lemma 1.20. For any γ > 1, the space Xγ is reflexive.
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Proof. The space Xγ is a linear subspace of W 2,γ(0, 1), thus we can consider the operator T : Xγ →
W 2,γ(0, 1) defined by T (u) = u for any u ∈ Xγ .
Clearly, the operator T is injective and Xγ consists of all images of T in W 2,γ(0, 1). Now we need to
prove that Xγ is closed in W 2,γ(0, 1).
We know that W 2,γ(0, 1) endowed with ∥.∥W 2,γ(0,1) and Xγ endowed with ∥.∥Xγ are Banach spaces3.
Since ∥.∥W 2,γ(0,1) and ∥.∥Xγ are equivalent (see Lemma 1.18) in Xγ , we have that

(Xγ , ∥.∥W 2,γ(0,1))

is also a Banach space.
Xγ is then closed in W 2,γ(0, 1) and hence ([4], Prop. 3.20) yields that the space Xγ is reflexive.

3See Theorem 1.5 and Lemma 1.19.
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Chapter 2

An elliptic system with concave-convex
nonlinearities

Let p, q, r, λ be real constants such that r ∈ (0, 1), p, q > 1, qr < 1 and λ > 0.

Let us consider the BVP
−u′′(x) = λ |v(x)|r−1 v(x) + |v(x)|p−1 v(x), 0 < x < 1

−v′′(x) = |u(x)|q−1 u(x),

u, v ≥ 0,

u(0) = u(1) = v(0) = v(1) = 0.

(2.1)

In this chapter, we examine existence and multiplicity of nontrivial non-negative solutions of (2.1) and
their dependence on λ.

2.1 Formulation

To be able to work with the problem in a slightly simpler way, we rewrite the BVP (2.1) as follows
−u′′(x) = λ (v+(x))

r + (v+(x))
p, 0 < x < 1

−v′′(x) = |u(x)|q−1 u(x),

u(0) = u(1) = v(0) = v(1) = 0,

(2.2)

where v+ denotes a positive part of function v, in other words for any x ∈ (0, 1)

v+(x) = max{v(x), 0}.

Observe that if u, v are classical solutions of (2.2), that is u, v ∈ C2(0, 1) ∩ C([0, 1]) satisfy (2.2)
pointwise, from the first equation, u is concave in [0, 1]. Since u(0) = u(1) = 0, u is positive in (0, 1).
Arguing in a similar manner with the second equation, the same holds for v.

Therefore, any classical solution of (2.2) is automatically positive and hence it is also a solution of
(2.1).

Being u a classical smooth solution in (0, 1), from the second equation in (2.2) we have

u = −|v′′|
1
q
−1

v′′ ∈ C2(0, 1). (2.3)

Plugging (2.3) into the first equation in (2.2) yields

9



d2

dx2

(
|v′′(x)|

1
q
−1

v′′(x)
)
= λ (v+(x))

r + (v+(x))
p, x ∈ (0, 1), (2.4)

with the Navier boundary conditions

v(0) = v(1) = 0 = v′′(0) = v′′(1). (2.5)

In this context, it is reasonable to say that a classical solution of (2.4)–(2.5) is a function v ∈ C2(0, 1)

such that |v′′(x)|
1
q
−1

v′′(x) belongs to C2(0, 1) and (2.4)–(2.5) is satisfied pointwise. This definition is
rather restrictive for further study. For this reason, in this work we approach the problem in a “weaker”
sense.

Set γ := q+1
q and let X := Xγ be the space introduced in (1.5). Let us multiply (2.4) by an arbitrary

test function φ ∈ X and integrate the equation over the interval (0, 1).

On the left-hand side, let us carry out integration by parts. Since φ(0) = φ(1) = 0 (we recall that any
function in X is zero at the boundary in view of Remark 1.16), we get

−
1∫

0

d

dx

(
|v′′(x)|

1
q
−1

v′′(x)
)
φ′(x)dx =

1∫
0

(λ (v+(x))
r φ(x) + (v+(x))

p φ(x)) dx.

Applying integration by parts again and using (2.5), we have

1∫
0

|v′′(x)|
1
q
−1

v′′(x)φ′′(x)dx =

1∫
0

(λ (v+(x))
r φ(x) + (v+(x))

p φ(x)) dx. (2.6)

For relation (2.6) to make sense, it is enough to have integrable integrands on both sides of (2.6).
In contrast with the concept of the classical solution of (2.4)–(2.5), neither we require higher order
differentiability, nor we need pointwise equality of the original terms. The previous dicussions motivate
the following definition.

Definition 2.1. A function v ∈ X satisfying (2.6) for any arbitrary φ ∈ X is called a weak solution
of (2.4)–(2.5).

Looking for weak solutions of (2.4)–(2.5) allows us to use the variational approach, which is a more
convenient tool for our purposes. As it was discussed above, any classical solution of (2.4)–(2.5)
is a weak solution of (2.4)–(2.5). In the following proposition, we prove that, having found a weak
solution of (2.4)–(2.5), it corresponds also to a classical solution of (2.4)–(2.5). Proof of the proposition
is motivated by arguments presented in [9].

Proposition 2.2 (Regularity of weak solutions). If v ∈ X is a weak solution of (2.4)–(2.5), then the
function v is also a classical solution of (2.4)–(2.5).

Proof. To make the notation in this proof concise, we denote

a2(x) = |v′′(x)|
1
q
−1

v′′(x) and a0(x) = λ(v+(x))
r + (v+(x))

p.

Thus, (2.4)–(2.5) reads as {
a′′2(x) = a0(x), x ∈ (0, 1),

v(0) = v(1) = v′′(0) = v′′(1) = 0,
(2.7)
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whereas equation (2.6) can be rewritten as follows

1∫
0

a2(x)φ
′′(x) dx =

1∫
0

a0(x)φ(x)dx ∀φ ∈ X. (2.8)

Let v ∈ X satisfy (2.8). We need to show that

(i) v ∈ C2(0, 1),

(ii) a2 ∈ C2(0, 1),

(iii) (2.7) holds pointwise.

Clearly, from Theorem 1.8, a0 is continuous. By means of Theorem 1.10, we may integrate by parts1

the right-hand side in (2.8) to find that

1∫
0

a2(x)φ
′′(x) dx = −

1∫
0

 x∫
0

a0(t) dt

φ′(x) dx ∀φ ∈ X. (2.9)

The integration by parts can be carried out once again, which results in

1∫
0

a2(x)φ
′′(x) dx =

1∫
0

 x∫
0

y∫
0

a0(t) dt dy

 φ′′(x) dx−

 1∫
0

y∫
0

a0 dtdy

φ′(1) ∀φ ∈ X,

or in simplified notation

1∫
0

M(x)φ′′(x) dx = −

 1∫
0

y∫
0

a0 dt dy

φ′(1) ∀φ ∈ X (2.10)

with M(x) := a2(x)−
x∫
0

y∫
0

a0(t) dtdy for x ∈ (0, 1).

We will prove that M is a linear function and, consequently, it is twice continuosly differentiable. To
begin with, we choose a concrete test function φ in (2.10). Define

φ̃(x) :=

x∫
0

y∫
0

M(t) dt dy − Ax3

6
+ Bx, (2.11)

where A, B are defined as

A := 3
1∫
0

M(x) dx− 3
1∫
0

x∫
0

M(t) dt dx,

B := 1
2

1∫
0

M(x) dx− 3
2

1∫
0

x∫
0

M(t) dt dx.

