Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky

BAKALÁŘSKÁ PRÁCE

Predace v populačních modelech matematické biologie

Plzeň, 2020

Tomáš Lesniak

Nahradit listem zadání.

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a výhradně s použitím odborné literatury a pramenů, jejichž úplný seznam je její součástí.

V Plzni, dne 17. července 2020

••••••

vlastnoruční podpis

Poděkování

Rád bych poděkoval svému vedoucímu práce RNDr. Jonáši Volkovi, Ph.D., za podněty, cenné rady a hlavně za veškerý čas, který mi věnoval při vedení této práce.

Abstrakt

Zabýváme se populačními modely matematické biologie a speciálně pojmem predace. Uvažujeme jednu populaci, jejíž samostatný vývoj se chová podle exponenciálního, logistického či bistabilního zákona. Pro tyto populace zkoumáme, jak se kvalitativně změní vývoj jejich velikosti zahrnutím predačního členu, který může modelovat například vliv predátora či nemoci. Tento vliv modelujeme nejdříve konstantní funkcí a posléze funkcemi mocninnými a lineárními lomennými. Zmíněná změna chování silně závisí na přítomných parametrech, což zdůrazňujeme popisem přítomných bifurkací. Na závěr ukazujeme, že u modelu populace s logistickým růstem dochází vlivem predace ve formě lineární lomenné funkce k efektu hystereze.

Klíčová slova: diferenciální rovnice, populační modely, predace, stabilita, bifurkace, exponenciální dynamika, logistická dynamika, Alleeho efekt, hystereze.

Abstract

We investigate population models of mathematical biology and more specifically, the effect of harvesting. We consider one population whose internal dynamics is decribed by exponential, logistic, or bistable law. For these populations we study the change of dynamics by harvesting which models, e.g., the presence of predator or some desease. We choose harvesting terms as constant or power functions, and finally as a simple rational function. The metioned qualitative change strongly depends on parameters which is emphasized by the description of present bi-furcations. Finally, we show that the model with logistic growth and rational predation leads to the effect of hysteresis.

Keywords: differential equations, population models, harvesting, stability, bifurcations, exponential growth, logistic growth, Allee effect, hysteresis.

Obsah

Obsah		ix	
1	Úvod 1.1 Stacionární bod a jeho stabilita 1.2 Bifurkace	1 2 4	
2	Populační modely 2.1 Exponenciální model 2.2 Logistický model 2.3 Bistabilní model	9 9 10 11	
3	Konstantní predace3.1Exponenciální model s konstantní predací	15 15 17 19	
4	Mocninná predační funkce $p(x) = bx^m$ 4.1 Exponenciální model s mocninnou predací4.1.1 Mocninná predace pro $m \in (0, 1)$ 4.1.2 Mocninná predace pro $m = 1$ 4.1.3 Mocninná predace pro $m > 1$ 4.2 Logistický model s mocninnou predací4.2 Logistický model s mocninnou predací4.2.1 Mocninná predace pro $m \in (0, 1)$ 4.2.2 Mocninná predace pro $m \in 1$ 4.2.3 Mocninná predace pro $m > 1$ 4.3 Bistabilní model s mocninnou predací	 23 24 26 26 28 29 32 34 37 	
5	Predační funkce $p(x) = \frac{bx}{c+x}$ 5.1 Exponenciální model s predační funkcí $p(x)$ 5.2 Logistický model s predační funkcí $p(x)$ 5.3 Bistabilní model s predační funkcí $p(x)$	41 41 44 55	
6	Závěr	59	
Lit	Literatura		

Úvod

Matematickou biologii můžeme chápat jako podoblast biologie nebo také jako podoblast aplikované matematiky, která využívá matematických postupů pro popis biologických fenoménů. Jmenovitě tato oblast využívá matematické nástroje například ke zpracovaní biologických dat, matematické modely biologických systému pro zkoumání jejich chování a vývoje, apod. Pro lepší představu si můžeme představit genetický vývoj jedinců populace, populační modely, šíření infekčních nemocí, apod. [1, 2].

Cílem této práce je studovat interakční populační modely, tedy modely dvou či více populací, které se jistým způsobem vzájemně ovlivňují. V obecnosti můžeme uvažovat libovolný počet populací, ovšem v našem případě uvažujme populace dvě. Takovéto systémy můžeme popsat soustavou rovnic

$$\dot{x} = f_1(x, y),$$

$$\dot{y} = f_2(x, y),$$

kde $x, y \ge 0$ a $f_1, f_2 : \mathbb{R}^2 \to \mathbb{R}$ jsou dané funkce. Řešení x(t), y(t) popisují velikost dané populace v čase t a $\dot{x} = \frac{dx}{dt}$ značí derivaci podle času. V závislosti na tvaru funkcí $f_1(x, y)$, $f_2(x, y)$ dostáváme odlišné chování systémů, podle kterého můžeme rozdělit dané modely do tří skupin interakcí.

Jedním ze základních interakčních modelů je model *lovec-kořist*. Jak název napovídá, jedná se o model, kdy jedna z populací je lovena populací druhou, tedy počet jedinců jedné populace roste na úkor druhé populace. Takovéto systémy souhrnně nazýváme Lotkovi-Volterrovi systémy, které jsou blíže popsané a studované v [1, Kap. 3.1].

Další možnou interakcí je *soutěž*, kdy si dvě populace vzájemně konkurují, např. bojují o společné zdroje (viz [1, Kap. 3.5]). Posledním případem interakce je *symbióza*, kdy jsou obě populace samy o sobě schopny přežít, ale preferují přítomnost druhé populace. Takovýto systém je podrobněji popsán v [1, Kap. 3.6].

V našem případě se budeme zabývat právě modelem *lovec-kořist*. Navíc ale budeme předpokládat, že známe dynamiku lovce y(t) a že tato dynamika závisí na populaci kořisti, tj. $y(t) = \varphi(x(t))$. Můžeme si například představit nejjednodušší situaci, že se populace lovce v čase nemění (například z dostatku jiných zdrojů). Dostáváme tedy jednu diferenciální rovnici

$$\dot{x}=f(x),$$

kde f(x) je složená funkce $f(x) = f_1(x, \varphi(x))$. Navíc budeme funkci f(x) předpokládat ve tvaru

$$f(x) = g(x) - p(x),$$

kde funkce g(x) popisuje samotný vývoj zkoumané populace kořisti bez přítomnosti lovce (dále budeme říkat, že g(x) popisuje vnitřní systému) a funkce p(x) je predační člen, který popisuje vliv lovce na populaci kořisti. Obecně funkce p(x) nemusí představovat pouze predátora, ale může se také jednat například o choroby, apod. Jelikož funkce p(x) redukuje počty zkoumané populace, je přirozené požadovat, aby platilo

$$p(x) \ge 0$$

pro všechna $x \ge 0$.

1.1 Stacionární bod a jeho stabilita

Jak jsme již zmínili, ve všech následujících kapitolách budeme studovat systémy, které budeme popisovat diferenciální rovnicí

$$\dot{x} = f(x) \tag{1.1}$$

pro danou funkci $f : \mathbb{R} \to \mathbb{R}$. V našem případě budeme vždy pracovat pouze se systémy popsanými autonomní diferenciální rovnicí, tedy funkce f(x) na pravé straně diferenciální rovnice (1.1) nebude záviset na čase *t*. Při našem studiu se zaměříme na globální popis kvalitativního chování řešení diferenciální rovnice (1.1).

Ve všech následujících kapitolách budeme bez újmy na obecnosti uvažovat počáteční podmínky x_0 v čase $t_0 = 0$, tedy $x_0 = x(0)$.

Nyní si představíme základní pojmy a nástroje, které budeme dále využívat (viz např. [1, 4]).

DEFINICE 1.1. Řekneme, že x^* je stacionárním bodem diferenciální rovnice (1.1), pokud platí

$$f(x^*) = 0.$$

- DEFINICE 1.2. 1. Řekneme, že stacionární bod x^* diferenciální rovnice (1.1) je *lokálně stabilní*, pokud pro libovolné $\epsilon > 0$ existuje $\delta > 0$ takové, že je-li $|x_0 x^*| < \delta$, tak potom $|x(t) x^*| < \epsilon$ pro všechna $t \ge 0$.
- 2. V případě, že stacionární bod x* není *lokálně stabilní*, tak řekneme, že je *nestabilní*.
- 3. Řekneme, že stacionární bod x^* je *lokálně atraktivní*, jestliže existuje $\delta > 0$ takové, že pro všechna x_0 splňující $|x_0 x^*| < \delta$, platí

$$\lim_{t\to+\infty} x(t) = x^*.$$

 Je-li stacionární bod x* lokálně stabilní a lokálně atraktivní, tak řekneme, že je lokálně asymptoticky stabilní.

Poznámka 1.3. Řekneme, že stacionární bod x^* je *polostabilní zprava*, pokud pro libovolné $\epsilon > 0$ existuje $\delta > 0$ takové, že je-li $0 < x_0 - x^* < \delta$, tak potom $x(t) - x^* < \epsilon$ pro všechna $t \ge 0$. V případě, že pro libovolné $\epsilon > 0$ existuje $\delta > 0$ takové, že je-li $0 < x^* - x_0 < \delta$, tak potom $x^* - x(t) < \epsilon$ pro všechna $t \ge 0$, řekneme, že stacionární bod x^* je *polostabilní zleva*.

Obrázek 1.1: Funkce $f(x) = x^3$, pro kterou má diferenciální rovnice (1.2) nestabilní stacionární bod $x^* = 0$.

Obrázek 1.2: Funkce $g(x) = -x^3$, pro kterou má diferenciální rovnice (1.3) asymptoticky stabilní stacionární bod $x^* = 0$.

Pro jednoduchost budeme v případě lokální asymptotické stability stacionárního bodu x^* říkat, že stacionární bod x^* je asymptoticky stabilní. Pro vyšetřování stability stacionárních bodů budeme v této práci používat dva nástroje, a sice *metodu fázového portrétu* nebo *linearizaci*.

VĚTA 1.4. Nechť x^* je stacionárním bodem diferenciální rovnice (1.1), kde f(x) je spojitá funkce.

- (i) Existuje-li $\epsilon > 0$ a je-li f(x) > 0 pro všechna $x \in (x^* \epsilon, x^*)$ a f(x) < 0 pro všechna $x \in (x^*, x^* + \epsilon)$, potom je stacionární bod x^* asymptoticky stabilní.
- (ii) Existuje-li $\epsilon > 0$ a je-li f(x) < 0 pro všechna $x \in (x^* \epsilon, x^*)$ a f(x) > 0 pro všechna $x \in (x^*, x^* + \epsilon)$, potom je stacionární bod x^* nestabilní.

VĚTA 1.5. Nechť x^* je stacionární bod diferenciální rovnice (1.1) a funkce f(x) je diferencovatelná $v x^*$. Je-li $f'(x^*) < 0$, pak je stacionární bod x^* asymptoticky stabilní. Je-li $f'(x^*) > 0$, pak je x^* nestabilní.

Metoda fázového portrétu popsaná ve Větě 1.4 je obecnější, ovšem metoda linearizace z Věty 1.5 je mnohdy jednodušší na použití, za předpokladu, že funkce f(x) je diferencovatelná a známe hodnotu stacionárního bodu x^* .

V případě $f'(x^*) = 0$ můžou nastat obě situace, tj. nestabilita i asymptotická stabilita stacionárního bodu x^* , jak se můžeme přesvědčit v následujícím Příkladu 1.6.

Příklad 1.6. Uvažujme diferenciální rovnice

$$\dot{x} = f(x) = x^3, \tag{1.2}$$

$$\dot{x} = g(x) = -x^3.$$
 (1.3)

Vidíme, že v obou případech dostáváme stacionární bod $x^* = 0$. Pro derivaci funkcí f(x), g(x) získáváme

2

$$f'(x) = 3x^2,$$

$$g'(x) = -3x^2,$$

a tedy $f'(x^*) = g'(x^*) = 0$. Snadno bychom ale podle Věty 1.4 pomocí fázového portrétu určili, že v případě diferenciální rovnice (1.2) je $x^* = 0$ nestabilní, neboť pro $f(x) = x^3$ je f(x) < 0pro všechna $x \in (-\infty, 0)$ a f(x) > 0 pro všechna $x \in (0, +\infty)$. Zatímco pro diferenciální rovnici (1.3) je $x^* = 0$ asymptoticky stabilní, protože g(x) > 0 pro všechna $x \in (-\infty, 0)$ a g(x) < 0 pro všechna $x \in (0, +\infty)$.

Obrázek 1.3: Bifurkační diagram *bifurkace z čistého nebe* vyskytující se u systému popsaného diferenciální rovnicí (1.4).

Obrázek 1.4: Bifurkační diagram *transkritické bifurkace* vyskytující se u systému popsaného diferenciální rovnicí (1.7).

1.2 Bifurkace

V této práci se budeme zabývat systémy, pro které bude funkce f(x) na pravé straně diferenciální rovnice (1.1) závislá nejen na hodnotě *x*, ale také na různých parametrech. Tedy výsledné chování daného systému se může s volbou těchto parametrů kvalitativně lišit. Této kvalitativní změně, při které může docházet jak ke změně počtu stacionárních bodů, tak ke změně jejich stability v závislosti na hodnotě parametru, říkáme *bifurkace*.

Nyní si ukažme na několika příkladech některé ze základních bifurkací jednorozměrných systémů (viz [4]).

Příklad 1.7. (bifurkace z čistého nebe). Mějme diferenciální rovnici

$$\dot{x} = b - x^2, \tag{1.4}$$

kde $b \in \mathbb{R}$ je parametr. V závislosti na hodnotě *b* určeme počet stacionárních bodů tohoto systému. Stacionárními body diferenciální rovnice (1.4) jsou kořeny rovnice

$$b - x^2 = 0. (1.5)$$

Pro b > 0 získáváme řešení $x_{1,2}^* = \pm \sqrt{b}$. Stabilitu těchto bodů ověřme na základě linearizace. Zderivujme tedy funkci $f(x) = b - x^2$ vystupující na pravé straně diferenciální rovnice (1.4). Dostáváme

$$f'(x) = -2x. (1.6)$$

Dosazením za $x = x_1^* = \sqrt{b}$ do (1.6) dostáváme

$$f'(x_1^*) = f'(\sqrt{b}) = -2\sqrt{b} < 0,$$

tedy na základě Věty 1.5 je stacionární bod $x_1^* = \sqrt{b}$ asymptoticky stabilní. V případě stacionárního bodu $x_2^* = -\sqrt{2}$ dostáváme

$$f'(x_2^*) = f'(-\sqrt{b}) = 2\sqrt{b} > 0$$

a na základě Věty 1.5 je stacionární bod $x_2^* = -\sqrt{b}$ nestabilní.

Pro b < 0 nedostáváme žádné stacionární body. V případě, kdy b = 0, dostáváme pouze jeden nestabilní (resp. polostabilní zprava) stacionární bod $x_1^* = x_2^* = 0$, jehož stabilitu bychom

Obrázek 1.5: Bifurkační diagram *vidličkové bifurkace* vyskytující se u systému popsaného diferenciální rovnicí (1.9).

ověřili na základě fázového portrétu (viz Větu 1.4). Vidíme tedy, že pro hodnotu b = 0 dochází ke kvalitativní změně daného systému. Přechodem parametru *b* přes hodnotu b = 0 vzniká dvojice stacionárních bodů. Tomuto typu kvalitativní změny říkáme *bifurkace z čistého nebe*.

