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Abstract

Long-read sequencing is a technology that has revolutionised the field of genomics.
Unlike previously used sequencing techniques, which are able to read only short
fragments of DNA, long-read sequencing can produce reads of tens of thousands
of bases in length, providing a new and more comprehensive view of the genome.
This thesis introduces the principles of long-read sequencing and its advantages and
disadvantages over other sequencing methods. It provides an analysis of the tools
and pipelines that are available for long-read sequencing data analysis as well as the
current applications.

Abstrakt

Long-read sekvenování je technologie, která způsobila revoluci v oblasti genomiky.
Na rozdíl od dříve používaných sekvenačních technik, které dokážou přečíst pouze
krátké úseky DNA, long-read sekvenování dokáže číst až desítky tisíc bází najed-
nou, což poskytuje nový a komplexnější pohled na genom. Tato práce představuje
principy long-read sekvenování a jeho výhody a nevýhody oproti jiným metodám
sekvenování. Cílem této práce je poskytnout přehled dostupných nástrojů a pipeline,
které jsou k dispozici pro analýzu dat z long-read sekvenování, a také shrnout
současné aplikace.

Keywords

DNA Sequencing • Long-Read Sequencing •Next-Generation Sequencing • Long-
Read Data Analysis • Data Analysis Tools • Data Analysis Pipeline
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Introduction 1
DNA sequencing is the process of determining the exact order of nucleotides within
a DNA molecule. Since its discovery, more than half a century ago, this technology
has revolutionised the field of molecular biology, allowing scientists to study the
genetic information contained within an organism’s DNA.

The evolution of sequencing technologies can be divided into three generations
[1]. The most important technology of the first generation is undoubtedly Sanger
sequencing. This technique was responsible for what would arguably become the
largest and most important biomedical project of the 20th Century - completion
of the full human genome. Thirteen years and approximately 3 billion dollars later,
the International Human Genome Sequencing Consortium announced the finalised
near-completed sequence of the human genome [2]. Albeit impressive, it also show-
cased the main limitations of Sanger sequencing - speed and cost.

In the first decade of the 21st century, the sequencing field was swiftly overtaken
by next-generation sequencing (NGS) technologies. This is mainly due to the in-
creased speed, throughput and decreased costs. In the past years, next-generation
sequencing has evolved drastically, achieving various milestones in the sequencing
field as well as lowering the price per human genome to $1000. Although NGS is
nowadays considered a standard for a number of applications, there are still issues
to overcome. [3]
In recent years a third generation of sequencing technologies also known as

long-read sequencing (LRS) has come into the spotlight. Promising to tackle some
of the most challenging obstacles in the sequencing field, it has been chosen as the
Method of the year 2022 by Nature Methods [4]. The main advantage it holds over
its predecessors is the ability to produce very long reads, which is especially suitable
for several applications such as de novo assembly or structural variant detection.

This thesis aims to provide a comprehensive review of the current state of LRS
technology and its applications. It will focus on the most prominent LRS technolo-
gies, their advantages and disadvantages and their comparisonwithNGS and Sanger
sequencing. It will provide a summary of the data formats currently used by LRS
technologies as well as the available state-of-the-art tools that are commonly utilised.
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1. Introduction

The thesis will also explore the challenges associated with long-read sequencing,
such as the complexity of data analysis and the limitations of current sequencing
technologies. An overview of contemporary applications with a particular focus on
clinical use will be given along with possible future outlooks.
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DNA Sequencing
Overview 2
In this chapter, first, the process of DNA replication is introduced, which is essential
for most of the sequencing techniques within this thesis, and the most widespread
sequencing approaches (Sanger sequencing and Next-generation sequencing) are
described. The chapter proceeds to cover long-read sequencing, explaining the me-
chanics behind long-read sequencing made by Pacific Biotechnologies (PacBio) and
Oxford Nanopore Technologies (ONT).

2.1 DNA Replication
DNA replication is the process of creating two identical DNA molecules from one
original DNA template. A DNA strand is made from a specific sequence of 4 dif-
ferent ’building blocks’ called nucleotides, those nucleotides differ only in the ni-
trogenous base they contain (Adenine, Cytosine, Guanine, or Thymine). When DNA
is in its double-helix form, the opposing nucleotides are paired through hydrogen
bonds forming a so-called base pair (bp), this pairing, however, has certain rules -
Adenine can be only paired with Thymine and Cytosine can be only paired with
Guanine. Therefore if the exact base sequence of one strand is known, the sequence
of the other strand is also known - they are complementary. The double helix that
forms the DNA molecule is unravelled during replication, resulting in two individ-
ual strands. Each of those strands then serves as a template for a newDNAmolecule.
A specific enzyme called DNA Polymerase then starts incorporating appropriate
nucleotides to complete the DNA synthesis. This process continues until the second
strands are fully synthesized, forming once again a double-helix structure (Figure
2.1). [5]

2.2 Sanger Sequencing
The first person to develop a widely commercially successful, and arguably the most
famous, DNA sequencing method was Frederick Sanger in 1977. This discovery
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2. DNA Sequencing Overview

Figure 2.1: DNA replication schema [6]

revolutionised the field of genomics and his technique dominated DNA sequencing
for the next 30 years launching the era of first-generation sequencing. This method
uses the principle of DNA replication. [7]

To successfully perform Sanger sequencing, first a double-stranded DNA that
needs to be sequenced is amplified thousands of times using polymerase chain reac-
tion (PCR). Subsequently, the amplified DNA is denatured forming a single-stranded
DNA. Afterwards, all the multiplied strands are put into a test tube along with
standard nucleotides and special fluorescent labelled dideoxynucleotides (ddNTPs:
ddATP, ddCTP, ddGTP, ddTTP) in a much lower concentration. Using DNA poly-
merase replication for each of the strands is started. Once in a while, the DNA
polymerase incorporates ddNTP instead of a standard nucleotide, which terminates
the DNA synthesis due to the chemical structure of ddNTPs. After this process is
finished, a number of DNA fragments of varying lengths ending with fluorescently
labelled ddNTP, are left. Finally, all those fragments are ordered by length and the
final sequence is determined thanks to the differences in fluorescent signals of each
ddNTP. [8]

This process was performed manually until 1987 when Applied Biosystems
(now ThermoFisher) introduced a machine, that would automate the sequencing
method improving both accuracy and speed. Even though other companies have
since developed their own automated systems based on Sanger sequencing, Applied
Biosystems is the only one that has not been discontinued. [9]
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2.3. Next-Generation Sequencing

2.3 Next-Generation Sequencing
Next-generation sequencing, also known as massively parallel sequencing, is an
umbrella term used for techniques that have vastly improved the speed and cost of
DNA sequencing. They have become widespread after the year 2000 and are still in
the lead position in the sequencing business. All NGS techniques involve sequencing
millions of short DNA fragments which are subsequently stitched together. This
presents one of the biggest issues with NGS technologies - the post-sequencing
data analysis [10]. There are many NGS technologies, however, the key player that
currently dominates thewhole sequencing field is Illumina’s sequencing by synthesis
(SBS) and therefore it will be used as the primary example of NGS in this thesis.