1In (1.1), take f1(x) =
x∫
0

a0(t) dt and assume f2 is any φ ∈ X.
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From (2.11), we directly get

φ̃′(x) =

x∫
0

M(t) dt− Ax2

2
+ B,

φ̃′′(x) = M(x)−Ax.

We now verify that φ̃ represents an admissible test function. It is easy to see that

φ̃(0) = φ̃(1) = 0.

Since v ∈ X, we know that v′′ ∈ L
q+1
q . Moreover since q > 1, we have L

q+1
q (0, 1) ↪→ L

q+1

q2 (0, 1) and
thus

∥a2∥
q+1
q

L
q+1
q (0,1)

=

1∫
0

|v′′|
q+1

q2 dx ≤ C ∥v′′∥
q+1

q2

L
q+1
q (0,1)

< +∞,

C is a positive constant. Therefore

φ̃′′ ∈ L
q+1
q (0, 1),

in other words, φ̃ ∈ X. Moreover, φ̃′(1) = 0 and it follows from (2.10) that

1∫
0

M(x) φ̃′′(x) dx = 0. (2.12)

Furthermore, using assertion (2.12) and integration by parts (Theorem 1.10),

1∫
0

(M(x)−Ax)2 dx =

1∫
0

M(x) φ̃′′(x) dx−
1∫

0

Ax φ̃′′(x) dx

=

1∫
0

A φ̃′(x) dx = 0.

Necessarily from the last equality, we have that M(x) = Ax a.e. in (0, 1), in other words,

a2(x) = Ax+

x∫
0

y∫
0

a0(t) dt dx a.e. in (0, 1), (2.13)

which (due to differentiability of the right-hand side) yields

a2 ∈ C2(0, 1), v ∈ C2(0, 1), (2.14)

which proves (i), (ii) on page 11.

It remains to be proved that v satisfies (2.7) pointwise. Differentiating twice both sides of (2.13) for
x ∈ (0, 1),

a′′2(x) = a0(x), x ∈ (0, 1). (2.15)
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Since v ∈ X, in view of Theorem 1.7, we have

v(0) = v(1) = 0. (2.16)

Finally, we prove that v′′ vanishes at the boundary. Using (2.14) and integrating by parts twice2 the
left-hand side in (2.8),

1∫
0

(
a′′2 − a0

)
φdx = a2(0)φ

′(0)− a2(1)φ
′(1) ∀φ ∈ X.

Using (2.15) then yields
a2(0)φ

′(0)− a2(1)φ
′(1) = 0 ∀φ ∈ X.

Since φ ∈ X is arbitrary in the last equation, necessarily a2(0) = a2(1) = 0 and hence

v′′(0) = v′′(1) = 0. (2.17)

Assertions (2.14)–(2.17) conclude the proof of (iii) on page 11 and this completes the proof of the
proposition.

Consider the functional J : X → R defined by

J(v) :=
q

q + 1

1∫
0

|v′′(x)|
q+1
q dx− 1

r + 1

1∫
0

λ vr+1
+ (x) dx− 1

p+ 1

1∫
0

vp+1
+ (x) dx.

For convenience, we can rewrite J(v) as

J(v) =
q

q + 1
∥v∥

q+1
q

X − λ

r + 1
∥v+∥r+1

Lr+1(0,1)
− 1

p+ 1
∥v+∥p+1

Lp+1(0,1)
. (2.18)

From Lemma 1.17, J is well-defined.
If we examine the Gateaux derivative of J at v ∈ X in the direction φ ∈ X, we get

DJ(v)φ =

1∫
0

|v′′(x)|
1
q
−1

v′′(x)φ′′dx−
1∫

0

(
λ |v+(x)|r−1 v(x)φ+ |v+(x)|p−1 v(x)φ

)
dx. (2.19)

As a corollary of the Hölder’s inequality, Lemma 1.17, and the preceeding remarks, for any v, φ ∈ X,
DJ(v)φ is well-defined (for details see (3.2) on page 22).
Also, DJ(v)φ = 0 if and only if v satisfies (2.6), i.e., v is a weak solution of (2.4)–(2.5).

∗ ∗ ∗

Our aim now is to examine multiplicity of solutions of (2.4)–(2.5) (or (2.1), respectively) with respect
to a given value of the parameter λ. The main result in this regard is concluded in the following
statement.

Main Theorem. There exists a positive constant λ0 such that, for λ ∈ (0, λ0), there exist two distinct
nontrivial non-negative classical solutions of (2.1).

To prove this theorem, we proceed in a few steps. First, we get insight and intuition using numerical
experiments. Second, based on the observations, we use two variational theorems (the Mountain Pass
Theorem and the Minimization Theorem) to obtain two solutions for a specific range of values of the
parameter λ. Finally, we verify that the solutions have the desired properties and we carry out the
proof of Main Theorem.

2We integrate by parts by means of Theorem 1.10. First we consider f1 = φ′, f2 = a2, subsequently f1 = φ, f2 = a′
2.

Observe that φ(0) = φ(1) = 0, which simplifies the result.
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2.2 Numerical experiments

In this section, we describe an idea we developed to obtain numerical observations for problem (2.2).3

However, for the purpose of the numerical experiments, we have to consider a different representation
of the problem.

Consider the initial value problem

u′(x) = w(x), x ≥ 0

w′(x) = −λ (v+(x))
r − (v+(x))

p,

v′(x) = z(x),

z′(x) = −|u(x)|q−1 u(x),

u(0) = 0, w(0) = du0,

v(0) = 0, z(0) = dv0,

(2.20)

where du0 and dv0 are considered as additional real parameters of the problem.

Let us suppose that (u,w, v, z) is a solution to (2.20), then the functions u and v automatically satisfy
the equations and the left Dirichlet boundary conditions in (2.2). It remains to verify that u and v
are zero at the right boundary (namely, at x = 1).

Naturally, choosing different parameters (du0, dv0), we compute different solutions of the corresponding
problem (2.20). At the same time, when we obtain functions u and v, we can easily calculate the values
u(1) and v(1). Hence, for certain values of du0, dv0, the corresponding pair of functions (u, v) becomes
a solution to (2.2), whenever u(1) = v(1) = 0 and u, v > 0 in (0, 1).

During the numerical experiments, we iterate predefined values of the parameters (du0, dv0) and
compute the correspoding solutions to (2.20). When such solution satisfies

u(1) ≈ 0, v(1) ≈ 0,

in other words |u(1)| and |v(1)| are sufficiently small, we call (u, v) a solution to the original problem
(2.2).

A reader can imagine the process as a footballer’s kick. Two footballers kick a ball from the ground
(zero height) on the left border of the field with a given initial slope. The trajectory of the kicked
balls are controlled by our equations. The footballers aim at a bin located on the right border of the
field. To hit the bin with a ball, it is necessary to choose the initial slope of the kick such that the ball
descends to a zero height exactly on the right border of the field, neither closer, nor farther from the
footballer. Since each of the footballers kicks with different strength, generally speaking, the required
slopes for the one and the other footballer differ.

The implementation of this idea is described in the following subsection.

2.2.1 The implementation

We implemented the idea of the experiments as a set of scripts in Matlab. The script is optimized to
provide the results in reasonable time and accuracy.