Tyto závěry můžeme jednoduše zakreslit do tzv. *bifurkačního diagramu*, který nám zobrazuje stacionární body a jejich stabilitu v závislosti na hodnotě přítomného parametru. Větev asymptoticky stabilních stacionárních bodů značíme plnou zelenou křivkou, zatímco větev nestabilních stacionárních bodů značíme červenou čárkovanou křivkou. Bifurkační diagram vzhledem k parametru *b* pro systém popsaný diferenciální (1.4) můžeme vidět na Obrázku 1.3.

Příklad 1.8. (*transkritická bifurkace*). Dále vyšetřeme chování systému popsaného diferenciální rovnicí

$$\dot{x} = bx - x^2 \tag{1.7}$$

v závislosti na parametru $b \in \mathbb{R}$. Pro nalezení stacionárních bodů řešíme rovnici

$$bx - x^2 = 0.$$

Jednoduše nalezneme řešení $x_1^* = 0$, $x_2^* = b$. Zderivujeme-li funkci $f(x) = bx - x^2$, dostáváme

$$f'(x) = b - 2x. (1.8)$$

Dosazením $x_1^* = 0$ do (1.8) máme

$$f'(x_1^*) = f(0) = b.$$

Vidíme, že pro b > 0 je $f(x_1^*) > 0$, a tedy x_1^* je dle Věty 1.5 nestabilní. Pro b < 0 je $f(x_1^*) < 0$, tedy na základě Věty 1.5 je x_1^* asymptoticky stabilní. V případě stacionárního bodu $x_2^* = b$ pomocí linearizace dostáváme

$$f'(x_2^*) = f(b) = -b,$$

a tedy pro b > 0 je x_2^* asymptoticky stabilní, zatímco pro b < 0 je x_2^* je nestabilní. V případě b = 0 je stacionární bod $x_1^* = x_2^* = 0$ nestabilní (resp. polostabilní zprava), což lze ověřit na základě fázového portrétu.

Vidíme, že při přechodu parametru *b* přes hodnotu b = 0 dochází k protnutí a výměně stability větví stacionárních bodů $x_1^* = 0$ a $x_2^* = b$. Tento typ bifurkace nazýváme *transkritickou bifurkací* (viz Obrázek 1.4).

Obrázek 1.6: Funkce $f(x) = b - x - e^{-x}$ pro různé hodnoty parametru *b*.

Obrázek 1.7: Funkce $\delta(x) = b - x$ společně s funkcí $\gamma(x) = e^{-x}$ pro různé hodnoty parametru *b*.

Příklad 1.9. (*vidličková bifurkace*). Posledním případem je tzv. *vidličková bifurkace*. Vyskytuje se například u systému popsaném diferenciální rovnicí

$$\dot{x} = bx - x^3 \tag{1.9}$$

s parametrem $b \in \mathbb{R}$. Vyřešením rovnice

$$bx - x^3 = 0$$

nalezneme stacionární bod $x_1^* = 0$ a pro b > 0 navíc stacionární body $x_2^* = \sqrt{b}$, $x_3^* = -\sqrt{b}$. Stabilitu vyšetříme opět linearizací. Derivací funkce $f(x) = bx - x^3$ dostáváme

$$f'(x) = b - 3x^2. (1.10)$$

Dosazením za $x = x_1^* = 0$ do (1.10) dostáváme

$$f'(x_1^*) = f'(0) = b.$$

Vidíme, že pro b > 0 je $f(x_1^*) > 0$, a tedy na základě Věty 1.5 je stacionární x_1^* nestabilní. Naopak pro b < 0 je x_1^* je asymptoticky stabilní. Pro b > 0 a oba stacionární body x_2^* , x_3^* máme

$$f'(x_{2,3}^*) = f'(\pm \sqrt{b}) = -2b < 0.$$

Tedy na základě Věty 1.5 jsou stacionární body $x_{2,3}^*$ asymptoticky stabilní. Pro b = 0 dostáváme asymptoticky stabilní stacionární bod $x_1^* = x_2^* = x_3^* = 0$, jehož stabilitu bychom opět ověřili na základě fázového portrétu.

Celkem tedy získáváme, že přechodem parametru *b* přes hodnotu b = 0 se z triviálního řešení, které navíc pro tuto hodnotu mění svou stabilitu, oddělují dvě netriviální asymptoticky stabilní řešení. Této bifurkaci se říká *vidličková bifurkace* (viz Obrázek 1.5).

V následujícím příkladu si uvedeme složitější systém, u kterého pro jistou hodnotu parametru dochází k *bifurkaci z čistého nebe*.

Příklad 1.10. Mějme systém popsaný diferenciální rovnicí

$$\dot{x} = c - x - e^{-x},\tag{1.11}$$

1.2. BIFURKACE

kde $c \in \mathbb{R}$ je parametr. Pro nalezení stacionárních bodů diferenciální rovnice (1.11) řešíme rovnici

$$c - x - e^{-x} = 0. (1.12)$$

Upravme rovnici (1.12) do tvaru

$$b - x = e^{-x}.$$
 (1.13)

Označme si

$$\gamma(x) = b - x,$$

 $\delta(x) = e^{-x}.$

Nyní určeme, kdy má rovnice (1.13) právě jedno řešení v závislosti na hodnotě parametru *b*. Díky průběhu funkcí $\gamma(x)$, $\delta(x)$ toto nastává v případě (viz Obrázek 1.7)

$$\gamma(x) = \delta(x),$$

$$\gamma'(x) = \delta'(x).$$
(1.14)

Vyřešením soustavy (1.14) zjistíme, že pro b = 1 máme právě jeden stacionární bod $x_1^* = 0$. Z vlastností funkcí $\gamma(x)$, $\delta(x)$ vidíme, že pro b > 1 protne funkce $\gamma(x)$ funkci $\delta(x)$ právě dvakrát, zatímco pro b < 1 nemají funkce žádný průsečík (viz Obrázek 1.7).

Zajímejme se o lokální chování na okolí x = 0. Proveď me Taylorův rozvoj funkce $f(x) = c - x - e^{-x}$ na levé straně (1.11) pro bod x = 0. Dostáváme

$$\dot{x} = c - x - \left[1 - x + \frac{x^2}{2!} + O(x^3)\right].$$

Pokud člen $O(x^3)$ pro $|x| \ll 1$ zanedbáme, dostaneme diferenciální rovnici

$$\dot{x} = (c-1) - \frac{x^2}{2}.$$
 (1.15)

Označením b = c - 1 máme systém popsaný diferenciální rovnicí

$$\dot{x} = b - \frac{x^2}{2}.$$
(1.16)

Vidíme, že dostáváme rovnici, která je obdobná s diferenciální rovnici (1.4) z Příkladu 1.7, kde dochází k *bifurkaci z čístého nebe* pro b = 0 (tj. pro c = 1).

Na Obrázku 1.8 můžeme vidět bifurkační diagramy vzhledem k parametru c pro systémy popsané diferenciálními rovnicemi (1.11) a (1.15). Vidíme, že pro hodnoty parametru c blízké jedné a hodnoty x blízké nule bifurkační diagramy vypadají velice podobně, resp. kvalitativně stejně.

Metodu použitou v Příkladu 1.10, kdy řešíme soustavu (1.14) a najdeme tak hodnotu parametru, pro kterou dochází k bifurkaci, budeme používat i v dalších částech tohoto textu.

Poznámka 1.11. Z Příkladu 1.10 vidíme, že na okolí bifurkačního bodu model (1.11) lze dobře aproximovat systémem z Příkladu 1.7. Toto lze provést obecněji, a proto se modelům v Příkladech 1.7–1.9 říká *normální formy* daných typů bifurkací.

Obrázek 1.8: Bifurkační diagramy vzhledem k parametru c pro systémy (1.11) - oranžová a (1.15) - modrá.

Populační modely

V této kapitole se budeme věnovat základním populačním modelům, které budou v dalších odstavcích reprezentovat vnitřní dynamiku populace. Uvedeme si samotné vztahy popisující daný model, budeme diskutovat význam parametrů v daných vztazích a v poslední řade budeme diskutovat tvar a chování výsledného řešení.

V této i následujících kapitolách budeme uvažovat pouze nezáporné hodnoty populace, tj. $x \ge 0$, neboť záporné hodnoty by neměly žádný význam.

2.1 Exponenciální model

Jedním z nejjednodušších modelů je exponenciální model, který byl popsán T. R. Malthusem [5] v 18. století. Uvažujme tedy jistou populaci, kdy x(t) bude značit její velikost (počet jedinců) v čase t. Dále mějme konstantu a > 0 charakterizující natalitu jedinců populace společně s konstantou b > 0, která popisuje mortalitu jedinců zkoumané populace. Nyní už můžeme uvést vztah popisující dynamiku populace jako

$$\dot{x} = ax - bx. \tag{2.1}$$

Úpravou vztahu (2.1) dostaneme

$$\dot{x} = rx, \tag{2.2}$$

kde r = a - b.

Obecné řešení (2.2) získáme separací proměnných ve tvaru

$$x(t) = x_0 e^{rt}, (2.3)$$

kde $x_0 \ge 0$ je počáteční stav populace. Z řešení (2.3) vidíme, že pro r > 0 (tedy a > b) dochází k exponenciálnímu růstu populace, pro případ r < 0 (tedy a < b) dochází k vymírání populace a v posledním případě, kdy r = 0 (tedy a = b), je stav ustálený, tedy počet jedinců se s rostoucím časem nikterak nemění. Na Obrázku 2.1 můžeme vidět konkrétní řešení diferenciální rovnice (2.2) pro různá r a stejnou počáteční podmínku $x_0 > 0$.

Pro nalezení stacionárního bodu diferenciální rovnice (2.2) řešíme rovnici rx = 0. Ihned vidíme, že stacionárním bodem je $x_1^* = 0$ pro $r \neq 0$ a libovolné $x^* \geq 0$ pro r = 0. Stabilitu snadno určíme z řešení (2.3), kdy dostáváme:

• $x_1^* = 0$ je nestabilní pro r > 0,

Obrázek 2.1: Řešení diferenciální rovnice (2.2) pro r = -1, r = 0, r = 1, r = 2, r = 3.

- libovolné $x^* \ge 0$ je stabilní pro r = 0,
- $x_1^* = 0$ je asymptoticky stabilní pro r < 0.

Z Obrázku 2.1 vidíme, že v případě, kdy r > 0, populace s rostoucím časem roste neomezeně, což je v rozporu s realitou. Velikost populace je ve skutečnosti omezena různými vlivy, ať už například velikostí prostředí, možností obstarání si potravy, pohodlím, apod. Tyto vlivy budeme v dalších částech textu souhrnně nazývat kapacitou prostředí. Absence těchto vlivů v exponenciálním modelu byla motivací pro zavedení dalších přesnějších modelů, jak uvidíme v následujících kapitolách. Na druhou stranu exponenciální model dobře aproximuje vývoj populace, kdy se počet jedinců dané kapacitě prostředí neblíží.

2.2 Logistický model

Nyní vezměme v potaz výše zmíněnou kapacitu prostředí, kterou označme k > 0. Model popisující vývoj populace x zohledňující kapacitu prostředí k byl prvně popsán P. F. Verhulstem [6] v roce 1838 a vypadá následovně:

$$\dot{x} = rx\left(1 - \frac{x}{k}\right),\tag{2.4}$$

kde $r \in \mathbb{R}$. Funkce na pravé straně (2.4) je znázorněna na Obrázku 2.2.

Stojí za povšimnutí, že pro $x \ll 1$ se logistický model chová podobně jako model exponenciální, neboť pro takováto x platí $x^2 \ll x$, tedy člen $\frac{r}{k}x^2$ je oproti členu rx zanedbatelný. Na druhou stranu pro větší x člen $\frac{r}{k}x^2$ zanedbal nelze, tím pádem dochází vlivem tohoto členu k redukci růstu populace.

V následujících úvahách předpokládejme r > 0, neboť pro r < 0 by při populaci menší než je kapacita prostředí k došlo k vymírání populace, a tedy by nebylo zapotřebí kapacitu nikterak zohledňovat.

Ze vztahu (2.4) získáme stacionární body položením pravé strany rovné nule, tj.

$$rx\left(1-\frac{x}{k}\right)=0,$$

ve tvaru $x_1^* = 0$ a $x_2^* = k$. Derivací pravé strany rovnosti (2.4) dostáváme

$$g'(x) = \left(rx\left(1 - \frac{x}{k}\right)\right)' = r - \frac{2r}{k}x.$$
(2.5)

Obrázek 2.2: Funkce $g(x) = rx \left(1 - \frac{x}{k}\right)$ na pravé straně (2.4).

Obrázek 2.3: Řešení diferenciální rovnice (2.4) pro různé počáteční podmínky.

Dále dosaď me do (2.5) $x_1^* = 0$, čímž získáme

$$g'(x_1^*) = f'(0) = r > 0,$$

a tedy na základě Věty 1.5 je x_1^* nestabilní. Obdobně pro $x_2^* = k$ dostáváme

$$g'(x_2^*) = f'(k) = -r < 0$$

a opět na základě Věty 1.5 je x_2^* asymptoticky stabilní (viz Obrázek 2.2).

Řešení diferenciální rovnice (2.4) s počáteční podmínkou $x_0 > 0$ bychom opět získali separací proměnných v následujícím tvaru:

$$x(t) = \frac{x_0 k}{(k - x_0)e^{-rt} + x_0}.$$
(2.6)

Z Obrázku 2.2 a také z tvaru řešení (2.6) lze vidět, že pokud počáteční stav populace x_0 bude $x_0 < k$, tak bude docházet k nárůstu populace směrem ke kapacitě k. Naopak bude-li $x_0 > k$, bude docházet k vymírání populace směrem ke kapacitě k. Dále stojí za povšimnutí fakt, že k největšímu nárůstu populace dochází, když velikost populace je rovna $x = \frac{k}{2}$. Pokud překročíme tuto hodnotu, tak stále dochází k nárůstu populace, ovšem rychlost růstu bude menší. To tedy znamená, že hodnotě t_i , které přísluší hodnota $x(t_i) = \frac{k}{2}$, bude odpovídat bod inflexe řešení x(t). Konkrétní případy s různými počátečními podmínkami můžeme vidět na Obrázku 2.3.

2.3 Bistabilní model

Nyní uvažujme situaci, kdy máme populaci, která není schopna přežít v případě, že počet jedinců není dostatečný. Možné důvody tohoto fenoménu jsou například:

- kolektivní lov,
- kolektivní obrana,
- hledání partnera pro reprodukci, atd.

To tedy znamená, že existuje kritická hodnota a > 0, která určuje mezní počet jedinců, pod kterým populace ještě není schopna přežít. Naopak je-li počet jedinců větší než tato mezní

Obrázek 2.4: Fázový portrét pro diferenciální rovnici (2.7).

Obrázek 2.5: Řešení diferenciální rovnice (2.7) pro různé počáteční podmínky.

hodnota, tak populace roste, nikoliv ale neomezeně, neboť i tento model zohledňuje kapacitu prostředí k > 0. Tento fenomén se nazývá *Alleeho efekt* [9], který byl prvně pozorován W. C. Alleem ve 30. letech 20. století na populaci zlatých rybiček. Systém, ve kterém se vyskytuje takovýto jev, může být popsán následující diferenciální rovnicí:

$$\dot{x} = rx(x-a)(k-x),$$
 (2.7)

kde r > 0 je reprodukční koeficient, $a \in (0, k)$ je výše popsaná prahová hodnota, k > 0 je kapacita prostředí.