2.3.1 Illumina Sequencing
The whole process of Illumina sequencing consists of four steps - library prepara-
tion, cluster generation, sequencing and finally data analysis. First, a DNA library is
prepared by dividing the DNA sample into short fragments of approximately 200 -
600 bp and ligating sequencing adapters to both ends of the DNA fragments. These
fragments are subsequently denatured to form two individual strands and loaded
onto a flow cell where they are anchored using oligonucleotides (short synthetic
DNA strands complementary to the ligated adapter).

At this stage, the fluorescent signal would be too weak to be detected, therefore
the strands are directly on the flow cell copied to form bigger clusters of around
1000 identical single-stranded DNA fragments. At the end of this process, up to a
billion clusters of single-strandedDNA fragments per flow cell are created, resulting
in a much stronger sequencing signal.

Figure 2.2: Cluster formation during Illumina sequencing [11]

The actual sequencing is based on sequencing by synthesiswhere a single-stranded
DNA is replicated using modified nucleotides labelled with a fluorescent tag with
attached reversible terminators. Once the correct base is incorporated, the sequenc-
ing process is stopped thanks to the terminators. An image is taken, capturing the
fluorescent signal from the tag. The fluorescent tag and the terminator group are
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2. DNA Sequencing Overview

then cleaved, making it possible to include another modified nucleotide. This cycle
is repeated for the desired sequencing length (limit 300 bp).
The last step of Illumina sequencing is the data analysis, first, the actual DNA

sequence is determined using the previously captured images (Figure 2.3). Each
image contains the signal from several clusters and each cluster represents one
DNA fragment. Millions of clusters and therefore millions of DNA fragments are
being sequenced at the same time. Finally, the resulting short DNA reads are stitched
back together to form the final sequence of the original DNA molecule. [9]

Figure 2.3: Determining the final sequence from images captured during Illumina
sequencing [12]

2.4 Long-Read Sequencing
Long-read sequencing, also known as third-generation sequencing (TGS) emerged
in the last decade and has since been developing rapidly. The main features that dif-
ferentiate TGS technologies are real-time sequencing, single-molecule sequencing,
and the ability to produce very long reads (more than 10 kilobases [kb] on average)
[13, 14]. It also allows DNA sequencing without the need for PCR amplification in
some use cases.
Currently, there are two leading players in the field of long-read sequencing.

The first is Pacific Biotechnologies, whose ’single-molecule real-time’ (SMRT) se-
quencing was presented in 2009 [15]. The second is Oxford Nanopore Technologies,
the author of nanopore sequencing introduced in 2014 [13].

2.4.1 PacBio SMRT Sequencing
To effectively use the SMRT sequencing technique we first need to prepare the DNA
library. The library specific to SMRT sequencing is called the SMRTbell library
(Figure 2.4). It is created by attaching hairpin adapters to both ends of a double-
strandedDNA sample, creating a closed loop. Primer and polymerase are then added
to the library.
The prepared samples of the SMRTbell library are loaded onto a chip called

an SMRT cell. Each SMRT cell contains up to 25 million wells called zero-mode
waveguides (ZMWs). The nanometre structure of a ZMW reduces the volume of
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2.4.1. PacBio SMRT Sequencing

Figure 2.4: SMRTbell library [16]

observation significantly, this allows for the detection of a single fluorophore despite
the high concentration of fluorescently labelled nucleotides.

A single DNA template is anchored at the bottom of the ZMW. At this point, nu-
cleotides are introduced into the process. The four nucleotides (Adenine, Thymine,
Cytosine, Guanine) are each labelled with a different coloured fluorophore (fluores-
cent dye) with a characteristic emission spectrum and therefore are easily distin-
guishable. They diffuse in and out of the ZMWs at a microsecond rate. When the
polymerase encounters the correct base (nucleotide), it incorporates it in several
milliseconds. During this time the fluorophore is excited, emitting a fluorescent
signal that is recorded in real-time by sensitive cameras. DNA sequencing is assem-
bled from these fluorescent signals. After the nucleotide is fully incorporated the
fluorophore is severed and flows away from the detection zone of the ZMW. The
polymerase is then able to incorporate another base. [15] The sequencing process is
shown in Figure 2.5.
In an ideal case, each ZMW is loaded with one SMRTbell and produces one

read. Realistically, about one-third to one-half of ZMWs will produce a viable read,
resulting in approximately 365 000 reads from one run on the Sequel instrument
[9].
PacBio currently offers several long-read sequencing systems - Sequel, Sequel

II, Sequel IIe, and their newest addition the Revio [17].