<numerical.m>
Define algorithm settings and values of the parameters p, q, r.
Define the initial range for du0 and dv0.
Define the range for the parameter λ.
Iterate through the range for λ and do the following:

3It suffices to consider (2.2) as described at the beginning of this chapter.
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<for cycle>
Run shooting.m with desired settings.

<shooting.m>
Represent du0 − dv0 plane by coarse (∆ = 0.1) and dense (∆ = 0.005) grids.4

Iterate vertices of the coarse grid and run shootandsolve.m.

<shootandsolve.m>
Run ode45.m (Runge-Kutta method for ODEs from Matlab library) for (2.20) and
any given initial condition (u(0), w(0), v(0), z(0)) = (0, du0, 0, dv0).
Compute the solution and calculate the residues u(1) and v(1).
Return the residues as the return value.

</shootandsolve.m>

Based on the residues for a pair (du0, dv0), assign the pair a color using the following
scheme:

• u(1) > 0, v(1) > 0 – green,

• u(1) > 0, v(1) < 0 – yellow,

• u(1) < 0, v(1) > 0 – blue,

• u(1) < 0, v(1) < 0 – red.

Plot the colors in a du0−dv0 diagram and save them into a variable for the coarse grid.
The pair (du0, dv0) such that (u, v) is also a solution of (2.2) can be located exactly at
the point where all colors meet, in other words, where both residues are zero.
Iterate through the vertices of the coarse grid and choose only the points which have
a neighbour of a different color (we target edges between two colors).
In the dense grid, proceed only with the vertices corresponding to the chosen points in
the coarse grid.
Run shootandsolve.m for the vertices in the dense grid.
Plot the colors in the du0 − dv0 diagram and save them into a variable for the dense
grid.
Explore neighbourhood of the points in the dense grid and check whether all colors are
present in the neighbourhood (if so, assume there is a solution in the neighbourhood).
Approximate the values of (du0, dv0) corresponding to the solution – denote them by
(solU, solV ) – and mark them in the graph with a black circle.
Return (solU, solV ) – or (Inf, Inf) if no solution was found.

</shooting.m>

If the return value is (Inf, Inf) (solution not found), exit the for cycle.

Run showsolution.m, pass (solU, solV ) as a parameter.

<showsolution.m>
Compute the solution using (solU, solV ) and ode45.m.
Plot the solution (for plotting, consider the merged equation (2.4)).
Return magnitude of the plotted function.
Note: The notion of magnitude represents the norm ∥f∥ = max

x∈[0,1]
f(x).

4The grid is uniform, square, and the distance between two neighboring vertices is ∆ (in both directions du0 and
dv0). The results are computed only in the vertices of the grid. For instance, if we consider du0 ∈ [a, b] and dv0 ∈ [c, d],
the corresponding grid consists of vertices{

(a+ i∆, b+ j∆) ∈ [a, b]× [c, d] : i = 0, 1, . . . ,
b− a

∆
, j = 0, 1, . . . ,

d− c

∆

}
.

For simplicity, we assume b − a, d − c,∆−1 ∈ N. Thus, for any unit square in du0 − dv0 plane, the coarse grid contains
102 vertices and the dense grid contains 2002 vertices.
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</showsolution.m>

Save the value of λ and the corresponding magnitude into a text file.

Considering the development of the results for the previous values of λ, automatically adapt
the ranges of du0 and dv0 for the next iteration (for the optimization, it is necessary to use
the narrowest range of the parameters as possible).

</for cycle>

Load results for the whole range of λ from the text file.

Vizualize dependancy of the magnitude of the solution on the parameter λ – plot the bifurcation
diagram.

</numerical.m>

Using two grids in the implementation saves significant amount of time and memory. In the graph,
the optimized script skips parts of the domain where the results cannot be located (from the coarse
grid’s point of view), thus the script leaves blank rectangles in the graph.

2.2.2 Results of the numerical experiments

As an ilustration of the numerical experiments, we include results for a few values of λ. In this
subsection, we consider p = 3, q = 1.5, and r = 1

3 .

Obviously, setting (du0, dv0) = (0, 0) yields a trivial solution. Nevertheless, for small positive values of
λ, the numerical experiments anticipate existence of a nontrivial solution as it can be seen in Figure
2.1.

d
v 0

du0

(a) Diagram for λ = 1 (coarse grid).

d
v 0

du0

(b) Diagram for λ = 1 (dense grid).

Fig. 2.1: The du0-dv0 diagram for λ = 1 and both coarse and dense grid.

In Figure 2.1b, the experiments suggest that there exists a narrow red protrusion coming from the red
area at the bottom-left corner of the diagram. At the point where it touches the green area, all four
colors connect at the pair (du0, dv0) corresponding to a nontrivial solution.

As the value of λ increases, the red protrusion is visible for higher and higher values of du0 and dv0,
as shown in Figure 2.2.

If we fix λ = 10, besides the solution ilustrated in Figure 2.2 with du0 ≈ 1 and dv0 ≈ 0.03, the
experiments found another solution for du0 ≈ 44, dv0 ≈ 16.5, as ilustrated in Figure 2.3. Figure 2.4
manifests that the magnitude of the solution for lower initial slopes du0, dv0 (corresponding to the
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diagram in Figure 2.2) is lower than the magnitude of the other solution. Fixing λ = 1 yields similar
scenario.
This suggests there exist two branches in the bifurcation diagram; the lower branch (closer to the
trivial solution – in the view of the magnitude) and the upper branch (farther from the trivial solution).
Based on the presented results, the branches are also getting closer to each other with increasing λ,
presumably colliding at some point of bifurcation.
With this assumption, we let the script explore the range 1 ≤ λ ≤ 50. The results confirmed the
assumptions that the branches meet at some point λ̃ ≈ 49. Beyond λ̃, no solutions could be found.
This behavior is concluded in the bifurcation diagram presented in Figure 2.5.
For λ ≈ λ̃, it is not possible to sufficiently describe the geometry of the du0 − dv0 diagrams using the
predefined grids (the red and green protrusions in the diagram are too narrow). Due to this fact, the
script cannot determine the value λ̃ more accurately. Using denser grids would allow us to determine
the value λ̃ in a slightly more accurate way, nevertheless, for purpose of this work, the current estimate
is precise enough. More pictures can be seen in the Appendix.

d
v 0

du0

(a) Coarse grid.

d
v 0

du0

(b) Dense grid.

Fig. 2.2: The du0-dv0 diagram for λ = 10, du0 ≈ 1, dv0 ≈ 0.03
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d
v 0

du0

(a) Coarse grid.

d
v 0

du0

(b) Dense grid.

Fig. 2.3: The du0-dv0 diagram for λ = 10, du0 ≈ 44, dv0 ≈ 16.5.

v
(x
)

x

(a) Lower solution for λ = 10 corresponding
to Figure 2.2.

v
(x
)

x

(b) Upper solution for λ = 10 corresponding
to Figure 2.3.

Fig. 2.4: Comparison of two computed solutions for λ = 10.