Z tvaru pravé strany diferenciální rovnice (2.7) je zřejmé, že stacionárními body jsou $x_1^* = 0$, $x_2^* = a$, $x_3^* = k$.

Derivace funkce

$$g(x) = rx(x-a)(k-x)$$

na pravé straně (2.7) je

$$g'(x) = (rx(x-a)(k-x))' = -3rx^2 + 2rx(k+a) - rak.$$
 (2.8)

Dosazením stacionárních bodů x_1^* , x_2^* , x_3^* do (2.8) dostáváme:

$$g'(x_1^*) = f'(0) = -rak < 0,$$

$$g'(x_2^*) = f'(a) = ra(k-a) > 0,$$

$$g'(x_3^*) = f'(k) = rk(a-k) < 0,$$

neboť $a \in (0, k)$. Z Věty 1.5 je x_1^* asymptotický stabilní, x_2^* nestabilní a x_3^* asymptoticky stabilní (viz Obrázek 2.4). Z tohoto důvodu nazýváme tento model modelem *bistabilním*.

Implicitní tvar řešení diferenciální rovnice (2.7) můžeme získat separací proměnných. Dostáváme

$$\int \frac{1}{rx(x-a)(k-x)} \, \mathrm{d}x = \int \, \mathrm{d}t, \tag{2.9}$$

kdy rozložením integrandu levé strany (2.9) na parciální zlomky a následnou úpravou máme

$$-\frac{1}{rak}\int \frac{1}{x}\,dx + \frac{1}{ra(k-a)}\int \frac{1}{(x-a)}\,dx + \frac{1}{rk(k-a)}\int \frac{1}{(k-x)}\,dx = \int dt.$$
 (2.10)

Spočtením integrálů v (2.10) získáváme

$$-\frac{1}{rak}\ln|x| + \frac{1}{ra(k-a)}\ln|x-a| - \frac{1}{rk(k-a)}\ln|k-x| = t + C,$$
(2.11)

2.3. BISTABILNÍ MODEL

kde

$$C = -\frac{1}{rak}\ln|x_0| + \frac{1}{ra(k-a)}\ln|x_0 - a| - \frac{1}{rk(k-a)}\ln|k - x_0|.$$

Řešení diferenciální rovnice (2.7) dané implicitním tvarem (2.11) pro různé počáteční podmínky můžeme vidět na Obrázku 2.5.

Podobně jako u logistického modelu si můžeme všimnout, že funkce f(x) má právě dva lokální extrémy, a sice pro hodnoty

$$\bar{x}_1 = \frac{(a+k) - \sqrt{a^2 + k^2 - ak}}{3},$$

$$\bar{x}_2 = \frac{(a+k) + \sqrt{a^2 + k^2 - ak}}{3},$$

viz Obrázek 2.4. To tedy znamená, že trajektorie řešení diferenciální rovnice (2.7) budou mít body inflexe v časech t_i , t_j , kterým přísluší hodnoty

$$\begin{aligned} x(t_i) &= \frac{(a+k) - \sqrt{a^2 + k^2 - ak}}{3} = \bar{x}_1, \\ x(t_j) &= \frac{(a+k) + \sqrt{a^2 + k^2 - ak}}{3} = \bar{x}_2, \end{aligned}$$

jak můžeme vidět na Obrázku 2.5.

Konstantní predace

V této a dalších kapitolách tohoto textu se zabývejme interakcí vnitřní dynamiky populace s predačním členem. Studujeme chování daného systému v závislosti na volbě těchto interagujících členů. Jak jsme již zmínili, takovéto systémy budeme popisovat diferenciální rovnicí

$$\dot{x} = f(x),$$

kde

$$f(x) = g(x) - p(x).$$
 (3.1)

Funkci g(x), která popisuje vnitřní dynamiku systému, budeme volit jako jeden z modelů popsaných v Kapitole 2, tj. exponenciální, logistický, nebo bistabilní model. Predační člen p(x) budeme pro tuto kapitolu uvažovat jako nejjednodušší možný, a sice

$$p(x) = b_{x}$$

kde b > 0.

3.1 Exponenciální model s konstantní predací

V prvním případě uvažujme model popsaný diferenciální rovnicí (3.1), kde g(x) = rx. Dostáváme lineární diferenciální rovnici

$$\dot{x} = rx - b, \tag{3.2}$$

kde r > 0, b > 0.

Naznačme i v tomto jednoduchém případě, jak lze v dané diferenciální rovnici zredukovat počet parametrů (toto budeme využívat i dále). Vydělme rovnost (3.2) hodnotou *r*. Dostáváme

$$\frac{\dot{x}}{r} = x - \frac{b}{r}$$

Zadefinováním nového času $\tau = rt$ získáváme

$$x' = \frac{\mathrm{d}x}{\mathrm{d}\tau} = \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{1}{r}\dot{x}.$$
(3.3)

Pomocí vztahu (3.3) a substituce $\beta = \frac{b}{r}$ máme

$$x' = x - \beta$$

Obrázek 3.1: Řešení diferenciální rovnice (3.2) pro různé počáteční podmínky.

Nyní už jen formálně přeznačme $x' = \dot{x}$. Dostáváme tedy systém popsaný diferenciální rovnicí

$$\dot{x} = x - \beta, \tag{3.4}$$

kde $\beta > 0$. Pro přehlednost budeme v původních systémech používat latinské značení parametrů, zatímco pro redukované (případně bezrozměrné) systémy budeme používat řecké značení parametrů.

VĚTA 3.1. Diferenciální rovnice (3.4) má právě jeden stacionární bod $x_1^* = \beta$, který je nestabilní pro všechna $\beta > 0$.

Důkaz. Pro nalezení stacionárního bodu řešíme rovnici

$$x - \beta = 0$$
,

tj. $x_1^* = \beta > 0$. Zderivujeme-li $f(x) = x - \beta$ vystupující na pravé straně (3.4), dostáváme f'(x) = 1, a tedy $f'(x_1^*) = 1$, což podle Věty 1.5 znamená, že stacionární bod $x_1^* = \beta$ je nestabilní pro všechna $\beta > 0$.

Pro původní systém popsaný diferenciální rovnicí (3.2) tedy dostáváme nestabilní stacionární bod $x_1^* = \frac{b}{r}$ pro všechna r, b > 0.

Explicitní tvar řešení diferenciální rovnice (3.2) můžeme získat pomocí separace proměnných. Dostáváme

$$x(t) = \frac{(x_0 r - b)e^{rt} + b}{r},$$
(3.5)

kde $x_0 \ge 0$ je počáteční podmínka. Zjišťujeme, že je-li $x_0 < x_1^*$, tak dochází k vymírání zkoumané populace v konečném čase, neboť pro $x_0 < x_1^*$ bychom z (3.5) snadno určili čas t_v , pro který je $x(t_v) = 0$, ve tvaru

$$t_v = \frac{\ln\left(\frac{-b}{x_0 r - b}\right)}{r} < +\infty.$$

V případě $x_0 > x_1^*$ je počáteční počet jedinců natolik velký, že predační člen není schopen redukovat počty jedinců zkoumané populace dostatečně rychle, a tedy dochází k exponenciálnímu růstu zkoumané populace. Vidíme tedy, že v případě interakce logistického modelu s konstantní predací dostáváme model, který kvalitativně odpovídá bistabilnímu modelu s neomezenou kapacitou prostředí ($k = +\infty$), viz Obrázek 3.1.

Obrázek 3.2: Funkce g(x) = x(1-x) a konstantní funkce pro různé hodnoty $\beta > 0$.

3.2 Logistický model s konstantní predací

Nyní uvažujme model popsaný diferenciální rovnicí (3.1), kde $g(x) = rx \left(1 - \frac{x}{k}\right)$. Dostáváme tedy

$$\dot{x} = rx\left(1 - \frac{x}{k}\right) - b,\tag{3.6}$$

kde r, k, b > 0.

Zavedením substituce

$$u = \frac{x}{k} \tag{3.7}$$

přejděme k bezrozměrnému tvaru systému popsaného diferenciální rovnicí (3.6). Po dosazení a následných úpravách dostáváme

$$\frac{\dot{u}}{r} = u(1-u) - \frac{b}{rk}.$$

Dále zadefinujme nový čas $\tau = rt$ a parametr $\beta = \frac{b}{rk}$. Dostáváme

$$u' = u(1-u) - \beta_{\lambda}$$

kde $u' = \frac{du}{d\tau}$. Dále pouze přeznačme $u' = \dot{x}$, u = x jako dříve. Dostáváme tedy systém popsaný diferenciální rovnicí

$$\dot{x} = x(1-x) - \beta, \tag{3.8}$$

kde $\beta > 0$.

VĚTA 3.2. Nechť $\bar{\beta} = \frac{1}{4}$.

- (i) Je-li $\beta > \overline{\beta}$, potom diferenciální rovnice (3.8) nemá žádný stacionární bod.
- (ii) Je-li $\beta = \overline{\beta}$, potom má diferenciální rovnice (3.8) právě jeden stacionární bod $x_1^* = \frac{1}{2}$, který je nestabilní (resp. polostabilní zprava).
- (iii) Je-li $\beta < \overline{\beta}$, potom má diferenciální rovnice (3.8) právě dva stacionární body

$$x_1^* = rac{1-\sqrt{1-4eta}}{2}, \quad x_2^* = rac{1+\sqrt{1-4eta}}{2},$$

kdy x_1^* *je nestabilní a* x_2^* *je asymptoticky stabilní.*

Obrázek 3.3: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (3.8).

Obrázek 3.4: Funkce $f(x) = x(1-x) - \beta$ pro různé hodnoty parametru β .

Důkaz. Stacionární body diferenciální rovnice (3.8) nalezneme jako řešení kvadratické rovnice

$$-x^2 + x - \beta = 0. \tag{3.9}$$

Diskriminant této kvadratické rovnice je $D = 1 - 4\beta$ a ihned z něho lze určit, že pro $\beta > \bar{\beta} = \frac{1}{4}$ nemá kvadratická rovnice (3.9) žádné řešení, tedy diferenciální rovnice (3.8) nemá žádný stacionární bod. V případě, kdy $D \ge 0$, tj. $\beta \le \bar{\beta}$, dostáváme řešení kvadratické rovnice (3.9) ve tvaru

$$x_1^* = \frac{1 - \sqrt{1 - 4\beta}}{2}, \quad x_2^* = \frac{1 + \sqrt{1 - 4\beta}}{2}.$$

V případě, že D = 0 dostáváme řešení $x_1^* = x_2^* = \frac{1}{2}$. Zde $f(x) = x(1-x) - \beta < 0$ pro všechna $x \in (0, x_1^*) \cup (x_1^*, +\infty)$ a pomocí Věty 1.4 je x_1^* nestabilní (resp. polostabilní zprava).

V posledním případě pro D > 0, tj. $\beta < \overline{\beta}$, dostáváme dva kladné stacionární body x_1^*, x_2^* . Jejich stabilitu vyšetřeme pomocí linearizace. Derivací funkce $f(x) = x(1-x) - \beta$ dostáváme

$$f'(x) = -2x + 1.$$

Po dosazení stacionárních bodů $x_{1,2}^*$ získáváme

$$f'(x_1^*) = f'\left(\frac{1-\sqrt{1-4\beta}}{2}\right) = \sqrt{1-4\beta} > 0,$$

$$f'(x_2^*) = f'\left(\frac{1+\sqrt{1-4\beta}}{2}\right) = -\sqrt{1-4\beta} < 0,$$

tedy na základě Věty 1.5 je stacionární bod x_1^* nestabilní a x_2^* asymptoticky stabilní.

Vidíme, že v případě $\beta < \frac{1}{4}$, je-li $x_0 \in (0, x_1^*)$, tak dochází k vymírání zkoumané populace v konečném čase. Je-li $x_0 \in (x_1^*, x_2^*)$, tak dochází k růstu populace, kdy $\lim_{t\to+\infty} x(t) = x_2^*$. V posledním případě pro $x_0 \in (x_2^*, +\infty)$ dochází k úbytku jedinců zkoumané populace, ale obdobně $\lim_{t\to+\infty} x(t) = x_2^*$. Vidíme, že v jistém smyslu dostáváme model, který kvalitativně odpovídá bistabilnímu modelu, ovšem v našem případě pro $x_0 < x_1^*$ dochází k vymření zkoumané populace v konečném čase.

V případě $\beta = \frac{1}{4}$ dochází ke splynutí stacionárních bodů x_1^*, x_2^* a výsledný stacionární bod $x_1^* = x_2^*$ je nestabilní (resp. polostabilní zprava). Tedy je-li $x_0 \in (0, x_1^*)$, tak dochází k vymírání

zkoumané populace v konečném čase. Pro $x_0 \in (x_1^*, +\infty)$ dochází k úbytku jedinců, ovšem populace nevymře, ale platí lim $_{t\to+\infty} x(t) = x_1^*$. Toto odpovídá bistabilní modelu, kde $a = k = x_1^*$, tj. prahová hodnota *a* splývá s kapacitou *k*.

V posledním případě $\beta > \frac{1}{4}$ dochází k vymírání populace v konečném čase pro libovolné $x_0 > 0$.

Výše zmíněné závěry můžeme vidět na Obrázku 3.4, kde vidíme funkci $f(x) = x(1-x) - \beta$ pro různé hodnoty parametru $\beta > 0$.

Na Obrázku 3.3 je znázorněn bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (3.8). Vidíme, že pro rostoucí hodnotu parametru β , tj. s rostoucí hodnotou *b*, či klesajícími hodnotami *r*, *k*, se k sobě stacionární body x_1^* , x_2^* přibližují, kdy se pro $\beta = \frac{1}{4}$ střetnou. Tedy pro $\beta = \frac{1}{4}$ dochází k *bifurkaci z čistého nebe*.

Přejdeme-li zpět k systému popsaného diferenciální rovnice (3.6), tak pomocí substituce $\beta = \frac{b}{rk}$ a vztahu (3.7) snadno nahlédneme, že pro $b = \frac{rk}{4}$ dostáváme nestabilní (resp. polostabilní zprava) stacionární bod $x_1^* = \frac{k}{2}$. Pro $b > \frac{rk}{4}$ nemá diferenciální rovnice (3.6) žádný stacionární bod. V posledním případě pro $b < \frac{rk}{4}$ dostáváme stacionární body

$$x_1^* = \frac{rk - \sqrt{rk(rk - 4b)}}{2r}, \quad \frac{rk + \sqrt{rk(rk - 4b)}}{2r},$$
 (3.10)

kdy x_1^* je nestabilní a x_2^* je asymptoticky stabilní. K bifurkaci dochází pro $\bar{b} = \frac{rk}{4}$.

3.3 Bistabilní model s konstantní predací

V poslední řadě uvažujme interakci bistabilního modelu s konstantní predací. Zabýváme se tedy systémem

$$k = rx(x-a)(k-x) - b,$$
 (3.11)

kde $a \in (0, k), r, k, b > 0$.

Zaveď me znovu substituci

$$u = \frac{x}{k} \tag{3.12}$$

a převeď me systém (3.11) do bezrozměrného tvaru. Dostáváme

$$\frac{\dot{u}}{rk^2} = u\left(u - \frac{a}{k}\right)\left(1 - u\right) - \frac{b}{rk^3}$$

Zadefinováním nového času $\tau = rk^2t$ a parametrů $\alpha = \frac{a}{k}$, $\beta = \frac{b}{rk^3}$ dostáváme

$$u' = u(u - \alpha)(1 - u) - \beta,$$

kde $u' = \frac{du}{d\tau}$. Formálním přeznačením $u' = \dot{x}$, u = x dostáváme systém popsaný diferenciální rovnicí

$$\dot{x} = x(x-\alpha)(1-x) - \beta,$$
 (3.13)

kde $\alpha \in (0, 1), \beta > 0$.