Figure 2.5: SMRT sequencing schema [15]
A: DNA template immobilised at the bottom of the ZMW B: Nucleotides labelled with
different fluorescent tags are being incorporated, subsequently the fluorescent signal is
recorded
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2. DNA Sequencing Overview

2.4.2 Nanopore Sequencing
This technique does not utilize the principles of DNA replication, instead, a single-
stranded DNA is passed through a perforation of nanometric size (nanopore). First,
a DNA library is prepared, if a double-stranded DNA sample is to be sequenced,
two adapters (leader and hairpin) are preloaded with motor proteins [18] and lig-
ated to both its ends, if only a single strand is sequenced, the hairpin adapter is not
necessary [19]. The library is then loaded onto a flow cell where 2048 nanopores
are housed [20]. The nanopores are embedded in an electrically resistant membrane
made out of synthetic polymers. Due to the high electrical resistance of the mem-
brane, when a potential is applied across the membrane, it creates an ionic current
that flows through the nanopore. The negatively charged DNA molecule is guided
to the proximity of the nanopore by the leader adapter, subsequently, it is unzipped
by the motor protein and driven through the nanopore from the side that is nega-
tively charged to the positively charged side. The speed is controlled by the motor
protein. The current is measured in real-time and when specific bases pass through
the nanopore, it causes a distinct disruption in the current, making it possible to
translate the measured current into a sequence of bases using computational algo-
rithms. The above process is shown in Figure 2.6. Once the first (template) strand
of DNA has completely passed through the nanopore, the second strand, connected
by the hairpin adapter, can also be sequenced. This is called the 2D read. If only one
strand of the DNA is sequenced, it is called a 1D read [21].
ONT’s sequencing instruments include MinION, GridION, PromethION and

Flongle [22].

Figure 2.6: Nanopore sequencing schema [23]
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Comparison of
Sequencing Methods 3
In this chapter, three key criteria for sequencing methods are selected - accuracy,
cost and read length. An overview of the performance of long-read sequencing
methods in each category is provided and compared with Sanger sequencing and
Illumina sequencing.

3.1 Read Length and Run Time
The obvious advantage of long-read sequencing is the drastic length improvement.
Nanopore sequencing can routinely produce 150,000 bases long reads [24] and their
longest ultra-long reads go as long as 4,000,000 bases [22], which is the current
maximum of any sequencing technology. ONT’s read length is limited mainly by the
length of the input DNA,which indicates, that if providedwith a long enough quality
DNA template the sequencing lengths could reach new heights. PacBio’s SMRT
sequencing read length is directly tied to the polymerase used during sequencing.
It generally achieves shorter read lengths than ONT, the newest sequencing system
from PacBio - Revio claims to be able to standardly achieve read lengths up to 20 kb
with the longer reads being over 60 kb [25]. Both Sanger sequencing and Illumina
sequencing cannot compete with LRS technologies when it comes to read lengths,
Sanger 3730xl reads about 400-900 bases and Illumina’s instruments provide a read
length of 2 x 150 bp - 2 x 300 bp. [26]

Hand in handwith read length comes the run time of the sequencing instruments.
Nanopore sequencing is unique in the way that it has no fixed run-time, it can run
as little as minutes up to 72 hours with a maximum speed of 420 bases per second
resulting in the theoreticalmaximal output of 50Gb perMinION’s flow cell. PacBio’s
instruments have varied run times from approximately 1 hour (for <10 kb reads)
[27] to 30 and 24 hours on the Sequel II and Revio respectively. The yield is 360 Gb
of high fidelity (HiFi) reads per max run time for Revio and 30 Gb of HiFi reads for
Sequel IIe [28]. Sanger 3730xl can produce up to 84kb in 3 hours [26], Illumina’s
smallest capacity instrument iSeq 100 runs 9.5–19 hrs providing up to 1.2 Gb and
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3. Comparison of Sequencing Methods

their production scale NovaSeq X can run up to 48 hrs with the max output of 16
Tb [29].

Generation Platform System Read
length

Max output
per run

Max run
time [h]

Long-read PacBio Revio 15-20 kb 360 Gb 24
PacBio Sequel II 15–20 kb 30 Gb 30

ONT MinION
From short
to ultra-long
(>4Gb)

50 Gb 72

ONT PromethION
From short
to ultra-long
(>4Gb)

up to 14 Tb 72

NGS Illumina iSeq 100 2 x 300 bp 1.2 Gb 19
Illumina NovaSeq X 2 x 300 bp 16 Tb 48

Sanger Applied
Biosystems

Sanger
3730xl 400-900 bp 84 kb 3

Table 3.1: Read-lenght, output and run time of selected sequencing platforms

3.2 Sequencing Accuracy
3.2.1 Phred Score
To assess the accuracy of sequencing techniques a Phred quality score (Q score)
is commonly used [30]. It indicates the probability of the base being recognised
incorrectly and is defined as

𝑄 = −10 log10(𝐸).

Phred Quality Score [Q] Error [E] Accuracy (1 - Error)
10 1/10 = 10% 90%
20 1/100 = 1% 99%
30 1/1000 = 0.1% 99.9%
40 1/10000 = 0.01% 99.99%

Table 3.2: Examples of Q values and corresponding error rates

3.2.2 Accuracy Comparison
The accuracy of DNA sequencing can vary depending on several factors such as
the length of the reads, the quality of the input DNA, or the bioinformatics analysis

12



3.3. Cost

used to process the data. To this day, Sanger sequencing is still considered the gold
standard of sequencing methods and is widely used when a highly accurate DNA
sequence is needed. This technique operates with an error rate of less than 1 in
10,000 - Q40 [31]. Generally, Illumina sequencing can produce very accurate results
as well with an error rate of approximately 0.1% to 1%. This means that for a typical
Illumina sequencing run, 99.9% to 99% of the base calls will be correct [32].

PacBio’s SMRT sequencing has in its raw form a relatively high error rate (13%)
[13], however, the error rate can be reduced. Thanks to the circular nature of the
SMRTbell library, each DNA template can be sequenced repeatedly. The errors
during SMRT sequencing are mostly random, therefore when several reads of the
same template are compared, those random errors can be eliminated to some degree.
This process is called circular consensus sequence (CCS) and the final reads are called
HiFi reads. The results they yield are comparable to Illumina sequencing -Q20when
the template is sequenced approximately 4 times and Q30 when 10 times. [33]

A similar thing can be applied to Nanopore sequencing. The error rate is signif-
icantly higher (15%) when it comes to raw reads, but data obtained from 2D reads
achieve Q30 accuracy [34]. It is also necessary to note that the errors occurring
during nanopore sequencing are, unlike those of PacBio’s sequencing, biased. The
occurrence of transitions is considerably higher than transversions, likely due to the
fact that Adenin and Guanin as well as Cythosin and Thymin have similar shapes.
Therefore, when they pass through the nanopore during sequencing, the current
disruptions are also similar, making them more difficult to differentiate. [35]