λ

m
ax

x
∈
[0
,1
]
v
(x
)

Fig. 2.5: Bifurcation diagram for the parameter λ.
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2.2.3 Behavior of the energy functional

As we described above, a function v ∈ X is a solution of (2.4)–(2.5) if and only if v is a critical point
of the functional J . Thus, we might numerically examine existence of solutions by means of observing
the behavior of the functional J .
Let us suppose that v is a solution to (2.4)–(2.5). For a given λ > 0, consider

Jλ,v : t ∈ R 7→ J(t v) ∈ R, (2.21)

which is a one-dimensional function capturing J in the direction5 of v. Since v is a critical point of J ,
Jλ,v has a critical point. We point out two important facts concerning this implication:

• We cannot reverse the implication. Generally speaking, since Jλ,v captures J in a single direction
and we have infinitely many linearly independent directions in X, nothing is implied by the
existence of a critical point for Jλ,v.

• Let us suppose that the function Jλ,v has a local maximum corresponding to a critical point of
J . Then it does not automatically yield local maximum of J . Since we consider only a single
direction, J might grow around the critical point in another directions forming a saddle point
in the critical point.

From the previous numerical experiments in this section, we have a collection of solutions v for a certain
set of values of λ. Based on this data, we describe Jλ,v numerically in Figures 2.6, 2.7. To provide
a more convenient description of the figures in relation to the bifurcation diagram in Figure 2.5, we
use the following notation:

• if λ is given and v is a corresponding solution located on the upper branch in the bifurcation
diagram, we denote vλ := v,

• if λ is given and v is a corresponding solution located on the lower branch in the bifurcation
diagram, we denote vλ := v.

The horizontal axis in the figures is colored by red (green) if the function Jλ,v is decreasing (increasing)
at the point on the axis.
Observe that in Figure 2.6a, Jλ,v has a local minimum for v20 and t close to zero. The experiments
suggest that the functional J has a local minimum for solutions on the lower branch of the bifurcation
diagram (including v20). The local maximum in the figure, on the other hand, does not correspond to
any critical point of J .
On contrary in Figure 2.6b, Jλ,v has also a local minimum for v30, but J has saddle points for solutions
on the upper branch (including v30), which correspond to the local maxima of Jλ,vλ .
Finally in Figure 2.7, the local minimum and maximum of Jλ,vλ almost meet, hence we can expect
that, at the point of bifurcation, Jλ,v has only an inflection point and critical points of J coincide
there. For higher values of λ, no critical points of J should be present. For more pictures, see the
Appendix.
In the following chapter, we attempt to confirm analytically what the numerical experiment suggest.

5We stress out that even though this concept looks very similar to cuts of a two-dimensional function, the situation
is very different in many ways as it will be clear below. The concept only serves as an insight and has to be treated
carefully.
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J
λ
,v
(t
)

t

(a) Jλ,vλ for λ = 20

J
λ
,v
(t
)

t

(b) Jλ,vλ for λ = 30.

Fig. 2.6: Jλ,v for λ far from the point of bifurcation.

J
λ
,v
(t
)

t

Fig. 2.7: Jλ,vλ for λ = 48.975, i.e. almost at the point of bifurcation.
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Chapter 3

Analytical results on existence and
multiplicity of solutions

3.1 The Mountain Pass solution

We recall that, for our purpose, the problems (2.1) and (2.4)–(2.5) are equivalent. It comes straight
from the formulation that (2.4)–(2.5) is always satisfied by a trivial solution for any allowed choice of
the parameters p, q, r, and λ. From now on we focus only on nontrivial non-negative solutions.

The numerical experiments in Section 2.2 suggest that at least two nontrivial solutions of (2.4)–(2.5)
exist. We now find the solution located on the upper branch of the bifurcation diagram (farther from
the trivial solution) using the Mountain Pass Theorem. In what follows, X∗ denotes the topological
dual space of X with the topology induced by the norm in X. To clarify notations and conventions
for this section, we now formulate the following statements.

Definition 3.1 (Palais-Smale condition [7]). Let F ∈ C1(X,R) and c ∈ R. The functional F satisfies
the Palais-Smale condition on the level c if any sequence (un) ⊂ X such that

F (un) → c, ∥DF (un)∥X∗ → 0 (3.1)

has a subsequence which converges strongly in X.

For simplicity, the Palais-Smale condition on the level c will be denoted by (PS)c.

Theorem 3.2 (Mountain Pass Theorem [7]). Let F ∈ C1(X,R), e ∈ X and R > 0 be such that
∥e∥ > R and

inf
u∈X

∥u∥X=R

F (u) > F (o) ≥ F (e).

If F satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

F (γ(t)) with Γ := {γ ∈ C([0, 1], X) : γ(0) = o, γ(1) = e} ,

then c is a critical value of F .

Firstly we show that J satisfies the technical assumptions of Theorem 3.2.

Lemma 3.3. The functional J belongs to C1(X,R).
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Proof. Let v ∈ X be fixed, but arbitrary function. Considering the value DJ(v)φ given by the formula
(2.19), we define

DJ(v) : X → R
φ 7→ DJ(v)φ.

The mapping DJ(v) is the Gateaux derivative of J at v in direction of φ ∈ X if DJ(v) ∈ X∗, in other
words, DJ(v) is linear and bounded functional on X. Linearity of DJ(v) is obvious, we now prove its
boundedness.

From the triangle inequality and from properties of the integral we have

|DJ(v)φ| ≤
1∫

0

∣∣∣(v′′(x)) 1
q φ′′

∣∣∣ dx+ |λ|
1∫

0

∣∣(v+(x))r−1 v(x)φ
∣∣ dx+

1∫
0

∣∣(v+(x))p−1 v(x)φ
∣∣ dx.

Using relation v+(x) ≤ |v(x)| for any x ∈ [0, 1], Remarks 1.13, 1.14, Lemma 1.17, and Hölder inequality,
we get

|DJ(v)φ| ≤ ∥v∥
1
q

X ∥φ∥X +
(
|λ| ∥v∥rX + ∥v∥pX

)
∥φ∥X . (3.2)

Since both λ and v ∈ X are fixed, (3.2) yields boundedness of DJ(v). Hence DJ(v) ∈ X∗ for any
v ∈ X and the Gateaux derivative of J is well-defined.

It remains to be proved that

DJ : X → X∗

v 7→ DJ(v)
(3.3)

is continuous in X, that is, for any sequence (vn) ∈ X and any v ∈ X such that ∥vn − v∥X → 0,

sup
∥φ∥X=1

|DJ(vn)φ−DJ(v)φ| → 0, (3.4)

or to be more precise, it is enough to prove that (3.4) holds for a subsequence (vnk
)+∞
k=1 ⊂ (vn)

+∞
n=1 ⊂ X.

We proceed in several steps.

Step 1 Preliminaries

Let us suppose we have (vn) ⊂ X and v ∈ X such that ∥vn − v∥X → 0. Then Lemma 1.17 proves
that ∥vn − v∥Lp+1(0,1) → 0.

Theorem 4.9 on page 94 in [4] gives a subsequence (vnk
) ⊂ (vn) ⊂ X and a function h ∈ Lp+1(0, 1)

such that

vnk
(x) → v(x) a.e. in (0, 1), (3.5)

|vnk
(x)| ≤ h(x) a.e. in (0, 1) for all k ∈ N. (3.6)

Since ∥vn − v∥X → 0, we have

∥vnk
− v∥X → 0. (3.7)

Let us introduce a real-valued function

f(s) := λ sr+1
+ + sp+1

+
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and for k ∈ N and any φ ∈ X satisfying ∥φ∥X = 1, let us denote

I1 :=

1∫
0

∣∣∣|v′′nk
|
1
q
−1

v′′nk
− |v′′|

1
q
−1

v′′
∣∣∣ |φ′′| dx,

I2 :=

1∫
0

|f(vnk
(x))− f(v(x))| |φ(x)| dx.