VĚTA 3.3. Nechť

$$\bar{\beta} = g\left(\frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3}\right),$$

kde $g(x) = x(x - \alpha)(1 - x)$.

Obrázek 3.5: Funkce $g(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ a konstantní funkce různých hodnot.

- (*i*) *Je-li* $\beta > \overline{\beta}$, potom diferenciální rovnice (3.13) nemá žádný stacionární bod.
- (ii) Je-li $\beta = \overline{\beta}$, potom má diferenciální rovnice (3.13) právě jeden stacionární bod

$$x_1^* = \frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3},$$

který je nestabilní (resp. polostabilní zprava).

(iii) Je-li $\beta < \overline{\beta}$, potom má diferenciální rovnice (3.13) dva stacionární body

$$lpha < x_1^* < rac{lpha + 1 + \sqrt{lpha^2 - lpha + 1}}{3},$$

 $rac{lpha + 1 + \sqrt{lpha^2 - lpha + 1}}{3} < x_2^* < 1,$

kdy x_1^* *je nestabilní a* x_2^* *je asymptoticky stabilní.*

Důkaz. Hodnoty stacionárních bodů bychom získali vyřešením kubické rovnice vystupující na pravé straně diferenciální rovnice (3.13). Řešili bychom tedy

$$-3x^3 + 2(\alpha + 1)x^2 + \alpha x - \beta = 0$$

Analytické řešení této rovnice nelze získat jednoduchým výpočtem. Bylo by možné využít matematického softwaru, ovšem podoba řešení není nikterak přehledná. Snadno ale nahlédneme, že-li

$$\beta = \max_{x \ge 0} g(x) = g\left(\frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3}\right) = \overline{\beta},$$

kde $g(x) = x(x - \alpha)(1 - x)$, tak diferenciální rovnice (3.13) má právě jeden stacionární bod

$$x_1^* = \frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3}$$

Obrázek 3.6: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (3.13) pro pevné $\alpha \in (0, 1)$.

Obrázek 3.7: Funkce $f(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ a různé hodnoty parametru β .

Stabilitu vyšetřeme pomocí fázového portrétu. Snadno určíme, že funkce

$$f(x) = x(x - \alpha)(1 - x) - \beta < 0$$

pro všechna $x \in (0, +\infty) \setminus \{x_1^*\}$. Tedy stacionární bod x_1^* je nestabilní (resp. polostabilní zprava). Je-li $\beta < \overline{\beta}$, tak dostáváme dva stacionární body

$$\alpha < x_1^* < \frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3},$$
$$\frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3} < x_2^* < 1.$$

Funkce f(x) < 0 pro všechna $x \in (0, x_1^*) \cup (x_2^*, +\infty)$ a f(x) > 0 pro všechna $x \in (x_1^*, x_2^*)$. Získáváme tedy, že stacionární bod x_1^* je nestabilní a x_2^* je asymptoticky stabilní.

V případě $\beta > \overline{\beta}$ nedostáváme žádný stacionární bod.

Celkem tedy dostáváme, že pro $\beta < \overline{\beta}$, tj. při slabé predaci, dochází k zachování bistabilní dynamiky s kritickou hodnotou x_1^* a kapacitou x_2^* . S rostoucí hodnotou parametru β se k sobě sobě tyto hodnoty blíží, kdy pro $\beta = \overline{\beta}$ splynou za vzniku nestabilního (resp. polostabilního zprava) stacionárního bodu

$$x_1^* = \frac{\alpha + 1 + \sqrt{\alpha^2 - \alpha + 1}}{3}.$$

Pro $x_0 \in (0, x_1^*)$ dochází k vymírání zkoumané populace v konečném čase a pro $x_0 \in (x_1^*, +\infty)$ dochází k úbytku jedinců zkoumané populace, ovšem nedojde k vymření populace, ale platí $\lim_{t\to+\infty} x(t) = x_1^*$. V posledním případě pro $\beta > \overline{\beta}$ dochází pro libovolné $x_0 > 0$ k vymření populace v konečném čase.

Výše zmíněné závěry můžeme vidět na Obrázku 3.7, kde je znázorněna funkce

$$f(x) = x(x - \alpha)(1 - x) - \beta$$

pro pevné $\alpha \in (0, 1)$ a různé hodnoty $\beta > 0$.

Na Obrázku 3.6 vidíme bifurkační diagram vzhledem k parametru $\beta > 0$ systému popsaného diferenciální rovnicí (3.13) pro pevné $\alpha \in (0, 1)$. Vidíme, že s rostoucí hodnotou parametru β , tj. s rostoucím parametrem b, či klesajícími parametry r, k, se k sobě stacionární body x_1^* , x_2^* přibližují, kdy se pro $\beta = \overline{\beta}$ střetnou, tedy dochází k *bifurkaci z čistého nebe*.

Vrátíme-li se zpět k systému popsanému diferenciální rovnicí (3.11), tak snadno pomocí vztahů $\alpha = \frac{a}{k}$, $\beta = \frac{b}{rk^3}$ a substituce (3.12) nahlédneme, že pro $\bar{b} = \bar{\beta}rk^3$ má diferenciální rovnice (3.11) právě jeden stacionární bod

$$x_1^* = \frac{a + K + \sqrt{a^2 + K^2 - aK}}{3},$$

který je nestabilní (resp. polostabilní zprava). Pro $b > \overline{b}$ nemá diferenciální rovnice (3.11) žádný stacionární bod. Naopak pro $b < \overline{b}$ má diferenciální rovnice (3.11) právě dva stacionární body

$$a < x_1^* < \frac{a+k+\sqrt{a^2+k^2-ak}}{3},$$
$$\frac{a+k+\sqrt{a^2+k^2-ak}}{3} < x_2^* < k,$$

kdy stacionární bod x_1^* je nestabilní a x_2^* je asymptoticky stabilní.

Mocninná predační funkce $p(x) = bx^m$

Stejně jako v předešlé kapitole studujme systém daný diferenciální rovnicí

$$\dot{x} = f(x), \tag{4.1}$$

kde

$$f(x) = g(x) - p(x).$$
 (4.2)

Funkce g(x) popisující vnitřní dynamiku budeme opět volit z Kapitoly 2. Predační člen p(x) budeme pro tuto kapitolu uvažovat v podobě mocninné funkce

$$p(x) = bx^m, (4.3)$$

kde b > 0, $m \in (0, +\infty)$. Kvalitativně dostáváme tři případy predačních funkcí v závislosti na hodnotě exponentu m, viz Obrázek 4.1.

V závislosti na volbě funkce g(x) a exponentu m > 0 v predační funkci p(x) dostáváme obecně jiné chování výsledného modelu, čemuž se nyní budeme věnovat detailně.

4.1 Exponenciální model s mocninnou predací

Nejdříve se zaměřme na interakci výše popsané predační funkce (4.3) s exponenciální vnitřní dynamikou popsanou rovnicí (2.2). Tento model vypadá následovně:

$$\dot{x} = rx - bx^m, \tag{4.4}$$

kde $r, b > 0, m \in (0, +\infty)$. Uvažujeme r > 0, tj. populace bez predace exponenciálně roste.

Z důvodu většího počtu parametrů se pokusme model popsaný diferenciální rovnicí (4.4) zjednodušit. Zadefinujme tedy člen

$$u = rx \tag{4.5}$$

a dosaď me ho do (4.4). Po několika úpravách dostaneme

$$\frac{\dot{u}}{r}=u-\frac{b}{r^m}u^m.$$

Obrázek 4.1: Vliv parametru $m \in (0, +\infty)$ na funkci $p(x) = bx^m$.

Zadefinováním nového času $\tau = rt$ a parametru $\beta = \frac{b}{r^m}$ získáme

$$\iota' = \iota - \beta \iota^m, \tag{4.6}$$

kde $u' = \frac{\mathrm{d}u}{\mathrm{d}\tau}$. Nyní už pouze v (4.6) formálně přeznačme $u' = \dot{x}, u = x$. Získáváme

$$\dot{x} = x - \beta x^m, \tag{4.7}$$

kde $\beta > 0$.

Dále tento případ rozdělme na další tři podpřípady podle hodnoty parametru *m*, viz opět Obrázek 4.1. Podobně jako v Kapitole 2 budeme zkoumat dané systémy z pohledu stacionárních bodů a jejich stability. Všimněme si, že pro libovolné parametry β , m > 0 bude mít interakční model (4.7) vždy stacionární bod $x_1^* = 0$.

4.1.1 Mocninná predace pro $m \in (0, 1)$

Mějme model popsaný rovnicí (4.7) pro $m \in (0, 1)$. Na Obrázku 4.2 můžeme vidět grafy funkcí g(x) = x, $p(x) = \beta x^m$, pro m pevné a různé hodnoty parametru β . Z Obrázku 4.2 je zřejmé, že pro libovolné parametry m, β bude vždy kromě $x_1^* = 0$ existovat právě jeden další průsečík funkcí g(x) a p(x), označme $x_2^* > 0$. Také je vidět, že bereme-li parametr m jako pevný, tak s rostoucí hodnotou parametru β roste také hodnota x_2^* .

VĚTA 4.1. Nechť $m \in (0,1)$. Potom má model popsaný diferenciální rovnicí (4.7) dva stacionární body $x_1^* = 0$ a $x_2^* = \beta^{\frac{1}{1-m}}$, kdy x_1^* je asymptoticky stabilní a x_2^* je nestabilní pro všechna $\beta > 0$.

Důkaz. Stacionární body diferenciální rovnice (4.7) najdeme řešením rovnice

$$x - \beta x^m = 0.$$

Snadno nalezneme dvě řešení $x_1^* = 0$, $x_2^* = \beta^{\frac{1}{1-m}}$.

Zbývá vyšetřit stabilitu stacionárních bodů x_1^* , x_2^* . Derivací funkce $f(x) = x - \beta x^m$ dostaneme

$$f'(x) = 1 - \beta m x^{m-1}. \tag{4.8}$$

Obrázek 4.2: Funkce g(x) = x a funkce $p(x) = \beta x^m$ pro pevné $m \in (0, 1)$ a různé hodnoty parametru $\beta > 0$.

V případě ověření asymptotické stability bodu x_1^* nelze použít linearizaci, neboť f'(0) neexistuje. Rozhodněme tedy na základě fázového portrétu. Vyšetřením funkce $f(x) = x - \beta x^m$ bychom zjistili, že f(x) < 0 pro všechna $x \in (0, x_2^*)$. Tedy stacionární bod $x_1^* = 0$ je asymptoticky stabilní.

V případě stacionárního bodu x_2^* získáme jeho dosazením do (4.8)

$$f'(x_2^*) = f'\left(\beta^{\frac{1}{m-1}}\right) = 1 - \beta m\left(\left(\frac{1}{\beta}\right)^{\frac{1}{m-1}}\right)^{m-1} = 1 - m > 0$$

neboť $m \in (0, 1)$. A tedy na základě Věty 1.5 je x_2^* nestabilní.

Vidíme, že pro libovolné $\beta > 0$ dostáváme model, který kvalitativně odpovídá bistabilnímu modelu, ovšem s nekonečnou kapacitou (viz Obrázek 4.4). Tedy pro $x_0 < x_1^*$ platí

$$\lim_{t \to +\infty} x(t) = 0$$

a naopak, pokud je $x_0 > x_1^*$, tak dochází k neomezenému růstu zkoumané populace.

Z hodnoty x_2^* ve Větě 4.1 můžeme vidět, že s rostoucím β roste hodnota x_2^* , jak jsme zmínili výše. Tomuto odpovídá bifurkační diagram na Obrázku 4.3.

Nyní se vraťme zpět k systému popsanému diferenciální rovnicí (4.4). Pomocí převodního vztahu (4.5) určeme stacionární body diferenciální rovnice (4.4), kdy nezapomeňme na fakt, že došlo k formálnímu přeznačení u = x. Celkem tedy dostáváme, že stacionárními body diferenciální rovnice (4.4) jsou

$$x_1^*=0,\quad x_2^*=\left(rac{b}{r}
ight)^{rac{1}{1-m}},$$

kdy x_1^* je asymptoticky stabilní a x_2^* je nestabilní. Obdobně jako v systému popsaném diferenciální rovnicí (4.4) vidíme, že s rostoucím *b*, či klesajícím reprodukčním koeficientem *r* roste hodnota stacionárního bodu x_2^* .

Obrázek 4.3: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.7) pro pevné $m \in (0, 1)$.

Obrázek 4.4: Graf funkce $f(x) = x - \beta x^m$ pro pevná $m \in (0, 1), \beta > 0$.

4.1.2 Mocninná predace pro m = 1

V nejjednodušším případě, kdy v diferenciální rovnici (4.7) zvolíme m = 1, tj. lineární predaci, dostaneme

$$\dot{x} = x - \beta x = (1 - \beta)x.$$

Tento model se chová opět jako model exponenciální s redukovaným koeficientem $\gamma = 1 - \beta$, (viz Kapitola 2.1). Nastávají tedy tři případy:

- γ > 0 (β > 1),
- $\gamma = 0$ ($\beta = 1$),
- $\gamma < 0$ ($\beta < 1$).

Z Kapitoly 2.1 ihned dostáváme, že v případě $\beta \neq 1$ dostáváme stacionární bod $x_1^* = 0$, kdy pro $\beta > 1$ je $x_1^* = 0$ asymptoticky stabilní a pro $\beta < 1$ je $x_1^* = 0$ nestabilní. Ověření je možné provést přímým výpočtem řešení (obdobně jako v Kapitole 2.1) či linearizací. V případě $\beta = 1$ je každé $x^* \ge 0$ stacionárním bodem, který je stabilní, nikoli však asymptoticky. Tyto závěry jsou ilustrovány v bifurkačním diagramu na Obrázku 4.5.

Vidíme tedy, že pro $\beta < 1$ dochází k exponenciálnímu růstu zkoumané populace. V případě, kdy $\beta = 1$ se populace ani nerozrůstá, ani nevymírá. V posledním případě pro $\beta > 1$ dochází k exponenciálnímu vymírání zkoumané populace.

Přejdeme-li zpět k diferenciální rovnici (4.4), tak vidíme, že pokud je $b \neq r$, tak diferenciální rovnice (4.4) má pouze stacionární bod $x_1^* = 0$, kdy v případě pro b > r je $x_1^* = 0$ asymptoticky stabilní a pro b < r je $x_1^* = 0$ nestabilní. Je-li b = r, potom je každé $x^* \ge 0$ stabilním stacionárním bode diferenciální rovnice (4.4).

4.1.3 Mocninná predace pro m > 1

Nakonec uvažujme model (4.7) pro m > 1. Konkrétní podobu funkce $p(x) = \beta x^m$ pro různé hodnoty parametru β a pevné m > 1 společně s funkcí g(x) = x můžeme vidět na Obrázku 4.6. Můžeme si všimnout, že pro libovolné parametry m, β bude kromě $x_1^* = 0$ opět vždy existovat další průsečík $x_2^* > 0$ funkcí g(x) a p(x). Také je vidět, že pro zvětšující se β bude hodnota x_2^* klesat, na rozdíl od případu, kdy jsme volili $m \in (0, 1)$.

Obrázek 4.5: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.7) pro m = 1.