Generation Platform Error Rate

Long-read PacBio (SMRT) Q30 - HiFi
ONT Q30 - 2D

Q20 - 1D
NGS Illumina Q30
Sanger Applied Biosystems Q40

Table 3.3: Error rates of different sequencing platforms

3.3 Cost
The cost of DNA sequencing can be assessed based on a variety of criteria, this
section will include the cost of instruments as well as the approximate cost of se-
quencing one billion bases (Gb), this estimation does not include the cost of the
material. As it was not always possible to get pricing for the local market, prices are
listed either in EUR or USD depending on availability.
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3. Comparison of Sequencing Methods

ONT’sMinION is the cheapest optionwith instruments’ prices starting as low as
$1,000. The PromethIONon the other hand is considerablymore expensivewith the
starter pack valued at $225,000, unlikeMinION, it already includes a computing unit,
making it more suitable for conventional uses in the laboratory. The price per Gb
is lower with higher throughput putting minION at around €12 and PromethION
at €8 [36].
PacBio systems are generally more expensive, the newest Revio sequencing in-

strument has a list price of $779,000 [37], its price per Gb is comparable to ONT
with €9. The Sequel II has lower throughput raising the price per Gb to €17 while
the instrument itself costs €650,000.

The price of Illumina’s sequencers varies from$19,900 for iSeq 100 up to $985,000
for NovaSeq X. The price per Gb is set around $485 for the iSeq 100 down to $2
with the newest NovaSeq series instruments, which is currently the lowest price
of any sequencing platform. One of the biggest issues with Sanger sequencing has
always been its cost, although the instrument price is similar, the $5000 [38] price
per Gb is incomparable. [39] [26]

Generation Platform System Price per Gb Instrument Cost

Long-read PacBio (SMRT) Revio €9 $779,000
Sequel II €17 €550,306

ONT MinION €12 $1,000
PromethION €8 $225,000

NGS Illumina iSeq 100 €485 $19,900
Illumina NovaSeq X $2 $985,000

Sanger Applied Biosciences Sanger 3730xl $5000 $95,000

Table 3.4: Instrument prices and prices per Gb for different sequencing platforms
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Data Formats 4
4.1 SAM/BAM Format
Sequence Alignment/Map (SAM) format is a text format designed for efficient
aligned sequenced data storage [40]. BAM (Binary Alignment/Map) format is the
binary equivalent of SAM format. It consists of an optional header section and an
alignment section.

4.1.1 Header Section
The header section contains metadata such as information about the reference se-
quence read information or comments. If present, it always has to be in front of the
alignment section. Every header line has to start with the symbol ‘@’ and is followed
by a one or two-letter header record type that determines the type of metadata
included. The header record type is then followed by a data field containing a tab-
delimited tag-value pair (excluding the comment record type). Each pair follows the
‘TAG:VALUE’ format, with ‘TAG’ being a two-letter string containing the format
and information of ‘VALUE’. The order of data fields is irrelevant.

4.1.2 Alignment Section
Unlike the header section, lines in this section do not start with the ‘@’ symbol.
Each line of the alignment section traditionally represents a linear alignment of a
segment and it consists of 11 mandatory tab-separated fields (Figure 4.1). If a value
a of mandatory field is not available, the field still has to be included, with the value
containing either ‘0’ or ‘*’ depending on the field type. After the mandatory fields, a
variable number of optional fields can be added.
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4. Data Formats

Figure 4.1: List of mandatory fields in the alignment section

4.2 HDF
The HDF format, or Hierarchical Data Format, is a file format designed for storing
and managing large datasets. It is structured as a hierarchy of objects, where each
object can contain data or other objects. The most basic object is dataset, which is a
multi-dimensional array of data. Datasets can be organized into groups. Attributes
can also be attached to datasets and groups to provide additional metadata. An
example of HDF format structure is in Figure 4.2.

Figure 4.2: HDF5 structure [41]

The format provides a set of libraries and tools that allow for efficient access
to the data in the file. Additionally, the HDF Group, the organization responsible
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4.3. FASTA/FASTQ

for maintaining the HDF format, provides a number of software tools for working
with HDF files, including HDFView, a graphical viewer for HDF files, and h5py, a
Python library for working with HDF files.
One of the key advantages of the HDF format is its ability to handle large and

complex data sets. HDF files can store data in compressed formats, which can sig-
nificantly reduce file size and improve performance. Additionally, the hierarchical
structure of the format makes it easy to organize and manage datasets.

4.3 FASTA/FASTQ
4.3.1 FASTA
FASTA is a standard format in the sequencing industry. It represents each nucleotide
sequence in two lines. The first (header) line starts with the symbol “>” and is fol-
lowed by the sequence identifier and optionally some other description. The second
line contains only the sequence in the form of single letters each representing one
nucleic acid. A file can contain more than one nucleotide sequence. It is a text-based
format and therefore easily readable by humans. An example of a FASTA file can be
seen in Figure 4.3.

Figure 4.3: An example of FASTA file with multiple sequences [42]

4.3.2 FASTQ
FASTQ is a data format used predominantly by NGS technologies. It is similar to
FASTA, however in addition to the actual sequence it also contains the respective
Phred scores. Each sequence consists of 4 lines:

• Sequence identifier (starts with the symbol ’@’);

• The Sequence;

• ’+’ sign;
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• Quality scores.

An example of a FASTQ file can be seen in Figure 4.4.

Figure 4.4: An example of FASTQ file with multiple sequences [42]

4.4 PacBio Data Format
PacBio is currently using the standard BAM format for both aligned and unaligned
data with someminor changes. PacBio includes several extra header lines containing
information such as the ’platform model’ which includes the instrument series (e.g.
Revio, Sequel) or ’Bio Sample Name’ containing information about the biological
samples. The full extent of PacBio’s modifications to the BAM format can be found
at https://pacbiofileformats.readthedocs.io/en/12.0/BAM.html.

4.5 Nanopore Data Formats
4.5.1 FAST5
Sequencers from ONT provide raw data in the FAST5 format based on hierarchical
data format version 5 (HDF5) which is suitable to store a large amount of data. A
FAST5 file works similarly to a file system, however, unlike the original HDF format
it has a defined schema. A typical FAST5 file usually contains the raw signal data as
well as some other metadata.