Then, using the Triangle inequality and properties of the Lebesgue integral, we get

|DJ(vnk
)φ−DJ(v)φ| ≤ I1 + I2. (3.8)

We now estimate the terms I1 and I2 from above separately. We emphasize that, for the sake of
brevity, we omit dependence on k in the notation of I1 and I2.

Step 2 Estimate for I1

Since the function |t|
1
q
−1

t is globally 1
q−Hölder continuous, we estimate with some C > 0

I1 ≤ C

1∫
0

|v′′nk
− v′′|

1
q |φ′′|dx

and using Hölder inequality further yields

I1 ≤ C

 1∫
0

|v′′nk
− v′′|

q+1
q dx


1

q+1
 1∫

0

|φ′′|
q+1
q dx


q

q+1

Since ∥φ∥X = 1, we conclude

I1 ≤ C ∥vnk
− v∥

1
q

X . (3.9)

Step 3 Estimate for I2

We demonstrate an estimate (or growth inequality) for f(s) = λsr+1
+ + sp+1

+ which will be used
later in this proof.

If we consider s ∈ R such that |s| ≤ 1, then

|f(s)| ≤ λ+ 1. (3.10)

On the other hand, when we choose s ∈ R such that |s| ≥ 1, then due to r < p, we have

|f(s)| = |s|p+1(λ |s|r−p + 1) ≤ |s|p+1 (λ+ 1). (3.11)

Thus for any s ∈ R, estimates (3.10), (3.11) give

|f(s)| ≤ (λ+ 1) (1 + |s|p+1). (3.12)

Now, we estimate I2 from above. We use Hölder inequality, which yields

I2 ≤ ∥f(vnk
)− f(v)∥

L
p+1
p (0,1)

∥φ∥Lp+1(0,1) (3.13)
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and using Lemma 1.17 and the assumption ∥φ∥X = 1, inequality (3.13) reads as follows

I2 ≤

 1∫
0

|f(vnk
(x))− f(v(x))|

p+1
p dx


p

p+1

. (3.14)

We will find usefull in the following step to have also an estimate for the integrand in (3.14).

Using the convexity of the p+1
p -th power and assertion (3.12), we obtain the following estimates

for all x ∈ (0, 1) and any k ∈ N

|f(vnk
(x))− f(v(x))|

p+1
p ≤ 2

1
p

(
|f(vnk

(x))|
p+1
p + |f(v(x))|

p+1
p

)
≤ 2

1
p (λ+ 1)

(
(1 + |vnk

(x)|p)
p+1
p + (1 + |v(x)|p)

p+1
p

)
≤ 4

1
p (λ+ 1)

(
2 + |vnk

(x)|p+1 + |v(x)|p+1
)
.

Finally, relation (3.6) gives for almost all x ∈ (0, 1) and k ∈ N

|f(vnk
(x))− f(v(x))|

p+1
p ≤ 4

1
p (λ+ 1)

(
2 + |h(x)|p+1 + |v(x)|p+1

)
. (3.15)

It is necessary to point out that, from (3.6), the function on the right-hand side of inequality
(3.15) belongs to L1(0, 1) from the embeddings in Lp spaces.

Step 4 Continuity of DJ

We prove that |DJ(vnk
)φ−DJ(v)φ| converges to zero uniformly in φ ∈ X with ∥φ∥X = 1. By

(3.8), it is enough to prove that I1 → 0 and I2 → 0 provided ∥vn − v∥X → 0.

The convergence of I1 follows directly from (3.7) and (3.9).

For the convergence of I2, we use estimate (3.14) and the Dominated Convergence Theorem. It
can be easily seen that f(s) satisfies the Carathéorodory property (see [7], Def. 3.2.22, p. 136)
and thus using (3.5), we get

|f(vnk
(x))− f(v(x))|

p+1
p → 0 a.e. in (0, 1).

Moreover, the function |f(vnk
(x)) − f(v(x))|

p+1
p has an integrable majorant almost everywhere

in (0, 1) (see (3.15)). Thus the Dominated Convergence Theorem gives

1∫
0

|f(vnk
)− f(v)|

p+1
p dx → 0

and hence by (3.14), I2 → 0.

The proof is now complete.

Lemma 3.4. The functional J satisfies (PS)c for any c ∈ R.
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Proof. Let us consider a sequence (vn) ⊂ X satisfying (3.1) with some c ∈ R. This implies that there
exists K > 0 such that

J(vn) ≤ K ∀n ∈ N (3.16)

and for any ε > 0 there exists n0 ∈ N such that for all n ∈ N bigger than n0 and for all φ ∈ X we have

|DJ(vn)φ| ≤ ε ∥φ∥X . (3.17)

First we prove that (vn) is bounded in X. Passing to a subsequence of (vn) (which for simplicity we
denote the same), arguing by contradiction, we assume ∥vn∥X → +∞.
Using (3.16) and (3.17), we estimate

K +
ε

p+ 1
∥vn∥X ≥ J(vn)−

1

p+ 1
DJ(vn)vn.

Lemma 1.17 yields

K +
ε

p+ 1
∥vn∥X ≥

(
q

q + 1
− 1

p+ 1

)
∥vn∥

q+1
q

X +

(
λ

p+ 1
− λ

r + 1

)
∥vn∥r+1

X . (3.18)

Since (vn) is not bounded, for all n sufficiently large, ∥vn∥X > 0 and therefore we can divide both

sides of (3.18) by ∥vn∥
q+1
q

X , which gives

K

∥vn∥
q+1
q

X

+
ε

(p+ 1) ∥vn∥
1
q

X

≥
(

q

q + 1
− 1

p+ 1

)
+

(
λ

p+ 1
− λ

r + 1

)
1

∥vn∥
1
q
−r

X

. (3.19)

From the assumptions for the parameters q and r, we know that all the powers of ∥vn∥X in (3.19) are
positive and

q

q + 1
− 1

p+ 1
> 0.

Thus, taking the limit as n → +∞ in (3.19) yields a contradiction and hence (vn) is bounded.

If we pass to a subsequence denoted for simplicity as (vn), from Eberlain-Smulyan’s Theorem (see [7],
Th. 2.1.25, p. 67) and from Theorem 1.15, we have that there exists v ∈ X such that

vn ⇀ v in X, (3.20)

vn → v in L
q+1
q (0, 1). (3.21)

We now prove that (vn) converges strongly in X. Since (3.20) holds and X is a uniformly convex
space, it follows from [4], Prop. 3.32, p. 78, that it suffices to show that ∥vn∥X → ∥v∥X .
Denote

εn := ∥DJ(vn)∥X∗ := sup
∥φ∥X=1

|DJ(vn)φ|.

Observe that εn ≥ 0 and lim
n→+∞

εn = 0. Choosing φ := vn − v, (3.17) for any n ∈ N reads as

|DJ(vn)φ| =
1∫

0

|v′′n|
1
q
−1

v′′n (v
′′
n − v′′)dx−

1∫
0

(
λ (vn)

r−1
+ vn (vn − v) + (vn)

p−1
+ vn (vn − v)

)
dx ≤

≤ εn ∥φ∥X .
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Using the triangle inequality, we estimate∣∣∣∣∣∣
1∫

0

|v′′n|
1
q
−1

v′′n (v
′′
n − v′′) dx

∣∣∣∣∣∣−
∣∣∣∣∣∣

1∫
0

λ (vn)
r−1
+ vn (vn − v) dx

∣∣∣∣∣∣−
−

∣∣∣∣∣∣
1∫

0

(vn)
p−1
+ vn (vn − v) dx

∣∣∣∣∣∣ ≤ εn ∥vn − v∥X .