VĚTA 4.2. Nechť je $m \in (1, +\infty)$. Potom má model popsaný diferenciální rovnicí (4.7) dva stacionární body $x_1^* = 0$ a $x_2^* = \left(\frac{1}{\beta}\right)^{\frac{1}{m-1}}$, kdy x_1^* je nestabilní a x_2^* je asymptoticky stabilní pro všechna $\beta > 0$.

Důkaz. Hodnoty stacionárních bodů bychom získali stejně jako v důkazu Věty 4.1. Stabilitu vyšetřeme opět linearizací. Dosaď me tedy jako první do (4.8) $x_1^* = 0$. Dostáváme

$$f'(x_1^*) = f'(0) = 1 > 0$$

a tedy na základě Věty 1.5 je x_1^* nestabilní. Nyní proveď me to samé pro $x_2^* = \left(\frac{1}{\beta}\right)^{\frac{1}{m-1}}$, platí

$$f'(x_2^*) = f'\left(\left(\frac{1}{\beta}\right)^{\frac{1}{m-1}}\right) = 1 - \beta m \left(\left(\frac{1}{\beta}\right)^{\frac{1}{m-1}}\right)^{m-1} = 1 - m < 0,$$

neboť m > 1. Z Věty 1.5 je x_2^* asymptoticky stabilní.

Vidíme, že pro všechna $\beta > 0$ dostáváme model, který kvalitativně odpovídá logistickému modelu, v našem případě s kapacitou prostředí x_2^* , kdy s rostoucím β tato kapacita klesá (pro m = 2 přímo dostáváme logistický model). Tomu odpovídá bifurkační diagram vzhledem k parametru β na Obrázku 4.7. Na Obrázku 4.8 můžeme pozorovat funkci $f(x) = x - \beta x^m$ a výše zmíněné závěry o stabilitě stacionárních bodů.

Zaměřme se na původní diferenciální rovnici (4.4). Použijeme-li převodní vztah (4.5), tak získáme stacionární body pro diferenciální rovnice (4.4) ve tvaru

$$x_1^* = 0$$
, $x_2^* = \left(\frac{r}{b}\right)^{\frac{1}{m-1}}$,

kdy x_1^* je nestabilní a x_2^* je asymptoticky stabilní. Obdobně jako v systému popsaném diferenciální rovnicí (4.7) vidíme, že s rostoucím *b*, či klesajícím reprodukčním koeficientem *r* klesá hodnota stacionárního bodu x_2^* .

Obrázek 4.7: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.7) pro pevná m > 1.

Obrázek 4.8: Graf funkce $f(x) = x - \beta x^m$ pro pevná $m > 1, \beta > 0$.

4.2 Logistický model s mocninnou predací

Nyní uvažujme opět populační model popsaný rovnicí (4.1), kde funkce f(x) na pravé straně je opět dána rozdílem funkcí g(x) a p(x), viz (4.2). Stejně jako v předchozím případě budeme funkci p(x) volit jakožto mocninou funkci $p(x) = bx^m$, b > 0, m > 0, ale funkci g(x) nyní budeme uvažovat jako funkci popisující logistický růst $g(x) = rx(1 - \frac{x}{k})$. Dostáváme tedy diferenciální rovnici

$$\dot{x} = rx\left(1 - \frac{x}{k}\right) - bx^m,\tag{4.9}$$

kde r > 0 je reprodukční koeficient, k > 0 je kapacita prostředí, b > 0, $m \in (0, +\infty)$.

Zjednodušme model (4.9) opět převodem na bezrozměrný tvar, čímž se nám podaří zredukovat počet koeficientů vystupujících v (4.9). Zadefinujme tedy bezrozměrný člen

$$u = \frac{x}{k} \tag{4.10}$$

a dosaď me ho do (4.9). Po pár úpravách získáváme

$$\frac{\dot{u}}{r} = u\left(1-u\right) - \frac{bk^{m-1}}{r}u^m.$$

Zadefinováním nového času $\tau = rt$ a $\beta = \frac{bk^{m-1}}{r}$ získáme

$$u'=u(1-u)-\beta u^m,$$

kde $u' = \frac{du}{d\tau}$. Dále znovu formálně přeznačíme $u' = \dot{x}$, u = x a získáváme

$$\dot{x} = x(1-x) - \beta x^m, \tag{4.11}$$

kde $\beta > 0$.

Z diferenciální rovnice (4.11) vidíme, že jeden ze stacionárních bodů bude opět $x_1^* = 0$, pro libovolné parametry β , m > 0. Stejně jako v Kapitole 4.1 rozdělíme tento případ na další tři podpřípady, a sice podle hodnoty exponentu m.

Obrázek 4.9: Funkce g(x) = x(1-x) a funkce $p(x) = \beta x^m$ pro pevné $m \in (0, 1)$ a různé hodnoty parametru β .

4.2.1 Mocninná predace pro $m \in (0, 1)$

Mějme interakční model popsaný rovnicí (4.11) pro $m \in (0, 1)$. Na Obrázku 4.9 je demonstrován vliv parametru β na funkci $p(x) = \beta x^m$.

Nyní se zaměřme na průsečíky $x^* > 0$ funkcí g(x) = x(1 - x) a $p(x) = \beta x^m$. Z Obrázku 4.9 vidíme, že mohou nastat tři situace v závislosti na hodnotě parametru β . Tyto případy jsou popsané v následující Větě 4.3.

VĚTA 4.3. Nechť $m \in (0,1)$ a $\bar{\beta} = (2-m)^{m-2}(1-m)^{1-m}$.

- (i) Je-li $\beta > \overline{\beta}$, potom má diferenciální rovnice (4.11) pouze jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní.
- (ii) Je-li $\beta = \overline{\beta}$, potom má diferenciální rovnice (4.11) dva stacionární body $x_1^* = 0$ a $x_2^* = \frac{1-m}{2-m}$, kdy x_1^* je asymptoticky stabilní a x_2^* nestabilní (polostabilní zprava).
- (iii) Je-li $\beta < \overline{\beta}$, potom má diferenciální rovnice (4.11) tři stacionární body $x_1^* = 0$,

$$0 < x_2^* < \frac{1-m}{2-m},$$
$$\frac{1-m}{2-m} < x_3^* < 1,$$

kdy x_1^* je asymptoticky stabilní, x_2^* je nestabilní a x_3^* je asymptoticky stabilní.

Důkaz. Stacionární body jsou kořeny rovnice

$$x(1-x) - \beta x^m = 0. \tag{4.12}$$

Jak už bylo řečeno jedním z kořenů je $x_1^* = 0$. Ověření stability stacionárního bodu $x_1^* = 0$ proveď me na základě fázového portrétu, neboť opět f'(0) neexistuje. Funkce

$$f(x) = x(1-x) - \beta x^m$$

je na pravém okolí $(0, \epsilon)$, $\epsilon > 0$, stacionárního bodu $x_1^* = 0$ záporná pro všechna $\beta > 0$. Tedy stacionární bod $x_1^* = 0$ je asymptoticky stabilní pro všechna $\beta > 0$.

Obrázek 4.10: Funkce $\gamma(x) = 1 - x$ a $\delta(x) = \beta x^{m-1}$ jejichž průsečík hledáme.

Dále hledáme stacionární body $x^* > 0$. Můžeme tedy rovnici (4.12) upravit do následujícího tvaru

$$1 - x = \beta x^{m-1}.$$
 (4.13)

Označme v (4.13)

$$\gamma(x) = 1 - x,$$
$$\delta(x) = \beta x^{m-1}$$

Nyní řešíme, kdy se funkce $\gamma(x)$ rovná funkci $\delta(x)$ v závislosti na hodnotě parametru β . Zaměřme se na případ (*ii*), kdy se $\gamma(x)$, $\delta(x)$ tečně dotýkají (pro ilustraci viz Obrázek 4.9, resp. 4.10). Platí tedy

$$\gamma(x) = \delta(x)$$

$$\gamma'(x) = \delta'(x).$$
(4.14)

Dostáváme soustavu rovnic

$$1 - x = \beta x^{m-1} -1 = \beta (m-1) x^{m-2}.$$
(4.15)

Vyřešením soustavy (4.15) pro parametr β získáváme

$$\bar{\beta} = (2-m)^{m-2}(1-m)^{1-m}$$

V případě $\beta = \overline{\beta}$ získáme průsečík x_2^* funkcí $\gamma(x)$, $\delta(x)$ dosazením za $\beta = \overline{\beta}$ do druhé rovnice soustavy (4.15). Dostáváme stacionární bod

$$x_2^* = \frac{1-m}{2-m},$$

který je nestabilní (resp. polostabilní zprava), neboť pro všechna $x \in (0, +\infty) \setminus \{x_2^*\}$ je f(x) < 0. Zřejmě v případě $\beta > \overline{\beta}$ funkce $\gamma(x)$ a $\delta(x)$ nemají žádný průsečík. Naopak je-li $\beta < \overline{\beta}$, mají

funkce $\gamma(x)$ a $\delta(x)$ právě dva průsečíky x_2^* , x_3^* , kdy

$$0 < x_2^* < \frac{1 - m}{2 - m}$$
$$\frac{1 - m}{2 - m} < x_3^* < 1.$$

,

4.2. LOGISTICKÝ MODEL S MOCNINNOU PREDACÍ

Obrázek 4.11: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.9) pro pevné $m \in$ (0, 1).

Snadno bychom nahlédli, že f(x) < 0 pro všechna $x \in (0, x_2^*) \cup (x_3^*, +\infty)$ a f(x) > 0 pro všechna $x \in (x_2^*, x_3^*)$. To znamená, že stacionární bod x_2^* je nestabilní a x_3^* je asymptoticky stabilní.

Získáváme tedy, že pro $\beta < \overline{\beta}$ dostáváme model, který je kvalitativně ekvivalentní s bistabilním modelem, kdy v našem případě se stacionární bod x_2^* chová jako prahová hodnota a stacionární bod x_3^* jako kapacita prostředí. Se zvětšujícím se β se tyto dvě hodnoty k sobě přibližují, kdy pro $\beta = \overline{\beta}$ splynou, tedy pro $\overline{\beta}$ dochází k *bifurkaci z čistého nebe*. V posledním případě pro $\beta > \overline{\beta}$ dostáváme model, kdy pro libovolné $x_0 > 0$ dochází k vymírání zkoumané populace. Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.11) s výše zmíněnou *bifurkací z čistého nebe* můžeme vidět na Obrázku 4.11.

Funkce $f(x) = x(1-x) - \beta x^m$ vystupující na pravé straně diferenciální rovnice (4.11) pro různé hodnoty parametru $\beta > 0$ můžeme vidět na Obrázku 4.12.

Vraťme se zpět k systému popsaného diferenciální rovnicí (4.9). Zaměřme se na případ, kdy

$$\beta = \bar{\beta} = (2 - m)^{m-2}(1 - m)^{1-m}$$

a pomocí předpisu pro koeficient β , tj.

$$\beta = \frac{bk^{m-1}}{r},$$

určeme mezní hodnotu \bar{b} , tj. hodnotu parametru b, pro který má diferenciální rovnice (4.9) právě dva stacionární body. Snadno určíme, že

$$\bar{b} = rk^{1-m}(2-m)^{m-2}(1-m)^{1-m}.$$

Hodnotu stacionárního bodu x_2^* systému popsaného diferenciální rovnicí (4.9) nalezneme pomocí převodního vztahu (4.10). Dostáváme, že

$$x_2^* = \frac{k(1-m)}{2-m}.$$

Tedy systém popsaný diferenciální rovnicí (4.9) pro $b = \overline{b}$ má dva stacionární body

$$x_1^* = 0$$
, $x_2^* = \frac{k(1-m)}{2-m}$,

Obrázek 4.13: Funkce g(x) = x(1 - x) a funkce $p(x) = \beta x$ pro různé hodnoty parametru β .

kdy x_1^* je asymptoticky stabilní a x_2^* je nestabilní (resp. polostabilní zprava).

Podobně jako v případě systému popsaného diferenciální rovnicí (4.11) má diferenciální rovnice (4.9) pro $b > \overline{b}$ pouze stacionární bod $x_1^* = 0$, který je asymptoticky stabilní. Naopak, je-li $b < \overline{b}$ potom má diferenciální rovnice (4.9) tři stacionární body

$$x_1^* = 0, \quad 0 < x_2^* < \frac{k(1-m)}{2-m}, \quad \frac{k(1-m)}{2-m} < x_3^* < k,$$

kdy x_1^* je asymptoticky stabilní, x_2^* nestabilní a x_3^* asymptoticky stabilní.

4.2.2 Mocninná predace pro m = 1

V případě volby hodnoty exponentu m = 1 v diferenciální rovnici (4.11) dostáváme model popsaný diferenciální rovnicí

$$\dot{x} = x(1-x) - \beta x,$$
 (4.16)

kde $\beta > 0$.

Z Obrázku 4.13 si můžeme všimnout, že mohou nastat pouze dva případy, které jsou popsané v následující Větě 4.4.

VĚTA 4.4. Nechť m = 1.

- (i) Je-li $\beta < 1$, potom má diferenciální rovnice (4.16) dva stacionární body $x_1^* = 0$ a $x_2^* = 1 \beta$, kdy stacionární bod x_1^* je nestabilní a stacionární bod x_2^* je asymptoticky stabilní.
- (ii) Je-li $\beta \ge 1$, potom má diferenciální rovnice (4.16) právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní.

Důkaz. Položíme-li pravou stranu diferenciální rovnice (4.16) rovnu nule, dostáváme

$$\kappa(1-x) = \beta x,\tag{4.17}$$

to je splněno pro $x_1 = 0$, $x_2 = 1 - \beta$.

Je-li $\beta < 1$, dostáváme tedy dva stacionární body $x_1^* = 0$, $x_2^* = 1 - \beta$, které vyšetříme pomocí linearizace. Derivací funkce $f(x) = x(1-x) - \beta x$ dostáváme

$$f'(x) = -2x - \beta + 1.$$

Obrázek 4.14: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.16).

Obrázek 4.15: Funkce $f(x) = x(1-x) - \beta x$ pro různé hodnoty parametru β .

Dosazením stacionárních bodů x_1^* , x_2^* získáváme

$$f'(x_1^*) = f'(0) = -\beta + 1 > 0,$$

$$f'(x_2^*) = f'(1 - \beta) = \beta - 1 < 0,$$

a tedy na základě Věty 1.5 je x_1^* nestabilní a x_2^* asymptoticky stabilní.

Pro $\beta = 0$ má diferenciální rovnice (4.16) jeden stacionární bod $x_1^* = x_2^* = 0$. Na základě fázového portrétu je stacionární $x_1^* = x_2^* = 0$ asymptoticky stabilní, neboť f(x) < 0 pro všechna x > 0.

Nakonec pro $\beta > 1$ je $x_2 < 0$, tj. diferenciální rovnice (4.16) má pouze stacionární bod $x_1^* = 0$, který je asymptoticky stabilní, neboť pomocí linearizace získáváme

$$f'(x_1^*) = f'(0) = 1 - \beta < 0.$$

Celkem tedy zjišťujeme, že pro $\beta < 1$ dostáváme model, který je kvalitativně shodný s logistickým modelem s kapacitou prostředí $x_2^* = 1 - \beta$. V opačném případě pro $\beta \ge 1$ dostáváme model, kdy pro libovolné $x_0 > 0$ dochází k vymírání zkoumané populace. Tomuto odpovídá bifurkační diagram na Obrázku 4.14. Vidíme, že s rostoucím β , tedy s rostoucím parametrem *b* nebo klesajícím reprodukčním koeficientem *r*, se hodnota stacionárního bodu x_2^* zmenšuje, kdy pro hodnotu $\beta = 1$ je $x_2^* = 0$. Pro hodnotu $\beta = 1$ dochází k *transkritické bifurkaci*.