ONT historically defines two types of FAST5 files: single-read and multi-read.
The single-read file contains only one read whereas the multi-read file contains
multiple reads, however, the single-read files are no longer actively in use and is
therefore recommended to convert them into multi-read files. To work with FAST5
files a standard HDF library and tools can be used. ONT developed a Python library
for working with FAST5 - Ont_fast_api. Within this library, a single-read to multi-
read file converter is included.
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4.5.2 POD5
ONT has recently introduced a new file format called POD5. The data in POD5
consists of three Apache Arrow tables combined into one container format. The 3
Apache Arrow tables are:

• Run - Contains experiment-level information;

• Reads - Contains metadata for individual reads;

• Signal - Contains the raw signals from reads.

Together with the new data format, ONT has also released a C++ library, C
interface, and Python module to work with POD5. As well as a tool to convert
FAST5 format to POD5 available at https://pod5.nanoporetech.com/.
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Long-read sequencing offers a wide range of applications, however, the analysis of
LRS data presents unique challenges due to the higher error rates and the increased
complexity of the data. To address these challenges, a variety of new bioinformatics
approaches, software tools and pipelines have been developed to support the pro-
cessing and analysis of LRS data. This chapter contains a description of the common
steps in long-read data analysis (Figure 5.1) including the available tools.

5.1 Common Steps in Long-Read Data
Analysis

Figure 5.1: A pipeline illustrating common steps in LRS data analysis

5.1.1 Basecalling
Basecalling is a process of converting raw data from a sequencing instrument into
a sequence of nucleotides. It is the first step in the analysis of long-read sequencing
data. It is an ever-evolving field. In the past decades, basecalling tools were largely
based on hidden Markov models, this has changed in recent years, with a shift
towards neural networks, which means that a sufficient dataset is needed to train
the model. Moreover, if there are anomalies such as base modifications present in
the sequenced DNA, the training data have to contain them as well in order for the
basecaller to identify them properly. [43]
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5.1.1.1 PacBio

The basecalling process developed directly by PacBio is called Circular Consensus
Sequence. In each ZMW the DNA template is sequenced multiple times, generating
multiple ’passes’ of the same sequence. During each pass, a ’subread’ is recorded. The
consensus sequence is then generated by aligning and comparing the subreads to
each other to identify errors and overlapping regions (Figure 5.2). The CSS quality
is limited by the number of subreads generated, generally, the more subreads the
more accurate the final sequence. This is, however, restricted by the longevity of
polymerase, a longer DNA template will result in fewer possible subreads. At a min-
imum, two full subreads are needed for CSS. Each consensus sequence represents
DNA template from a single ZMW. The current research suggests that for a 13.5
kb library, CCS achieves Q30 accuracy, although it is important to note that the
average computing time required was 3,035 CPU core hours per SMRT cell [44].

Figure 5.2: Circular consensus sequence [45]

The algorithm for CSS still utilises a hidden Markov model. In 2022 however,
PacBio formed a partnership with Google Health and developed DeepConsensus,
a deep learning based approach that works on top of CSS and further reduces the
error rate in HiFi reads by 41.9% [46].

Even though the raw signal data from SMRT sequencing are available, there are
no third-party basecallers designed to work directly from the signal data.

5.1.1.2 ONT

As described in chapter 3, ONTs raw reads have a significant amount of errors
that are bias prone, therefore, the basecalling process can be more challenging than
PacBio’s. There is a high number of third-party software available for basecalling
ONT’s data and ONT itself has developed an amount of basecalling tools such as
Guppy and Bonito.
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Guppy
The first to be introduced is the Guppy basecaller. It is integrated into the Min-
KNOW (primary software on all ONT’s sequencing devices). Guppy is based on
recurrent neural networks and offers three variants of basecalling models - a Fast
model, a High accuracy model, and a Super accurate model. A unique feature of
the Fast model is that it was specifically designed to keep up with the sequencing
speed (at the cost of lower accuracy). This means the whole process of sequencing
and basecalling is done virtually in real-time. The HAC and SUP models are more
accurate, however, they are also more computationally intensive (3 and 24 times
respectively compared to the Fast model)). On a state-of-the-art GPU (NVIDIA Tesla
P40 24GB) the HAC model takes approximately 14 hours per flow cell for 11-15 kb
library [47].

Bonito
Bonito is the latest PyTorch based basecaller developed by ONT. It is based on con-
volutional neural networks, specifically the QuartzNet model originally designed
for speech recognition [48]. Compared to Guppy, it has increased the basecalling
accuracy by 1%. One disadvantage of Bonito is the relatively slow speed making it
difficult to use in practice [49].

Third-party basecallers
Of the many existing third-party basecallers, only a handful of them is being reg-
ularly updated and it is unclear to which extent they reflect the latest progress in
long-read sequencing. The examples listed below are some of the most current base-
callers.

Fast-Bonito is a basecaller based on ONT’s Bonito, which can be several times
faster than Bonito, depending on the hardware used, tackling the main issue of the
Bonito basecaller [49].
Another notable basecaller is DeepNano-Coral which focuses on real-time

basecalling. It is optimised to run using Coral Edge Tensor Processing Unit - a small
energy-efficient accelerator attached by USB and surpasses the basecalling quality
of Guppy’s Fast model [50].

5.1.2 Quality Control

Once the reads have been basecalled, the next step is typically performing quality
control. This includes providing an overview of statistical information about the
dataset qualities such as read length distribution, accuracy, and GC contents anal-
ysis. Quality control tools usually only provide a general summary of the dataset
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and are intended to help the user understand the data and find potential issues. It
is up to the user to determine how to use this information. Quality control is par-
ticularly important in long-read sequencing, where individual reads can be highly
variable in quality, or even ‘non-sensical’ - it has been reported that LRS runs can
contain a number of reads that have no connection to any other molecule within
the sequenced library [51].

There are several pipelines tailored specifically for LRS quality control, a popular
examplewould beLongQC (Long ReadQuality Control) [51], a pipeline that focuses
on the comprehensive evaluation of both ONT’s and PacBio’s data orMinIONQC
[52] designed to provide a rapid diagnostic of data from MinION. An established
quality control tool FastQC [53] has also been partially adapted for long-read data.