(3.22)

Using properties of the integral, applying (vn)
r−1
+ |vn| ≤ |vn|r and the Hölder inequality for the conju-

gate exponents q+1
q and q + 1 yields∣∣∣∣∣∣

1∫
0

λ (vn)
r−1
+ vn (vn − v) dx

∣∣∣∣∣∣ ≤ |λ| ∥vn∥rLr(q+1)(0,1)
∥vn − v∥

L
q+1
q (0,1)

.

Since (vn) is a bounded sequence in X, applying Remark 1.13, Lemma 1.17, and (3.21), we obtain

lim
n→+∞

1∫
0

λ (vn)
r−1
+ vn (vn − v) dx = 0. (3.23)

Arguing in the similar manner yields also

lim
n→+∞

1∫
0

(vn)
p−1
+ vn (vn − v) dx = 0. (3.24)

We recall that (vn) is bounded in X and εn → 0, therefore (3.22), (3.23), and (3.24) imply

lim
n→+∞

1∫
0

|v′′n|
1
q
−1

v′′n (v
′′
n − v′′) dx = 0. (3.25)

In addition, from the definition of the weak convergence given by (3.20), we know that

lim
n→+∞

1∫
0

|v′′|
1
q
−1

v′′ (v′′n − v′′) dx = 0 (3.26)

and hence subtracting terms in (3.25) and (3.26) and using Hölder inequality yields

0 = lim
n→+∞

∥vn∥
q+1
q

X −
1∫

0

|v′′n|
1
q
−1

v′′n v
′′ dx−

1∫
0

|v′′|
1
q
−1

v′′ v′′n dx+ ∥v∥
q+1
q

X


≥ lim

n→+∞

(
∥vn∥

q+1
q

X − ∥vn∥
1
q

X ∥v∥X − ∥v∥
1
q

X ∥vn∥X + ∥v∥
q+1
q

X

)
= lim

n→+∞

(
∥vn∥

1
q

X − ∥v∥
1
q

X

)
(∥vn∥X − ∥v∥X) .

Since the function x 7→ x
1
q is strictly increasing,

0 ≥ lim
n→+∞

(
∥vn∥

1
q

X − ∥v∥
1
q

X

)
(∥vn∥X − ∥v∥X) ≥ 0,

26



thus, necessarily,
∥vn∥X → ∥v∥X . (3.27)

Assertions (3.20) and (3.27) prove the statement.

Now we verify that J has the desired geometry described in Theorem 3.2.

Lemma 3.5. There exist positive constants T , λ0 = λ0(T, p, q, r) such that for all λ ∈ (0, λ0) there
exists C = C(T, p, q, r, λ) so that for any v ∈ X satisfying ∥v∥X = T we have J(v) ≥ C > 0.

Proof. Observe that for any v ∈ X and any s > 1 it holds that ∥v+∥Ls(0,1) ≤ ∥v∥Ls(0,1). Applying
Lemma 1.17, from (2.18) we estimate

J(v) ≥ q

q + 1
∥v∥

q+1
q

X − λ

r + 1
∥v∥r+1

X − 1

p+ 1
∥v∥p+1

X .

A trivial operation further gives

J(v) ≥ ∥v∥r+1
X

(
q

q + 1
∥v∥

1
q
−r

X − λ

r + 1
− 1

p+ 1
∥v∥p−r

X

)
. (3.28)

Consider the function

h(t) :=
q

q + 1
t
1
q
−r − 1

p+ 1
tp−r, t ≥ 0,

then direct calculation yields

h′(t) =
1− qr

q + 1
t
1
q
−r−1 − p− r

p+ 1
tp−r−1, t > 0

and hence we get two possible points of local extremum

t1 = 0 and t2 =

(
(1− qr)(p+ 1)

(q + 1)(p− r)

) q
pq−1

.

Using the assumptions for the parameters p, q, r, we obtain t2 ∈ (0, 1) and we can estimate

q

q + 1
t
1
q
−r

2 >
q

q + 1
tp−r
2 >

1

p+ 1
tp−r
2 .

Clearly, h(0) = 0, lim
t→+∞

h(t) = −∞, and h(t2) > 0 and thus t2 is a point of global maximum of h(t).

We denote T := t2.

Let v ∈ X satisfy ∥v∥X = T . Inequality (3.28) for v now reads as

J(v) ≥ T r+1

(
h(T )− λ

r + 1

)
. (3.29)

Denote

λ0 := (r + 1)

(
q

q + 1
T

1
q
−r − 1

p+ 1
T p−r

)
= (r + 1)h(T )

and let λ ∈ (0, λ0). Setting

C := T r+1

(
q

q + 1
T

1
q
−r − 1

p+ 1
T p−r − λ

r + 1

)
= T r+1

(
h(T )− λ

λ0
h(T )

)
,

it follows from (3.29) that
J(v) ≥ C > 0,

which gives the claim.
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The constant T from Lemma 3.5 plays a significant role in deriving existence of the solutions. For
simplicity, we introduce the following notation.

Notation 3.6. Let BT ⊂ X denote a closed ball centered in the origin with radius T , that is,

BT = {u ∈ X : ∥u∥X ≤ T} .

Lemma 3.7. There exists ṽ ∈ X \BT such that J(ṽ) < 0.

Proof. Let φ ∈ X be an arbitrary, but fixed function satisfying φ ∈ ∂BT and φ > 0 almost everywhere
in (0, 1). Then for t > 1

J(t φ) =
q

q + 1
t
q+1
q ∥φ∥

q+1
q

X − λ

r + 1
tr+1 ∥φ∥r+1

Lr+1(0,1)
− 1

p+ 1
tp+1 ∥φ∥p+1

Lp+1(0,1)
,

and from the assumptions for the parameters p, q, r, λ, we have

lim
t→+∞

J(t φ) = −∞.

Therefore for a sufficiently large t > 1, the function ṽ := t φ yields ṽ ∈ X \BT and J(ṽ) < 0.

The previous lemmas give us all the information needed for the proof of the following theorem.

Theorem 3.8. Let λ0 > 0 be as in Lemma 3.5. For λ ∈ (0, λ0), there exists a nontrivial weak solution
v1 ∈ X of (2.4)–(2.5). Moreover, J(v1) > 0.

Proof. For the functional J we know the following:

• J ∈ C1(X,R) as it was proved in Lemma 3.3,

• J(o) = 0,

• for λ ∈ (0, λ0), inf
v∈∂BT

J(v) ≥ C > 0 from Lemma 3.5,

• existence of e ∈ X \BT such that J(e) < 0 is provided in Lemma 3.7,

• J satisfies (PS)c for any c ∈ R as shown in Lemma 3.4.

Theorem 3.2 with F = J and R = T then yields the existence of v1 ∈ X such that

DJ(v1)φ = 0 for any φ ∈ X, (3.30)

J(v1) = c (3.31)

with c defined in Theorem 3.2. Moreover, from the definition of c, it is clear that

J(v1) = c ≥ C > 0.