Na Obrázku 4.15 můžeme vidět graf funkce $f(x) = x(1-x) - \beta x$ pro různé hodnoty parametru $\beta > 0$. V Obrázku 4.15 není vyznačen stacionární bod $x_1^* = 0$, neboť x_1^* je pro případ $\beta \ge 1$ asymptoticky stabilní a v případě $\beta < 1$ je nestabilní.

Přejděme zpět k původnímu systému popsanému diferenciální rovnicí (4.9). Ze vztahu pro koeficient $\beta = \frac{bk^{m-1}}{r} = \frac{b}{r}$ snadno nahlédneme, že je-li b < r, tak potom má diferenciální rovnice (4.9) právě dva stacionární body $x_1^* = 0$, $x_2^* = k(1 - \frac{b}{r})$, které získáme pomocí vztahu (4.10). Bod x_1^* je nestabilní a x_2^* asymptoticky stabilní. Pro $b \ge r$, má diferenciální rovnice (4.9) pouze stacionární bod $x_1^* = 0$, který je asymptoticky stabilní.

Obrázek 4.16: Funkce g(x) = x(1 - x) a funkce $p(x) = \beta x^m$ pro pevné m > 1 a různé hodnoty parametru β .

4.2.3 Mocninná predace pro m > 1

V poslední řadě se zaměřme na systém popsaný diferenciální rovnicí (4.11) pro m > 1.

Z Obrázku 4.16 můžeme vidět, že kromě stacionárního bodu $x_1^* = 0$, který bude existovat pro všechna $\beta > 0$ a m > 1, bude vždy existovat i právě jeden stacionární bod $x_2^* > 0$ pro všechna $\beta > 0$, m > 1. Také si můžeme všimnout, že s rostoucí hodnotou parametru β bude hodnota x_2^* klesat.

VĚTA 4.5. Nechť m > 1. Potom má diferenciální rovnice (4.11) právě dva stacionární body $x_1^* = 0$ a $x_2^* \in (0,1)$ pro všechna $\beta > 0$, přičemž x_1^* je nestabilní a x_2^* je asymptoticky stabilní. Navíc platí $\lim_{\beta \to +\infty} x_2^*(\beta) = 0$.

Důkaz. Opět jako v předešlých případech vidíme, jeden ze stacionárních bodů diferenciální rovnice (4.11) je $x_1^* = 0$ pro všechna $\beta > 0$. Vyšetření stacionárního bodu $x_1^* = 0$ proveď me na základě linearizace, tj. nejprve zderivujme funkci $f(x) = x(1-x) - \beta x^m$. Dostáváme

$$f'(x) = 1 - 2x - \beta m x^{m-1}. \tag{4.18}$$

Dosazením $x_1^* = 0$ do (4.18) dostáváme

$$f'(x_1^*) = f'(0) = 1 > 0,$$

tedy stacionární bod $x_1^* = 0$ je nestabilní pro všechna $\beta > 0$ podle Věty 1.5.

Pro nalezení zbývajících stacionární bodů nám zbývá vyřešit rovnici

$$1 - x - \beta x^{m-1} = 0. \tag{4.19}$$

Dále si označme funkci na levé straně

$$\gamma(x) = 1 - x - \beta x^{m-1}.$$

Vyšetřeme monotonii funkce $\gamma(x)$ pro x > 0. Dostáváme

$$\gamma'(x) = -1 - b(m-1)x^{m-2} < -1 < 0,$$

tedy $\gamma(x)$ je ostře klesající. Dále snadno nahlédneme, že $\gamma(0) = 1$ a $\gamma(1) = -\beta$. Díky spojitosti $\gamma(x)$ získáváme z Cauchyovy věty o nulové hodnotě a ostré monotonii, že rovnice (4.19) má právě jedno řešení $x_2^* \in (0, 1)$, jehož stabilitu ověřme na základě fázového portrétu. Platí, že f(x) > 0 pro všechna $x \in (0, x_2^*)$ a f(x) < 0 pro všechna $x \in (x_2^*, +\infty)$. Tedy stacionární bod x_2^* je asymptoticky stabilní pro všechna $\beta > 0$.

Ukažme, že platí

$$\lim_{\beta \to +\infty} x_2^*(\beta) = 0.$$

Jelikož se nám nepodaří získat explicitní předpis pro asymptoticky stabilní stacionární bod $x_2^* = x_2^*(\beta)$ v závislosti na β , pokusme se tuto funkci shora omezit. Hodnota $x_2^* \in (0, 1)$ je řešením

$$1-x-\beta x^{m-1}=0.$$

Označme si pro pevné β jako výše

$$\gamma(x) = 1 - x - \beta x^{m-1}.$$
(4.20)

V prvním případě mějme $m \in (1, 2]$. Uvažujme pro pevné β dále funkci

$$\delta_1(x) = 1 - x - \beta x. \tag{4.21}$$

Jelikož pro $m \in (1, 2]$ a $x \in (0, 1)$ platí $x < x^{m-1}$, je navíc

$$\delta_1(x) > \gamma(x). \tag{4.22}$$

Dále vyšetřeme průběh funkce $\delta_1(x)$. Snadno nahlédneme, že $\delta_1(0) = \gamma(0) = 1$ a $\delta_1(1) = \gamma(1) = -\beta$. Dále vyšetřeme monotonii, dostáváme

$$\delta_1'(x) = -(1+\beta) < 0,$$

a tedy funkce $\delta_1(x)$ je ostře klesající na intervalu (0, 1). Tedy opět díky spojitosti funkce $\delta_1(x)$ získáme z Cauchyovy věty o nulové hodnotě a ostré monotonii, že na intervalu (0, 1) existuje právě jeden nulový bod, který získáme vyřešením rovnice

$$\delta_1(x) = 1 - x - \beta x = 0,$$

kdy snadno nalezneme řešení ve tvaru

$$x_{\delta_1}(\beta) = \frac{1}{1+\beta}.\tag{4.23}$$

Jelikož platí nerovnost (4.22) a víme, že na intervalu (0,1) mají funkce $\gamma(x)$, $\delta_1(x)$ právě jeden nulový bod, pak

$$0 < x_2^*(\beta) < x_{\delta_1}(\beta) = \frac{1}{1+\beta}.$$

Pro $x_{\delta_1}(\beta)$ dostáváme

$$\lim_{\beta \to +\infty} x_{\delta_1}(\beta) = \lim_{\beta \to +\infty} \frac{1}{1+\beta} = 0,$$

a tedy pomocí věty o sevření máme

$$\lim_{\beta \to +\infty} x_2^*(\beta) = 0$$

Obrázek 4.17: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (4.11).

Obrázek 4.18: Funkce $f(x) = x(1 - x) - \beta x^m$ pro pevné m > 1 a různé hodnoty parametru $\beta > 0$.

V případě $m \in (2, +\infty)$ uvažujme pro pevné β funkci

$$\delta_2(x) = 1 - x^{m-1} - \beta x^{m-1}. \tag{4.24}$$

Dále bychom postupovali obdobně jako pro $m \in (1, 2]$. Získali bychom tedy nerovnost

$$0 < x_2^*(\beta) < x_{\delta_2}(\beta) = \left(\frac{1}{1+\beta}\right)^{\frac{1}{m-1}}$$

kde $x_{\delta_2}(\beta)$ je řešení rovnice $\delta_2(x) = 0$ na intervalu (0, 1) pro dané $\beta > 0$. Pro

$$x_{\delta_2}(\beta) = \left(\frac{1}{1+\beta}\right)^{\frac{1}{m-1}}$$
 (4.25)

platí

$$\lim_{\beta \to +\infty} x_{\delta_2}(\beta) = \lim_{\beta \to +\infty} \left(\frac{1}{1+\beta}\right)^{\frac{1}{m-1}} = 0,$$

a opět pomocí věty o sevření dostáváme

$$\lim_{\beta \to +\infty} x_2^*(\beta) = 0.$$

Zjišťujeme tedy, že pro všechna $\beta > 0$ dostáváme model, který je kvalitativně shodný s logistickým modelem, kdy v našem případě je kapacita prostředí určena stacionárním bodem $x_2^* \in (0, 1)$.

V obou případech, kdy stacionární bod x_2^* shora odhadujeme hodnotou (4.23), nebo (4.25), tak vidíme, že s rostoucím β , tedy s rostoucími hodnotami *b* nebo *m*, či klesajícími hodnotami *r* nebo *k*, klesá hodnota stacionárního bodu x_2^* (tj. kapacity prostředí) k nule. Tomuto odpovídá bifurkační diagram vzhledem k parametru β na Obrázku 4.17.

Funkce $f(x) = x(1-x) - \beta x^m$ na pravé straně diferenciální rovnice (4.11) pro pevné m > 1a různé hodnoty parametru $\beta > 0$ můžeme vidět na Obrázku 4.18.

Vrátíme-li se k původní diferenciální rovnici (4.9), tak na základě převodního vztahu (4.10) snadno nahlédneme, že její stacionární body jsou $x_1^* = 0$ a $x_2^* \in (0, k)$, kdy x_1^* je nestabilní a x_2^*

Obrázek 4.19: Funkce $g(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ a funkce $p(x) = \beta x^m$ pro pevné $m \in (0, 1)$ (vlevo), m = 1 (uprostřed), m > 1 (vpravo) a různé hodnoty parametru $\beta > 0$.

je asymptoticky stabilní. Taktéž můžeme větev stacionárních bodů $x_2^*(b)$ diferenciální rovnice (4.9) odhadnout funkcemi

$$x_1(b) = \frac{rk}{r+bk^{m-1}}$$

pro $m \in (1, 2]$ a

$$x_2(b) = k \left(\frac{r}{r+bk^{m-1}}\right)^{\frac{1}{1-m}}$$

pro $m \in (2, +\infty)$, tj. v obou případech $\lim_{b \to +\infty} x_2^*(b) = 0$.

4.3 Bistabilní model s mocninnou predací

V poslední řade se zaměřme na interakci bistabilní vnitřní dynamiky s mocninnou predační funkcí. Máme tedy model popsaný diferenciální rovnicí

$$\dot{x} = rx(x-a)(k-x) - bx^m,$$
(4.26)

kde $a \in (0,k)$, r,k,b,m > 0. Model popsaný diferenciální rovnicí (4.26) můžeme opět zjednodušit převedením do bezrozměrného tvaru. Zadefinujme tedy funkci

$$u = \frac{x}{k} \tag{4.27}$$

a dosaď me ji do (4.26). Po úpravě získáme

$$\frac{\dot{u}}{rk^2} = u\left(u - \frac{a}{k}\right)(1 - u) - \frac{bk^{m-3}}{r}u^m.$$

Zadefinováním nového času $\tau = rk^2t$ a parametrů $\alpha = \frac{a}{k}$, $\beta = \frac{bk^{m-3}}{r}$ získáme

$$u' = u(u - \alpha)(1 - u) - \beta u^m,$$

kde $u' = \frac{du}{d\tau}$. Přeznačením $u' = \dot{x}$, u = x máme

$$\dot{x} = x(x-\alpha)(1-x) - \beta x^m,$$
 (4.28)

kde $\alpha \in (0,1)$, $\beta > 0$.

Díky faktu, že $f(x) = x(x - \alpha)(1 - x) < 0$ pro všechna $x \in (0, \alpha)$, dostáváme pro všechna m > 0 tři kvalitativně stejné případy (viz Obrázek 4.19). Z tohoto důvodu studujme model popsaný diferenciální rovnicí (4.28) pro všechna m > 0 najednou.

Obrázek 4.20: Funkce $\gamma(x) = -x^2 + (1 + \alpha)x - \alpha$ a $\delta(x) = \beta x^{m-1}$ jejichž průsečík hledáme.

VĚTA 4.6. *Pro* $m \neq 1$ *mějme*

$$\bar{\beta} = \frac{2^{m-2}(3-m)^{m-3} \left[(1+\alpha) - \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)} \right]}{(m-1) \left[-(1+\alpha)(m-2) + \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)} \right]^{m-2}},$$

$$\bar{x} = \frac{(1+\alpha)(2-m) + \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)}}{2(3-m)},$$

zatímco pro m = 1 mějme

$$\bar{\beta} = \frac{(1-\alpha)^2}{4}$$
$$\bar{x} = \frac{1+\alpha}{2}.$$

- (i) Je-li $\beta > \overline{\beta}$, potom má diferenciální rovnice (4.28) právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní.
- (ii) Je-li $\beta = \overline{\beta}$, potom má diferenciální rovnice (4.28) dva stacionární body $x_1^* = 0$ a $x_2^* = \overline{x}$, kdy x_1^* je asymptoticky stabilní a x_2^* nestabilní (polostabilní zprava).
- (iii) Je-li $\beta < \overline{\beta}$, potom má diferenciální rovnice (4.28) tři stacionární body $x_1^* = 0$, $\alpha < x_2^* < \overline{x}$ a $\overline{x} < x_3^* < 1$, kdy x_1^* je asymptoticky stabilní, x_2^* je nestabilní a x_3^* je asymptoticky stabilní.

Důkaz. Proved'me detailní rozbor případu $m \in (0, 1)$. Snadno nahlédneme, že jeden ze stacionárních bodů diferenciální rovnice (4.28) je $x_1^* = 0$ pro všechna $\beta > 0$. Stabilitu ověřme na základě fázového portrétu, neboť f'(0) neexistuje. Snadno bychom vyšetřením funkce

$$f(x) = x(x - \alpha)(1 - x) - \beta x^{n}$$

ukázali, že f(x) < 0 pro všechna $x \in (0, \alpha)$. Tedy stacionární bod $x_1^* = 0$ je asymptoticky stabilní.

4.3. BISTABILNÍ MODEL S MOCNINNOU PREDACÍ

Obrázek 4.21: Bifurkační diagram vzhledem k parametru $\beta > 0$ systému popsaného diferenciální rovnicí (4.28) pro pevné $\alpha \in (0, 1)$ a $m \in (0, 1)$ vlevo, m = 1 uprostřed, m > 1 vpravo.

Dále se zabývejme stacionárními body $x^* > 0$. Po vydělení rovnice

$$x(x-\alpha)(1-x) - \beta x^m = 0$$

hodnotou x > 0 dostáváme

$$(x - \alpha)(1 - x) - \beta x^{m-1} = 0.$$
(4.29)

Jako první se zaměřme na případ (*ii*). Požadujeme, aby rovnice (4.29) měla právě jedno řešení, tj. řešíme, kdy funkce

$$\gamma(x) = -x^2 + (1+\alpha)x - \alpha,$$

$$\delta(x) = \beta x^{m-1},$$

mají právě jeden průsečík v závislosti na hodnotě parametru $\beta > 0$. Ze znalosti průběhu funkcí $\gamma(x)$, $\delta(x)$ (viz Obrázek 4.20) to znamená vyřešit soustavu

$$\gamma(x) = \delta(x)$$

 $\gamma'(x) = \delta'(x)$

Konkrétně řešíme

$$-x^{2} + (1+\alpha)x - \alpha = \beta x^{m-1}$$

-2x + 1 + \alpha = \beta(m-1)x^{m-2}. (4.30)

Vyřešením soustavy (4.30) a vyloučením kořene, pro který bychom dostali $\beta < 0$, dostáváme

$$\bar{x} = \frac{(1+\alpha)(2-m) + \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)}}{2(3-m)}.$$

Z druhé rovnice soustavy (4.30) vyjádřeme

$$\beta = \frac{-2x+1+\alpha}{(m-1)x^{m-2}},$$

kdy po dosazení za $x = \bar{x}$ a několika úpravách dostáváme

$$\bar{\beta} = \frac{2^{m-2}(3-m)^{m-3} \left[(1+\alpha) - \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)} \right]}{(m-1) \left[-(1+\alpha)(m-2) + \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)} \right]^{m-2}}.$$

Obrázek 4.22: Funkce $f(x) = x(x - \alpha)(1 - x) - \beta x^m$ pro pevné $\alpha \in (0, 1)$ a $m \in (0, 1)$ vlevo, m = 1 uprostřed, m > 1 vpravo a různé hodnoty parametru $\beta > 0$.