5.1.3 Read Alignment

In the vast majority of applications, mapping reads to the reference genome is a
necessary step. Read alignment (or read mapping) poses an important challenge
since the quality of the alignment can severely impact the outcome of any further
analyses.

The typical aligning algorithm follows three steps. The first is generating an
index of the reference genome. This ensures rapid localization of any subsequences
in the reference genome. Followed by determining the potential positions of all the
reads. Lastly, each read is thoroughly compared to its potential position to determine
the final location of the read as well as any deviations from the reference genome.
The second step tends to be difficult forNGS data, because of their small read lengths
many possible locations are identified. LRS has an advantage - due to its long reads
the position determination is relatively unambiguous. However, the last step may
be problematic for LRS, because it involves focusing on smaller details which is
challenging considering the higher error rate. [54]

Although the general steps of the aligning algorithms are the same, they need to
be tailored to the data they are working with. SomeNGS aligners have been adapted
to LRS, but their performance is subpar specifically when it comes to computing
time, therefore new LRS-specific approaches had to be developed. Currently, the
leading state-of-the-art aligner used for both ONT’s and PacBio’s data isminimap2
[55]. A comparative analysis of aligners showed that when not limited by computa-
tional costs, it is desirable to use a combination of alignment tools to get the best
results, however, when the number of tools used is limited to one, minimap2 con-
sistently outperforms other LRS aligners [56]. Other popular LRS aligners include
BLASR [57] orNGMLR [58].
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5.1.4 Error Correction
Even though the accuracy of long-read sequencing methods is rising, error correc-
tion is still a crucial step in many long-read applications. There are currently two
distinct approaches to error correction - hybrid and non-hybrid.

Hybrid Methods
Hybrid methods capitalize on the high accuracy of short-read data in order to per-
form error correction on longer reads. The important prerequisite for using these
methods is the availability of the short-read data [59]. There is a wide variety of
available hybrid tools such as Hercules [60], Jabba [61], and HALC [62].

Non-hybrid Methods
Non-hybrid methods of error correction utilise only long-read data eliminating the
need for accurate short-read data. Among the most commonly used tools in this
category are the FLAS [63], LoRMA [64] and the error correction mode included
in Canu (a comprehensive pipeline for long-read data analysis) [65]. All of them are
compatible with both PacBio and ONT data.

Although generally, the performance of hybridmethods is currently still superior
in both correction performance and computing costs to non-hybrid methods, there
are instances where non-hybrid methods are preferable. Simply put, non-hybrid
methods lack the additional accuracy of short-read data, therefore, they usually need
additional sequencing depth to achieve the same accuracy. A comprehensive study
demonstrated that when the error rate is higher, at around 18%, hybrid correction is
more effective at low sequencing depths. However, as the sequencing depth increases,
non-hybrid correction becomesmore efficient.When error rates are lower, at 12%or
less, non-hybrid correction outperforms hybrid correction even with low-coverage
datasets. Additionally, it is necessary to take into consideration the complexity of the
organisms being sequenced, as it has a significant impact on the quality of correction.
Specifically, the quality of correction of hybridmethods significantly decreaseswhen
dealing with complex and repeat-rich organisms. [66]

5.1.5 Other Tools
It is important to mention that the number of available tools tailored to long-read
data analysis is growing extremely fast. It is not within the scope of this thesis to
mention every tool available. To help the TGS community effectively navigate the
available software, an open-source database that aims to collect and catalogue the
available tools has been developed [67]. As of today, the database is available at https:
//long-read-tools.org/ and is still being regularly updated. A recently published
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paper focused specifically on Nanopore sequencing also provides a summary of the
available tools [68].
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This chapter will explore some of the key applications of third-generation sequenc-
ing technologies as well as provide the reader with a choice of tools available for
each application. In the included applications, LRS has either outperformed other
sequencing methods or demonstrated significant benefits.

6.1 De Novo Assembly
De novo assembly is a process of reconstructing an organism’s genome from scratch,
without relying on a reference genome. In other words, it involves piecing together
DNA fragments obtained during sequencing to create a complete genome sequence.
Although NGS technologies have advanced the task of de novo assembly greatly,
there are still several key aspects that can be improved by using LRS. Assembling
repetitive regions is one of those as well as lowering the computational cost - it is
especially demanding to assemble data generated through NGS due to the small
lengths of sequenced fragments [69].

Long-read sequencing is showing great potential in the field of de novo genome
assembly, for the first time in history we were able to fill the last missing pieces and
fully complete the sequence of the human genome [70]. It has also been demonstrated
that in ideal conditions it is possible to assemble a whole human genome in less than
10 minutes which is a significant achievement when considering that the same task
required over 100,000 CPU hours just a few years ago [71].

Several studies [72, 73, 74] comparing the performance of assemblers on PacBio’s
or ONT’s data showed that when aiming for accurate assembly and not limited by
resources, it is advised to use a combination of some of the more robust assemblers
(e.g. Canu [65] + SMARTdenovo [75]). When using only one assembler, the best-
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performing assemblers in terms of accuracy include Canu, SMARTdenovo, and
Flye [76]. The main drawback of these tools is their computing time, requiring
thousands of CPU hours to assemble a human genome in good quality. One of the
both fast and accurate assemblers is Raven [72].
Recent studies suggest [77, 78] that especially for human genome de novo as-

sembly the best standalone method is PacBio’s HiFi reads. Due to their improved
accuracy, the assemblers require lower amounts of data thus lowering the comput-
ing cost while retaining high accuracy. Assemblers specifically for HiFi reads are
HiCanu [79] and hifiasm [80].