Equality (3.30) implies that v1 is necessarily a weak solution of (2.4)–(2.5). From (3.31) we have that
J(v1) > 0 and hence v1 is nontrivial. This completes the proof.
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3.2 Solution near the origin

From the numerical experiments, we also observe the existence of a solution near the trivial solution.
To find it, we set out an appropriate bounded region containing the trivial solution. Then, we show
that the functional J has a local minimum in this region and we also prove that this minimum
corresponds to the nontrivial solution near the origin.
To accomplish this, we will use the following Theorem, which sums up Theorem 1.1 in [12], p. 2 and
the corresponding comments.

Theorem 3.9 (Minimization Theorem [12]). Let M be a topological Hausdorff space and suppose M
is sequentially weakly compact and E : M → R ∪ {+∞} is sequentially weakly lower semicontinuous.
Then E is uniformly bounded from below on M and it attains its infimum.

The statements in this section use notation and constants introduced in Lemma 3.5 and Notation 3.6.
To begin with, we prove the following lemma.

Lemma 3.10. There exists ṽ ∈ X \ {0} such that ṽ ∈ intBT and J(ṽ) < 0.

Proof. Let φ ∈ X be an arbitrary, but fixed function satisfying φ ∈ ∂BT and φ > 0 almost everywhere
in (0, 1).
Then for t ∈ (0, 1) and λ > 0

J(t φ) =
q

q + 1
t
q+1
q ∥φ∥

q+1
q

X − λ

r + 1
tr+1 ∥φ∥r+1

Lr+1(0,1)
− 1

p+ 1
tp+1 ∥φ∥p+1

Lp+1(0,1)
,

which can be rewritten as

J(t φ) = tr+1

(
q

q + 1
t
1
q
−r ∥φ∥

q+1
q

X − λ

r + 1
∥φ∥r+1

Lr+1(0,1)
− 1

p+ 1
tp−r ∥φ∥p+1

Lp+1(0,1)

)
.

Since 1
q > r > 0, there exists t > 0 sufficiently small such that J(t φ) < 0. Finally, if we denote

ṽ := t φ, then ṽ ∈ BT and J(ṽ) < 0. This completes the proof of the lemma.

Existence of the solution near the origin is then provided by the following theorem.

Theorem 3.11. Let λ0 be as in Lemma 3.5. For all λ ∈ (0, λ0), there exists a nontrivial weak solution
v2 ∈ intBT of (2.4)–(2.5). In addition, J(v2) < 0.

Proof. Lemma 3.5 gives us the constant T such that, for all λ ∈ (0, λ0), J(v) is positive on ∂BT . Let
λ ∈ (0, λ0) and consider a minimization problem for J(v) with v ∈ BT . We prove that the minimum
is attained at the interior of BT and that it is nontrivial.

Space X is reflexive1 and thus, using Kakutani’s Theorem (see [4], Theorem 3.17, p. 67), BT is
sequentially weakly compact.
Let us now show that J is sequentially weakly lower semicontinuous in BT , that is, for any (vn) ⊂ BT

converging weakly to v ∈ X,2

J(v) ≤ lim inf
n→+∞

J(vn).

Let us assume that (vn) ⊂ BT converges weakly to v ∈ X. The norm ∥.∥X is sequentially weakly
lower semicontinuous3 in BT , therefore

lim inf
n→+∞

J(vn) ≥
q

q + 1
∥v∥

q+1
q

X − λ

r + 1
lim inf
n→+∞

 1∫
0

(vn)
r+1
+ dx

− 1

p+ 1
lim inf
n→+∞

 1∫
0

(vn)
p+1
+ dx

 . (3.32)

1See Lemma 1.20.
2In fact, since BT is proved to be sequentially weakly compact, v ∈ BT .
3From [4], Prop. 3.5 (iii), p. 58
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For s > 0, let us denote

Fs : C([0, 1]) → R such that Fs(u) =

1∫
0

us+1
+ dx, u ∈ C([0, 1]).

In the uniform topology of C([0, 1]), Fs is a composite functional of continuous mappings and thus
the functional Fs is continuous.

Observe that X is continuously embedded in W
1, q+1

q (0, 1) (see estimates (1.12) and (1.13)), thus
Theorem 1.15 yields

X ↪→↪→ C([0, 1]).

Since (vn) ⊂ BT converges weakly to v ∈ BT , the sequence (vn) converges uniformly to v in [0, 1] and
therefore

Fs(vn) → Fs(v). (3.33)

Inequality (3.32) and the continuity of Fs for s = p and s = r shown in (3.33) directly give that J is
sequentially weakly lower semicontinuous in BT .

Existence of v2 ∈ BT such that

J(v2) = inf
v∈BT

J(v)

follows from Theorem 3.9.

Lemma 3.10 guarantees that v2 ∈ intBT , v2 is nontrivial, and J(v2) < 0. Hence, clearly, the function
v2 is a weak solution of (2.4)–(2.5). Now the proof is complete.

∗ ∗ ∗

In the previous sections, we used two different variational methods to obtain a nontrivial weak solution
for (2.4)–(2.5). However, these two solutions might correspond to the same function in X. We now
prove Main Theorem4 which rules this option out and which sums up the previous results.

Proof of Main Theorem. Let λ0 be as in Lemma 3.5 and let us consider λ ∈ (0, λ0). Then it follows
from Theorems 3.8 and 3.11 that there exist two weak nontrivial solutions v1, v2 ∈ X of (2.4)–(2.5).

Moreover, since J(v1) > 0 > J(v2), the weak solutions are necessarily distinct.

Functions v1, v2 are classical solutions of (2.4)–(2.5) due to the regularity given by Proposition 2.2.
Using relation (2.3), we get the corresponding nontrivial functions u1, u2 such that the pairs of functions
(u1, v1) and (u2, v2) solve (2.2). As it was described on page 9, all the functions are necessarily
non-negative. Hence for λ ∈ (0, λ0), the pairs (u1, v1) and (u2, v2) represent two distinct nontrivial
non-negative classical solutions to (2.1).

3.3 Remarks on existence and multiplicity of solutions

We close the chapter with a few comments concerning the results presented above.

4See p. 13.
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Improvement of λ0

Main Theorem claims that, for λ ∈ (0, λ0), there exist at least two distinct solutions of (2.1), in other
words in the bifurcation diagram, we find at least two branches.5 Naturally we can pose a question
to what extend this λ0 is accurate.

Section 2.2 predicts existence of two branches for λ ∈ (0, λ̃) and approximates λ̃ ≈ 49 (for p = 3,
q = 1.5, and r = 3−1). For the same values of the parameters,

λ0 ≈ 0.59 ≪ λ̃.

Assuming numerical experiments correspond to the actual behavior of the system (2.1), the theoretical
results in this chapter describe the system only on a very narrow interval.

Most of the inaccuracy is brought by Lemma 1.17, i.e. the embedding of the space X into Lp spaces.
The embedding was proved very easily, however, the constant of the embedding appears to be very far
from being optimal. Lemma 1.17 was used to get assertion (3.28) which helped us to prove Lemma
3.5. Lemma 3.5 then appeared in proofs of theorems which showed existence of the solutions both via
Mountain Pass theorem and via Minimization theorem.

The higher the value of λ is, the less estimate (3.28) captures the behavior of the functional J . To
extend the range of values of λ which our results can be proved for, it is reasonable to attempt to
obtain a better constant of the embedding in Lemma 1.17.