Tedy je-li $\beta = \overline{\beta}$, potom dostáváme stacionární bod $x_2^* = \overline{x}$, který vyšetříme na základě fázového portrétu. Dostáváme, že f(x) < 0 pro všechna $x \in (0, +\infty) \setminus \{x_2^*\}$, a tedy stacionární bod x_2^* je nestabilní (resp. polostabilní zprava).

Pro případ (*i*), kdy $\beta > \overline{\beta}$, nedostáváme žádné průsečíky funkcí $\gamma(x)$ a $\delta(x)$, a tedy žádné další stacionární body kromě $x_1^* = 0$.

V případě (*iii*), tj. $\beta < \overline{\beta}$, dostáváme dva průsečíky x_1^* , x_2^* funkcí $\gamma(x)$ a $\delta(x)$, kdy $x_2^* < \overline{x}$ a $x_3^* > \overline{x}$. Neboť f(x) < 0 pro všechna $x \in (0, x_2^*) \cup (x_3^*, +\infty)$ a f(x) > 0 pro všechna (x_2^*, x_3^*) , je stacionární bod x_2^* nestabilní a x_3^* je asymptoticky stabilní.

V případě pro $m \ge 1$ bychom postupovali obdobně, kdy pro m = 1 by se výpočty značně zjednodušily, a navíc bychom byli schopni určit stacionární body $x_{2,3}^*$ jako

$$x_2^* = \frac{(1+\alpha) - \sqrt{(1-\alpha)^2 - 4\beta}}{2}, \quad x_3^* = \frac{(1+\alpha) + \sqrt{(1-\alpha)^2 - 4\beta}}{2}.$$

Poznámka 4.7. Pro m = 1 a pevné $\alpha \in (0, 1)$ není funkce

$$\bar{\beta}_{m\neq 1}(m) = \frac{2^{m-2}(3-m)^{m-3}\left[(1+\alpha) - \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)}\right]}{(m-1)\left[-(1+\alpha)(m-2) + \sqrt{(1+\alpha)^2(m-2)^2 + 4\alpha(m-1)(3-m)}\right]^{m-2}}$$

definována. Ovšem m = 1 je její bod odstranitelné nespojitosti. Pomocí matematického softwaru dostáváme

$$\lim_{m \to 1} \bar{\beta}_{m \neq 1}(m) = \frac{(1-\alpha)^2}{4} = \bar{\beta}_{m=1}.$$

Vidíme, že pro $\beta < \overline{\beta}$ se zachovává bistabilní dynamika, ovšem s větší prahovou hodnotou a menší kapacitou. S rostoucím β se k sobě tyto hodnoty blíží, kdy pro $\beta = \overline{\beta}$ splynou a dostáváme tak model, ve kterém pro $x_0 < x_2^*$ dochází k vymírání populace a pro $x_0 > x_2^*$ dostáváme $\lim_{t\to+\infty} x(t) = x_2^*$. V posledním případě pro $\beta > \overline{\beta}$ dochází k vymírání zkoumané populace pro libovolné x(0) > 0. Tomuto odpovídají bifurkační diagramy na Obrázku 4.21, kdy vidíme, že pro hodnotu $\overline{\beta}$ dochází k *bifurkaci z čistého nebe* pro libovolné m > 0.

Funkce $f(x) = x(\alpha - x)(1 - x) - \beta x^m$ pro pevné $\alpha \in (0, 1)$, m > 1 a různé hodnoty parametru β můžeme vidět na Obrázku 4.22.

Predační funkce $p(x) = \frac{bx}{c+x}$

Mějme opět systém popsaný diferenciální rovnicí

$$\dot{x} = f(x)$$

kde

$$f(x) = g(x) - p(x).$$

Jako doposud funkce g(x) popisuje vnitřní dynamiku systému a funkce p(x) je predační funkce. Ovšem pro tuto kapitolu zvolme p(x) jako lineární lomenou funkci

$$p(x) = \frac{bx}{c+x'},\tag{5.1}$$

kde b, c > 0 (viz Obrázek 5.1). Všimněme si, že pro $x \ll 1$ funkce p(x) roste přibližně lineárně, zatímco pro $x \gg 1$ je funkce p(x) téměř konstantní. Vidíme, čím větší je b, tím je predace silnější. Navíc roste $p'(0) = \frac{b}{c}$. Naopak čím je větší c, derivace $p'(0) = \frac{b}{c}$ klesá. Omezenost funkce p(x) pro $x \gg 1$ může být dána tím, že i populace predátorů je nějak omezena, a tedy její schopnost lovu je limitovaná.

Podobnou omezenou funkcí s jiným trendem pro $x \ll 1$ může být funkce

$$\tilde{p}(x) = \frac{Bx^m}{A^m + x^m},$$

kde m > 0. Pro případ m > 1 dostáváme funkci, která se pro $x \ll 1$ chová jako mocninná funkce. Interakce této funkce pro m = 2 s logistickým modelem je blíže studována v [4, Kap. 3.7]. V případě, že bychom volili $m \in (0,1)$ dostáváme funkci, která má pro $x \ll 1$ odmocninný průběh.

5.1 Exponenciální model s predační funkcí p(x)

Jako první studujme interakci exponenciálního modelu s predační funkcí $p(x) = \frac{bx}{c+x}$. Dostáváme tedy model popsaný diferenciální rovnicí

$$\dot{x} = rx - \frac{bx}{c+x'},\tag{5.2}$$

Obrázek 5.1: Predační funkce $p(x) = \frac{bx}{c+x}$.

kde r, b, c > 0.

Dále zredukujme počet koeficientů systému popsaného diferenciální rovnicí (5.2) zadefinováním

$$u = rx, (5.3)$$

kdy po pár úpravách dostáváme

$$\frac{\dot{u}}{r} = u - \frac{bu}{cr+u}.$$

Dále zadefinováním nového času $\tau = rt$ a parametrů $\beta = b$, $\gamma = cr$ dostáváme

$$u' = u - \frac{\beta u}{\gamma + u}$$

kde $u' = \frac{\mathrm{d}u}{\mathrm{d}\tau}$. Po přeznačení $u' = \dot{x}$, u = x dostáváme

$$\dot{x} = x - \frac{\beta x}{\gamma + x'},\tag{5.4}$$

kde β , $\gamma > 0$.

Na Obrázku 5.2 a 5.3 můžeme vidět funkci g(x) = x a funkce $p(x) = \frac{\beta x}{\gamma + x}$ pro různé hodnoty parametrů $\beta, \gamma > 0$. Vidíme, že systém popsaný diferenciální rovnicí (5.4) bude mít vždy stacionární bod $x_1^* = 0$ pro všechna $\beta, \gamma > 0$. Dále si můžeme všimnout, že v závislosti na hodnotách parametrů β, γ může existovat i druhý stacionární bod $x_2^* > 0$.

VĚTA 5.1. Mějme systém popsaný diferenciální rovnicí (5.4) pro β , $\gamma > 0$.

- (i) Je-li $\beta \leq \gamma$, potom má diferenciální rovnice (5.4) pouze jeden stacionární bod $x_1^* = 0$, který je nestabilní.
- (ii) Je-li $\beta > \gamma$, potom má diferenciální rovnice (5.2) právě dva stacionární body $x_1^* = 0$ a $x_2^* = \beta \gamma$, kdy x_1^* je asymptoticky stabilní a x_2^* nestabilní.

Důkaz. Hledáme stacionární body diferenciální rovnice (5.4). Řešíme tedy

$$x - \frac{\beta x}{\gamma + x} = 0$$

Obrázek 5.3: Funkce g(x) = x a funkce $p(x) = \frac{\beta x}{\gamma + x}$ pro pevné $\beta > 0$ a různá $\gamma > 0$.

Ihned vidíme, že jeden ze stacionárních bodů je $x_1^* = 0$ pro všechna $\beta, \gamma > 0$. Zbývá nám tedy vyřešit

$$1 - \frac{\beta}{\gamma + x} = 0,$$

kdy řešení snadno nalezneme ve tvaru $x_2^* = \beta - \gamma$. Toto řešení je kladné pouze pro $\beta > \gamma$.

Pro $\beta \le \gamma$ vyšetřeme stacionární bod $x_1^* = 0$. Zderivujme funkci $f(x) = x - \frac{\beta x}{\gamma + x}$, dostáváme

$$f'(x) = 1 - \frac{\beta \gamma}{(\gamma + x)^2}.$$
 (5.5)

Dosazením $x_1^* = 0$ do (5.5), získáme

$$f'(x_1^*) = f'(0) = 1 - rac{eta}{\gamma} > 0,$$

pro $\beta < \gamma$. Tedy na základě Věty 1.5 je $x_1^* = 0$ nestabilní. Jelikož pro $\beta = \gamma$ máme $f'(x_1^*) = f'(0) = 0$, ověřme stabilitu pomocí fázového diagramu. Snadno bychom ověřili, že f(x) < 0 pro všechna x > 0, a tedy stacionární bod $x_1^* = 0$ je asymptoticky stabilní.

Nyní vyšetřeme stacionární body v případě $\beta > \gamma$. Začněme stacionárním bodem x_1^* , pro který dostáváme

$$f'(x_1^*) = f'(0) = 1 - rac{eta}{\gamma} < 0,$$

tedy $x_1^* = 0$ je asymptoticky stabilní. Pro stacionární bod $x_2^* = \beta - \gamma$ dostáváme

$$f'(x_2^*) = f'(\beta - \gamma) = 1 - \frac{\gamma}{\beta} > 0,$$

a tedy $x_2^* = \beta - \gamma$ je nestabilní.

Vidíme, že pro $\beta > \gamma$ dostáváme model, který kvalitativně odpovídá bistabilnímu modelu s neomezenou kapacitou prostředí. Tedy pro $x_0 < x_2^*$ dochází k vymírání zkoumané populace a pro $x(0) > x_2^*$ dochází k neomezenému růstu zkoumané populace. V případě, kdy $\beta \leq \gamma$ dostáváme model, který je kvalitativně shodný s exponenciálním modelem.

Dvourozměrný bifurkační diagram vzhledem k parametrům β , $\gamma > 0$ můžeme vidět na Obrázku 5.4. Na Obrázku 5.5 je znázorněn bifurkační diagram vzhledem k parametru β systému

Obrázek 5.4: Bifurkační diagram vzhledem k parametrům β , γ systému popsaného diferenciální rovnicí (5.4). Červená plocha reprezentuje množinu nestabilních stacionárních bodů, zelená plocha reprezentuje množinu asymptoticky stabilních stacionárních bodů.

popsaného diferenciální rovnicí (5.4) pro pevné γ , tj. jedná se o řez plochy na Obrázku 5.4 rovinou $\gamma = h, h > 0$. Na vedlejším Obrázku 5.6 vidíme bifurkační diagram vzhledem k parametru γ pro pevné β , tj. řez rovinou $\beta = h, h > 0$. Všimněme si, že pro $\beta = \gamma$ dochází k *transkritické bifurkaci*.

Funkci $f(x) = x - \frac{\beta x}{\gamma + x}$ vystupující na pravé straně diferenciální rovnice (5.4) pro pevné γ a různé hodnoty parametru β vidíme na Obrázku 5.8. Na obrázku není vyznačen stacionární bod $x_1^* = 0$, neboť pro různé hodnoty parametrů β , $\gamma > 0$ má jinou stabilitu.

Vrátíme-li se zpět k systému popsanému diferenciální rovnicí (5.2), tak pomocí substitucí $\beta = b, \gamma = cr$ a převodního vztahu (5.3) určíme bifurkační hodnotu $\bar{b} = cr$. Pro $b < \bar{b}$ má systém (5.2) jeden asymptoticky stabilní stacionární bod $x_1^* = 0$. V případě $b = \bar{b}$ dostáváme opět asymptoticky stabilní stacionární bod $x_1^* = 0$. Pro $b > \bar{b}$ dostáváme dva stacionární body $x_1^* = 0$ a $x_2^* = \frac{b}{r} - c$, kdy stacionární bod x_1^* je nestabilní a x_2^* je asymptoticky stabilní.

5.2 Logistický model s predační funkcí p(x)

Nyní se zaměřme na interakci logistického modelu s predační funkcí $p(x) = \frac{bx}{c+x}$. Zabýváme se tedy systémem popsaným diferenciální rovnicí

$$\dot{x} = rx\left(1 - \frac{x}{k}\right) - \frac{bx}{c+x'},\tag{5.6}$$

kde r, k, b, c > 0.

Přejděme k bezrozměrnému tvaru, a sice proveď me substituci

$$u = \frac{x}{k}.$$
(5.7)

Obrázek 5.5: Bifurkační diagram vzhledem k parametru β systému popsaného diferenciální rovnicí (5.4) pro pevné $\gamma > 0$.

Obrázek 5.6: Bifurkační diagram vzhledem k parametru γ systému popsaného diferenciální rovnicí (5.4) pro pevné $\beta > 0$.

Po několika úpravách dostáváme

$$\frac{\dot{u}}{r} = u(1-u) - \frac{bu}{rk\left(\frac{c}{k}+u\right)}.$$

Zadefinováním nového času $\tau = rt$ a parametrů $\beta = \frac{b}{rk}$, $\gamma = \frac{c}{k}$ dostáváme

$$u' = u(1-u) - \frac{\beta u}{\gamma + u'},$$

kde $u' = \frac{du}{d\tau}$. Dále už jen přeznačme $u' = \dot{x}$, u = x. Dostáváme tedy systém popsaný diferenciální rovnicí

$$\dot{x} = x(1-x) - \frac{\beta x}{\gamma + x},\tag{5.8}$$

kde β , $\gamma > 0$.

Funkci g(x) = x(1-x) společně s funkcí $p(x) = \frac{\beta x}{\gamma+x}$ pro některé hodnoty parametrů $\beta, \gamma > 0$ můžeme vidět na Obrázku 5.7. Vidíme, že mohou nastat celkem čtyři kvalitativně odlišné případy v závislosti na parametrech β, γ . Tyto případy jsou popsány v následující Větě 5.2.

Obrázek 5.7: Funkce g(x) = x(1-x) a funkce $p(x) = \frac{\beta x}{\gamma+x}$ pro různé $\beta, \gamma > 0$.

Obrázek 5.8: Funkce $f(x) = x - \frac{\beta x}{\gamma + x}$ pro pevné $\gamma > 0$ a různé hodnoty parametru $\beta > 0$.