6.2 Variant Calling
Variant calling is the process of identifying changes in a genome. In the human
genome, around 99.9% of the DNA sequence is identical for every member of our
species. A number of these genomic differences can have a massive impact on a
variety of things from physical differences to predisposition to many diseases such
as diabetes or cancer [81]. The most commonly observed change in the human
genome is a single nucleotide variant (SNV) - a substitute of one single base [82].
Other shorter variants up to 50bp are called short insertion-deletion variations
(indels). Changes longer than 50bp are commonly referred to as structural variants
(SVs) [83]. There is a much lower number of SVs and indels than SNVs, however,
their consequences are generally more prominent thanks to their size [84].
In the past decade, variant calling using NGS technologies helped uncover the

effects of a large number SNVs and indels. On the other hand, SVs remained largely
understudied, mainly because they are notoriously challenging to detect using NGS
technologies for two main reasons. First, SVs are frequently present in regions that
are difficult to sequence using NGS (repetitive regions) and second, the read length
of NGS is often too short to discover some of the longer, more complex SVs. Due
to their long read length and ability to sequence repetitive regions long-read se-
quencing technologies are being used to detect large, complex SVs with increasing
frequency [85]. Both ONT’s and PacBio’s techniques have proven to be highly effec-
tive in detecting SVs, for example, in 2019 a study sequenced 15 human genomes
using SMRT sequencing and found almost 100,000 structural variants, of which
a large portion was previously unknown [86]. Using SMRT sequencing, an undis-
covered 12.4 kb SV was detected in progressive myoclonic epilepsy [87]. Nanopore
sequencing helped discover a 7.1 kb SV in Mendelian disease [88].
Some of the popular variant callers used for SVs are Pbsv [89], Sniffles2 [58]

and cuteSV [90].
LRS technologies have been used to detect SNVs and indels as well, however, the

accuracy is very much dependent on the error rate of the sequenced data especially
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when the errors are not randomly distributed, which is the case for ONT sequencing.
This can be partially resolved by increasing the sequencing coverage, which would
also mean increasing the computing costs [19]. A number of variant callers tailored
to detect SNVs have emerged, some of them, such as Google Health’sDeepVariant
[91], ONT’s Medaka [92] or NanoCaller [93] are based on deep learning which
makes them adaptable to unique error profiles of LRS technologies [44].
In order to efficiently detect both SNVs and SVs some studies propose using

hybrid methods for variant calling combining data from both LRS and NGS tech-
nologies. A hybrid variant caller HELLO was able to reduce the error rate when
calling indels by up to 30% when compared with a state-of-the-art variant calling
tool that used only short reads [94].

6.3 Epigenetics
Modifications in both DNA and RNA are a crucial part of various biological pro-
cesses from ageing to serious diseases including cancer or Alzheimer’s and Parkin-
son’s disease [95, 96]. There are several causes of DNA modifications, for example,
radiation or oxidation damage, however, the most extensively investigated is methy-
lation. The specific modification that occurs the most in both plants and animals is
5-methylcytosine (5mC), sometimes even dubbed the fifth base. It is also the most
studied modification, likely because of the availability of accurate sequencing tech-
niques. The most widespread technique is short-read bisulfate sequencing which
involves first treating the DNA sample with sodium bisulfate. Using bisulfate, how-
ever, leads to the degradation of the DNA as well as more complicated PCR ampli-
fication resulting in the need for large quantities of input DNA. Moreover, certain
modifications are likely to be found in repetitive regions, such as 5mC in CG regions,
which are challenging to read for NGS technologies. [97]

Both PacBio and Nanopore sequencing can, to a certain extent, detect base mod-
ifications. Nanopore sequencing determines the nucleotide base based on charac-
teristic changes of current when the base passes through the nanopore. When a
modified base goes through the pore, the current change is unique as well, there-
fore it is able to distinguish them (Figure 6.1). There are two distinct approaches
when detecting modified bases from long-read data, direct and non-direct. When
using the direct approach, modified bases are called from raw signal data using a
basecaller with an extended alphabet. ONT’s Guppy is able to detect m5C and N6-
methyladenosine (m6A) modifications directly, this, unfortunately, comes hand in
hand with decreased overall basecalling accuracy. [33]

The non-direct approach involves first performing a standard basecalling with
the four canonical bases and then aligning the basecalled sequence to either the
raw signal or reference sequence and using various statistical methods to call the
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Figure 6.1: Difference in current between modified and unmodified base during
ONT sequencing [98]

likelihood ofmodification. ONT currently employs two tools in this category:Mega-
lodon and the more recent Ramora. Ramora performs the modification analysis
in parallel to the standard basecalling by Guppy and is integrated with the Min-
KNOW software. To detect modified bases, a variety of third-party tools have been
developed such asNanoMod [99],Nanopolish [100] andDeepMod [101].

SMRT sequencing has also been used to detect modified bases. It builds on the
idea that base modifications affect the kinetics of the polymerase during sequencing,
effectively creating a difference in time between normal and modified bases, when
incorporating nucleotides, this is depicted in Figure 6.2 [102]. Some modifications
have more prominent kinetics profiles than others. For example, 6-methyladenine
and 4-methylcytosine (6mA, 4mC) both have strong kinetic profiles and PacBio
recommends 25x coverage per strand. On the other hand, 5mC’s kinetic profile is
more subtle, thus increasing the recommended coverage tenfold (250x coverage per
strand) which leads to a significantly shorter read length (< 2000 bp) [103]. Modi-
fication analysis can be performed directly in SMRT Link (a native tool made by
PacBio) and with the introduction of HiFi reads PacBio’s instruments can simultane-
ously perform standard basecalling and basecallingwith extended alphabet detecting
5mC.
There are similar limitations for both ONT and PacBio. In order to identify a

certain base modification the model must be prepared for this particular type by
training it with relevant data which are often in short supply. Because the amplifica-
tion of DNA would result in the loss of base modifications, these methods require a
large amount of native, unamplified DNA [105].
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Figure 6.2: Difference in kinetics between modified and unmodified base during
PacBio sequencing [104]

6.4 Direct RNA Sequencing
Even though this thesis mainly talks about DNA, it is important not to overlook one
long-read sequencing application - the ability to directly sequence RNA. Due to the
nature of ONT’s sequencing method, it is possible to sequence RNA directly. This
has been demonstrated several times, one of them being the direct sequencing of
the Influenza A virus genome in 2018 [106]. Although it is possible to use PacBio’s
instruments to sequence RNA, it cannot be considered direct sequencing because
the sequenced RNAmolecule needs to be converted to complementary DNA (cDNA)
and PCR amplified first [107].

6.5 Field Laboratory
A unique trait of ONT’s MinION is its small size. The original MinION device
itself weighs 87g and to be functional, it only needs to be connected to a laptop via
USB. ONT has also released self-contained MinION versions that require no other
computational resources and can perform some tasks in offline mode (basecalling).
This option is especially suitable for working in the field [108].