For the embedding Xγ ↪→ Lγ(0, 1) with γ > 1, there has to exist an optimal constant Cemb > 0 such
that

∥u∥Lγ(0,1) ≤ Cemb ∥u∥Xγ (3.34)

and such that there is no lower constant satisfying this inequality, that is

C−1
emb = inf

u∈Xγ

u̸=0

∥u∥Xγ

∥u∥Lγ(0,1)
. (3.35)

Similarly to the well-known result for the Laplace operator, it can be shown that C−1
emb corresponds to

the first eigenvalue of the problem
d2

dx2
(
|u′′|γ−2 u′′

)
= λ |u|γ−2 u, x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

We do not know the exact value of the principal eigenvalue, however, in [3] there was proved an
estimate

Cemb ≤ Kemb :=

(
1
2

)2
2

min


(√

π Γ(γ)

Γ(γ + 1
2)

− 1

γ

) 1
γ

,

(√
π Γ(γ′)

Γ(γ′ + 1
2)

− 1

γ′

) 1
γ′
 , (3.36)

where γ′ := γ
γ−1 and Γ(z) :=

+∞∫
0

tz−1 e−t dt.

When (3.36) is incorporated in deriving the estimate for J from below, we proceed as follows. For
v ∈ X, the assumption r < 1

q yields

∥v+∥Lr+1(0,1) ≤ ∥v∥Lr+1(0,1) ≤ ∥v∥
L

1
q+1

(0,1)

5The constant λ0 is presented in Lemma 3.5.
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simply from embeddings of Lp spaces. We now apply (3.34) with γ = 1
q + 1, thus in terms of (3.36),

we obtain
∥v+∥Lr+1(0,1) ≤ Kemb ∥v∥X . (3.37)

Unfortunately, from the preceeding steps, it is clear that the same process cannot be used for the norm
∥v+∥Lp+1(0,1).
We now estimate from (2.18)

J(v) ≥ q

q + 1
∥v∥

q+1
q

X −
λKr+1

emb

r + 1
∥v∥r+1

X − 1

p+ 1
∥v∥p+1

X ,

or respectively,

J(v) ≥ ∥v∥r+1
X

(
q

q + 1
∥v∥

1
q
−r

X −
λKr+1

emb

r + 1
− 1

p+ 1
∥v∥p−r

X

)
. (3.38)

If we replace (3.28) by (3.38) in the proof of Lemma 3.5, we get the same result with6

λ0 =
r + 1

Kr+1
emb

(
q

q + 1
T

1
q
−r − 1

p+ 1
T p−r

)
. (3.39)

For parameters p = 3, q = 1.5, and r = 3−1, we can approximate

λ0 ≈ 10.78.

Even though the presented procedure is more sofisticated, it is still not optimal at all. The reason

is that we applied the embedding X ↪→ L
1
q
+1

(0, 1) for the term with Lr+1-norm, but the term with
Lp+1-norm was still treated as before.
If we were able to find exact (optimal) constants both for the embeddings X ↪→ Lr+1(0, 1) and
X ↪→ Lp+1(0, 1) (or at least sufficient estimates), the result would be even better. Yet, such estimates
are not known to us.

Behavior of functional J for high values of λ
The value λ̃ ≈ 49 introduced in Section 2.2 approximates the upper bound of the interval where
existence of two distinct solution is expected. Beyond λ̃, no solutions are anticipated. To prove
existence of a solution, we used functional J (see (2.18)) – we looked for critical points of the functional
which were proved to correspond to the solutions of (2.1). This was also described numerically in
Section 2.2.
Now we ilustrate how the functional J behaves when λ exceeds a certain value. Let us take u(x) =
sinπx for x ∈ [0, 1]. Naturally, the function u is not a solution to (2.4)–(2.5), but due to its properties,
it can be used to obtain an intuition when examining the behavior of J .
For s > −2, we have

1∫
0

us+1(x) dx =
Γ(1 + s

2)√
π Γ(3+s

2 )
. (3.40)

In Section 2.2, we chose a fixed λ and computed the functional J in the direction of a solution for
the particular value of λ. The result was shown as an one-dimensional function Jλ,v (see (2.21) for
the definition). In this case, we consider the fixed function u and we observe, how J behaves when λ
changes.

6For definition of T , see the proof of Lemma 3.5.
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Using (3.40), we are able to descibe J analytically as a two-dimensional function

Ju : R+ × R+ → R,
(t, λ) 7→ Jλ,u(t).

The function Ju = Ju(t, λ) is visualized in Figures 3.1 – 3.4.
From the figures, it is clearly visible that for λ small, the function Jλ,u reaches a local maximum
and then descends towards negative infinity. As λ attains a certain threshold, the local maximum
disappears and the function falls down right from the beginning. Thus, we do expect that no critical
points can be found for J for higher values of λ.
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J
u
(t
,λ

)

t λ

Fig. 3.1: Ju with the domain (0, 8]× (0, 60].

t

λ

(a) Contours of Ju with highlighted level zero
(black curve).

J
u
(t
,λ

)

t λ

(b) Function Ju with tλ-plane (gray).

Fig. 3.2: Ju in the context of its contours.
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,λ

)

t
λ

(a) Highlighted curves Jλ,u for a few values
of λ.

J
u
(t
,λ

)

t

(b) Projection into tJu-plane.

Fig. 3.3: Ju in the context of Jλ,u.

t

λ

Fig. 3.4: Ju in the context of its gradient and contours. Distinguished points in the domain where
∂Ju(t,λ)

∂t is positive (green arrows) and negative (red arrows).
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Appendix

d
v 0

du0

(a) Solution v5 in du0 − dv0 diagram.

d
v 0

du0

(b) Solution v10 in du0 − dv0 diagram.

d
v 0

du0

(c) Solution v20 in du0 − dv0 diagram.

d
v 0

du0

(d) Solution v30 in du0 − dv0 diagram.

d
v 0

du0

(e) Solution v40 in du0 − dv0 diagram.

Fig. A1: Solutions from upper branch of the bifurcation diagram shown in du0 − dv0 diagram.
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d
v 0

du0

(a) Solution v5 in du0 − dv0 diagram.

d
v 0

du0

(b) Solution v10 in du0 − dv0 diagram.

d
v 0

du0

(c) Solution v20 in du0 − dv0 diagram.

d
v 0

du0

(d) Solution v30 in du0 − dv0 diagram.

d
v 0

du0

(e) Solution v40 in du0 − dv0 diagram.

Fig. A2: Solutions from lower branch of the bifurcation diagram shown in du0 − dv0 diagram
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(a) Jλ,vλ for λ = 1
J
λ
,v
(t
)
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(b) Jλ,vλ for λ = 15.

J
λ
,v
(t
)

t

(c) Jλ,vλ for λ = 30

J
λ
,v
(t
)

t

(d) Jλ,vλ for λ = 47.

Fig. A3: Jλ,vλ for several values of λ.
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(a) Jλ,vλ
for λ = 48.975

J
λ
,v
(t
)

t

(b) Jλ,vλ
for λ = 40

J
λ
,v
(t
)

t

(c) Jλ,vλ for λ = 20.

J
λ
,v
(t
)

t

(d) Jλ,vλ
for λ = 15

Fig. A4: Jλ,vλ for several values of λ.
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