In 2015,MinION instrumentswere used inGuinea for real-time genomic surveil-
lance of the Ebola epidemic. Yielding results in less than 24 hours after receiving a
positive DNA sample, and showing that it is possible to provide real-time genomic
monitoring of emerging outbreaks of infectious diseases evenwith limited resources
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[109]. Similarly, MinION was used to monitor the dengue virus in Brazil in 2019
[110].

6.6 Applications of Long-Read Sequencing
in Cancer Genomics

Despite the considerable advantages, LRS is not yet that widely used in clinical
settings. This section describes two clinical applications of long-read sequencing
that use the principles described so far in this chapter.

6.6.1 Detecting Genetic Aberrations in Human Cancer
Human cancer is largely caused by various genome aberrations. Next-generation
sequencing is particularly well suited to identify short indels and SNVs, however,
longer genomic aberrations and the ones in repetitive regions are difficult to iden-
tify for NGS. The ability of LRS to detect large structural variants poses a great
advantage in this field. Nanopore sequencing was recently used to identify new SVs
in colorectal cancer [111] and to analyse lung cancer genomes [112]. Both PacBio
and Nanopore sequencing demonstrated improved performance in identifying SVs
in breast cancer genomes [113]. Despite the success, the LRS error rate remains too
high for it to be used alone. This shows that ideally NGS should be used in tandem
with LRS in order to achieve the best results in clinical cancer care [114].

6.6.2 HLA Typing
HLA (Human Leukocyte Antigen) typing is the process of matching a patient to its
potential donor. This is used primarily in hematopoietic stem cells or solid-organ
transplantations and can have significant consequences if performed insufficiently.
Currently, HLA typing is done using short-read technologies, which can be prob-
lematic and lead to ambiguous HLA typing due to their read lengths [115]. Several
studies have shown that LRS can detect previously unknown polymorphisms and
provide results comparable to or even surpassing those ofNGS [116, 117]. Nanopore
sequencing is specifically used to develop new, much faster, HLA typing methods
[118, 119]. Although the use of LRS for HLA typing is in its beginning stages, it is
clear that it can bring significant improvements.
Besides HLA typing, the human genome contains other types of specific genes

that can be studied in a similar fashion.One such example is Killer cell immunoglobulin-
like receptors [120].
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First, this thesis introduced the three generations of sequencing techniques, with
a particular focus on the two most prominent LRS techniques made by Oxford
Nanopore Technologies and Pacific Biosciences. A comparison of the techniques
in three categories was provided and showed that LRS are much superior when it
comes to read length, especially ONT with their ultra-long reads (>4Mb). Although
the error rate is higher, the trends of recent years suggest that it will continue to
decrease, especially since PacBio’s CCS has achieved an error rate comparable to
Illumina sequencing. The price perGb of sequenced bases remains somewhat higher,
but reduction can be expected, primarily for higher throughput instruments such as
PacBio’s Revio or ONT’s PromethION. The cost of the instruments is comparable
to NGS with the exception of the MinION, which with its price of $1,000 opens the
door to a new era of low-cost DNA sequencing.
The next chapter included information about the various data formats LRS

currently uses. It is important to note that the data formats used by both PacBio and
ONT are being updated or changed somewhat regularly, however, the vast majority
of tools for subsequent data analysis operate with FASTQ or BAM input data which
has been the industry standard since NGS have taken over the sequencing field.

The thesis then moved on to describe the common steps in long-read data anal-
ysis including Basecalling, Quality control, Read alignment and Error correction.
For all aforementioned steps, a variety of available tools was provided as well as
some evaluation of their performance. It is expected that as long-read sequencing
becomes more widespread, the number of analytical tools will rise.

Finally, the most promising applications for LRS were described. Starting with
de novo assembly, where the long reads of LRS have already proven to be useful. Es-
pecially PacBio’s HiFi reads have the potential to be the best standalone sequencing
method for de novo assembly. Moving on to variant calling, where LRS demon-
strated its ability to detect large structural variants, some of which were previously
undetectable using NGS. Another promising application is modified base detection,
unlike NGS, long-read sequencing technologies are able to directly detect various
base modifications without any initial DNA treatment. Moreover, LRS technologies
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are great at detecting modifications in repetitive regions. The two last-mentioned
applications are direct RNA sequencing and laboratory in the field which are unique
to ONT.
Special attention was given to utilization in cancer genomics where, although

still understudied, LRS has proven to be promising. Two specific applications were
mentioned - HLATyping and the detection of structural variations in human cancer.

Long-read sequencing has undergone considerable advancement in recent years.
The technique has evolved to the point where it can now be considered for routine
deployment in clinical practice. The long reads and fast run times will launch the era
of personal genomics, specifically tailored care to individual patients. Although it
still has its limitations, it is likely that with the development of new bioinformatical
approaches, expansion of the available LRS datasets as well as advancements in
sequencing chemistry, the limitations will be at least partially overcome.
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A, C, G, T Adenine, Cytosine, Guanine and Thymine

Allele One of two or more versions of DNA sequence occurring at a
given location (locus)

bp Base Pair

CCS Circular Consensus Sequence

ddNTP Dideoxynucleotides - ddATP, ddCTP, ddGTP, ddTTP

DNA Deoxyribonucleic Acid

Gb Giga Base - One Billion Bases

Hairpin adapter A short nucleotide sequence that binds to one end of both strands
of DNA, effectively joining them together and allowing the two
strands to be sequenced consecutively

HiFi High Fidelity

HLA Human Leukocyte Antigen

indel Insertion-Deletion Variant

kb Kilo Base - One Thousand Bases

LRS Long-Read Sequencing

Mb Mega Base - One Million Bases

NGS Next-Generation Sequencing

ONT Oxford Nanopore Technologies

PacBio Pacific Biosciences

PCR Polymerase Chain Reaction
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RNA Ribonucleic Acid

SBS Sequencing by Synthesis

SNV Single Nucleotide Variant

SV Structural Variant

TGS Third-Generation Sequencing

Transversion The interchange of a purine (A, G) base for a pyrimidine (C, T)
base, or vice versa

Transitions The interchange of a purine (A, G) base for another purine base
or pyrimidine (C, T) base for another pyrimidine base

ZMW Zero-Mode Waveguide
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