VĚTA 5.2. Mějme diferenciální rovnici (5.8) pro β , $\gamma > 0$. Dále mějme množiny

$$\begin{split} \Omega_1 &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \beta > \left(\frac{\gamma+1}{2}\right)^2 \lor (\beta > 1 \land \gamma < \beta) \right\} \\ \Omega_2 &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \beta < \gamma \right\}, \\ \Omega_3 &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \gamma < \beta < \left(\frac{\gamma+1}{2}\right)^2 \right\}, \\ \mathcal{B}_N &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : 0 < \gamma < 1 \land \beta = \left(\frac{\gamma+1}{2}\right)^2 \right\}, \\ \mathcal{B}_V &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \beta = \gamma = 1 \right\} = \{(1, 1)\}, \\ \mathcal{B}_{T1} &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : 0 < \gamma < 1 \land \beta = \gamma \right\}, \\ \mathcal{B}_{T2} &= \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \gamma > 1 \land \beta = \gamma \right\}. \end{split}$$

- (i) Je-li $(\beta, \gamma) \in \Omega_1$, potom má diferenciální (5.8) právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní.
- (ii) Je-li $(\beta, \gamma) \in \Omega_2$, potom má diferenciální (5.8) dva stacionární body

$$x_1^* = 0, \quad x_2^* = \frac{1 - \gamma + \sqrt{(\gamma + 1)^2 - 4\beta}}{2},$$

kdy x_1^* je nestabilní a x_2^* je asymptoticky stabilní.

(iii) Je-li $(\beta, \gamma) \in \Omega_3$, potom má diferenciální (5.8) tři stacionární body

$$x_1^* = 0, \quad x_2^* = \frac{1 - \gamma - \sqrt{(\gamma + 1)^2 - 4\beta}}{2}, \quad x_3^* = \frac{1 - \gamma + \sqrt{(\gamma + 1)^2 - 4\beta}}{2},$$

kdy x_1^* je asymptoticky stabilní, x_2^* nestabilní a x_3^* asymptoticky stabilní.

Obrázek 5.9: Množiny Ω_1 , Ω_2 , Ω_3 a \mathcal{B}_N , \mathcal{B}_V , \mathcal{B}_{T1} , \mathcal{B}_{T2} v $\beta\gamma$ -rovině.

(iv) Je-li $(\beta, \gamma) \in \mathcal{B}_N$, potom má diferenciální rovnice (5.8) dva stacionární body

$$x_1^* = 0$$
, $x_2^* = \frac{1-\gamma}{2}$

kdy x_1^* je asymptoticky stabilní a x_2^* nestabilní (resp. polostabilní zprava).

(v) Je-li $(\beta, \gamma) \in \mathcal{B}_{T1}$, potom má diferenciální rovnice (5.8) dva stacionární body

$$x_1^* = 0, \quad x_2^* = 1 - \gamma,$$

kdy x_1^* je nestabilní a x_2^* asymptoticky stabilní.

(vi) Je-li $(\beta, \gamma) \in \mathcal{B}_{T2}$, nebo $(\beta, \gamma) \in \mathcal{B}_V$, potom má diferenciální rovnice (5.8) právě jeden stacionární bod $x_1^* = 0$, kdy x_1^* je asymptoticky stabilní.

Důkaz. Jako první určeme stacionární body diferenciální rovnice (5.8). Funkci

$$f(x) = x(1-x) - \frac{\beta x}{\gamma + x}$$

na pravé straně diferenciální rovnice (5.8) lze zapsat ve tvaru

$$f(x) = \frac{x}{\gamma + x}((1 - x)(\gamma + x) - \beta).$$

Řešíme tedy

$$\frac{x}{\gamma+x}(-x^2+(1+\gamma)x+(\gamma-\beta))=0$$

Ihned vidíme, že jedním z řešení této rovnice je $x_1^* = 0$. Zbývá nám tedy vyřešit kvadratickou rovnici

$$-x^{2} + (1+\gamma)x + (\gamma - \beta) = 0.$$
(5.9)

Diskriminant kvadratické rovnice (5.9) má tvar $D = (\gamma + 1)^2 - 4\beta$ a ihned lze spočítat, že D = 0 pro

$$\beta = \left(\frac{\gamma+1}{2}\right)^2. \tag{5.10}$$

Dále pro $\beta > \left(\frac{\gamma+1}{2}\right)^2$ je D < 0, a tedy kvadratická rovnice (5.9) nemá řešení. Jinými slovy pro

$$(\beta,\gamma) \in \mathcal{O}_1 = \left\{ (\beta,\gamma) \in \mathbb{R}^2_+ : \beta > \left(\frac{\gamma+1}{2}\right)^2 \right\}$$

má diferenciální rovnice (5.8) právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní, neboť f(x) < 0 pro všechna x > 0.

Nyní si detailněji rozebereme případ, kdy $D \ge 0$, tj. $\beta \le \left(\frac{\gamma+1}{2}\right)^2$. V tomto případě dostáváme řešení kvadratické rovnice (5.9) ve tvaru

$$x_2 = \frac{1 - \gamma - \sqrt{(\gamma + 1)^2 - 4\beta}}{2},\tag{5.11}$$

$$x_3 = \frac{1 - \gamma + \sqrt{(\gamma + 1)^2 - 4\beta}}{2}.$$
(5.12)

Nejdříve se zaměřme na situaci, kdy D = 0, a tedy $x_2 = x_3 = \frac{1-\gamma}{2}$. Vidíme, že nastávají tři případy v závislosti na hodnotě parametru γ . Pro $\gamma < 1$ je $x_2 = x_3 = \frac{1-\gamma}{2} > 0$, a tedy celkem dostáváme, že diferenciální rovnice (5.8) má stacionární body $x_1^* = 0$, $x_2^* = \frac{1-\gamma}{2}$ na množině

$$\mathcal{B}_N = \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : 0 < \gamma < 1 \land \beta = \left(\frac{\gamma + 1}{2} \right)^2 \right\},$$

kdy bychom vyšetřením funkce f(x) zjistili, že f(x) < 0 pro všechna $x \in (0, x_2^*) \cup (x_2^*, +\infty)$. Tedy na základě fázového portrétu je x_1^* asymptoticky stabilní a x_2^* nestabilní (resp. polostabilní zprava). Pro $\gamma = 1$ dostáváme $x_2 = x_3 = 0$, tedy diferenciální rovnice (5.8) má právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní, neboť f(x) < 0 pro všechna x > 0. V posledním případě pro $\gamma > 1$ je $x_2 = x_3 < 0$, tedy diferenciální rovnice (5.8) má opět právě jeden asymptoticky stabilní stacionární bod $x_1^* = 0$. Dostáváme tedy, že pro

$$(\beta,\gamma) \in \mathcal{O}_2 = \left\{ (\beta,\gamma) \in \mathbb{R}^2_+ : \gamma > 1 \land \beta = \left(\frac{\gamma+1}{2}\right)^2 \right\}$$

a speciálně pro $(\beta, \gamma) \in \mathcal{B}_V = \{(1, 1)\}$ má diferenciální rovnice (5.8) právě jeden asymptoticky stabilní stacionární bod $x_1^* = 0$.

Nakonec vyšetřeme případ D > 0. Dostáváme tři různé situace v závislosti na hodnotě parametru γ . Jako první uvažujme $\gamma < 1$, kdy snadno nahlédneme, že $x_3 > 0$. Dále určeme, kdy je $x_2 > 0$. Nerovnice

$$x_2 = \frac{1-\gamma - \sqrt{(\gamma+1)^2 - 4\beta}}{2} > 0$$

48

Obrázek 5.10: Bifurkační diagram (sytě) pro parametry $\beta, \gamma > 0$ systému popsaného diferenciální rovnicí (5.8). Pro $(\beta, \gamma) \in \Omega_1$ (červená oblast) dostáváme jeden nulový stacionární bod, pro $(\beta, \gamma) \in \Omega_2$ (modrá oblast) dostáváme dva stacionární body, pro $(\beta, \gamma) \in \Omega_3$ (zelená oblast) dostáváme tři stacionární body.

je splněna pro

$$\gamma < \beta$$
.

Tedy pro

$$(\beta,\gamma)\in\Omega_3=\left\{(\beta,\gamma)\in\mathbb{R}^2_+:\gamma<\beta<\left(rac{\gamma+1}{2}
ight)^2
ight\}$$

má diferenciální rovnice (5.8) tři stacionární body $x_1^* = 0$, $x_2^* = x_2$ a $x_3^* = x_3$. Vyšetřením

Obrázek 5.11: Bifurkační Obrázek 5.12: Bifurkační Obrázek 5.13: Bifurkační diagram pro parametr γ diagram pro parametr γ diagram pro parametr γ systému (5.8) pro β_1 . systému (5.8) pro β_2 . systému (5.8) pro β_3 .

Obrázek 5.14: Bifurkační Obrázek 5.15: Bifurkační diagram pro parametr γ diagram pro parametr γ systému (5.8) pro β_4 . systému (5.8) pro β_5 .

znamének funkce f(x) bychom zjistili, že f(x) < 0 pro všechna $x \in (0, x_1^*) \cup (x_2^*, +\infty)$ a f(x) > 0 pro všechna $x \in (x_2^*, x_3^*)$. Tedy stacionární body x_1^*, x_3^* jsou asymptoticky stabilní a x_2^* je nestabilní. Pro $\gamma \ge \beta$ je $x_2 \le 0$, tedy dostáváme, že na množině

$$\mathcal{O}_3 = \left\{ (eta, \gamma) \in \mathbb{R}^2_+ : 0 < \gamma < 1 \land eta < \gamma
ight\}.$$

a speciálně pro

$$(eta,\gamma)\in \mathcal{B}_{ ext{T1}}=\left\{(eta,\gamma)\in \mathbb{R}^2_+: 0<\gamma<1\wedgeeta=\gamma
ight\}$$

má diferenciální rovnice (5.8) právě dva stacionární body $x_1^* = 0$, $x_2^* = x_3$, kdy x_1^* je nestabilní a x_2^* je asymptoticky stabilní, neboť f(x) > 0 pro všechna $x \in (0, x_2^*)$ a f(x) < 0 pro všechna $x \in (x_2^*, +\infty)$.

Pro $\gamma = 1$ je zřejmě $x_2 < 0$ a $x_3 > 0$. V posledním případě pro $\gamma > 1$ je $x_2 < 0$. Zbývá nám tedy určit, kdy je $x_3 > 0$. Podobně jako výše bychom určili, že pro $\gamma > \beta$ je $x_3 > 0$ a pro $\gamma \le \beta$ je $x_3 \le 0$. Celkem tedy pro případy, kdy $\gamma \ge 1$ dostáváme, že na množině

$$\mathcal{O}_4 = \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \gamma \ge 1 \land \beta < \gamma \right\}$$

má diferenciální rovnice (5.8) právě dva stacionární body $x_1^* = 0$ a $x_2^* = x_3$. Pro znaménka funkce f(x) dostáváme, že f(x) > 0 pro všechna $x \in (0, x_2^*)$ a f(x) < 0 pro všechna $x \in (x_2^*, +\infty)$, a tedy stacionární bod x_1^* je nestabilní a x_2^* je asymptoticky stabilní. Pro

$$(\beta, \gamma) \in \mathcal{B}_{T2} = \left\{ (\beta, \gamma) \in \mathbb{R}^2_+ : \gamma > 1 \land \beta = \gamma \right\}$$

má diferenciální rovnice (5.8) právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní, neboť f(x) < 0 pro všechna x > 0. A v posledním případě pro

$$(\beta,\gamma) \in \mathcal{O}_5 = \left\{ (\beta,\gamma) \in \mathbb{R}^2_+ : \gamma \ge 1 \land \gamma < \beta < \left(\frac{\gamma+1}{1}\right)^2 \right\}$$

Obrázek 5.16: Bifurkační Obrázek 5.17: Bifurkační Obrázek 5.18: Bifurkační diagram pro parametr β diagram pro parametr β diagram pro parametr β systému (5.8) pro γ_1 . systému (5.8) pro γ_2 . systému (5.8) pro γ_3 .

dostáváme právě jeden stacionární bod $x_1^* = 0$, který je asymptoticky stabilní, jelikož funkce f(x) < 0 pro všechna x > 0.

Závěrem pouze položme $\Omega_1 = \mathcal{O}_1 \cup \mathcal{O}_2 \cup \mathcal{O}_5$ a $\Omega_2 = \mathcal{O}_3 \cup \mathcal{O}_4$.

Vidíme, že pro $(\beta, \gamma) \in \Omega_1$ dostáváme model, kdy pro libovolné $x_0 < 0$ dochází k vymírání zkoumané populace. V případě, kdy $(\beta, \gamma) \in \Omega_2$ dostáváme model kvalitativně odpovídající logistickému modelu s kapacitou prostředí x_2^* . V posledním případě pro $(\beta, \gamma) \in \Omega_3$ získáváme model, který je kvalitativně shodný s bistabilním modelem, kdy x_2^* je prahová hodnota a x_3^* kapacita prostředí. Všimněme si, že pokud dvojice (β, γ) leží v jedné z těchto množin, tak pro libovolnou malou změnu se kvalitativní chování daného systému nikterak nemění.

Vzhledem ke geometrii oblasti Ω_3 (viz Obrázek 5.10) můžeme hovořit o tzv. *cusp catastro-phe*, která se obvykle vyskytuje u systémů, ve kterých dochází k tzv. *hysterezi*, tj. nereverzibilní změně vzhledem k parametrům. I u toho modelu můžeme *hysterezi* pozorovat, viz Příklad 5.5.

V případě, že dvojice parametrů (β , γ) přechází přes množinu \mathcal{B}_N dochází k *bifurkaci z čistého nebe* za vzniku stacionárních bodů

$$x_2^* = rac{1-\gamma-\sqrt{(\gamma+1)^2-4eta}}{2}, \quad x_3^* = rac{1-\gamma+\sqrt{(\gamma+1)^2-4eta}}{2}.$$

Při přechodu dvojice (β , γ) přes množinu \mathcal{B}_{T1} dochází k *transkritické bifurkaci*, kdy se sráží stacionární bod

$$x_2^* = \frac{1-\gamma - \sqrt{(\gamma+1)^2 - 4\beta}}{2}$$

s triviálním nulovým řešením. Protíná-li dvojice parametrů (β , γ) množinu \mathcal{B}_{T2} , dochází opět k *transkritické bifurkaci*, ovšem v tomto případě se sráží stacionární bod

$$x_3^* = \frac{1-\gamma+\sqrt{(\gamma+1)^2-4\beta}}{2}$$

s triviálním nulovým řešením. V posledním případě, protne-li dvojice parametrů (β , γ) množinu \mathcal{B}_V , dochází zpravidla k *vidličkové bifurkaci*, ale může zde také docházet k násobné *transkritické bifurkaci*, viz Příklad 5.7.

Na Obrázku 5.10 můžeme vidět bifurkační diagram pro parametry β , $\gamma > 0$ systému popsaného diferenciální rovnicí (5.8).

Pro lepší představu si v následujících příkladech ukážeme jednorozměrné bifukační diagramy, kdy budeme předpokládat, že jeden z parametrů β , γ je konstantní. *Příklad* 5.3. Uvažujeme $\beta > 0$ konstantní. Rozdělme tuto situaci na pět podpřípadů

$$\beta_1 \in (0, \frac{1}{4}), \quad \beta_2 = \frac{1}{4}, \quad \beta_3 \in (\frac{1}{4}, 1), \quad \beta_4 = 1, \quad \beta_5 > 1.$$

Na Obrázcích 5.11–5.15 můžeme vidět bifurkační diagramy vzhledem k parametru γ systému popsaného diferenciální rovnicí (5.8) pro pevná $\beta_i > 0$, i = 1, 2, 3, 4, 5. Jedná se vlastně o řezy plochy na Obrázku 5.10 příslušnou rovinou $\beta = \beta_i$.

- Pro případy β₁, β₂, β₃ si můžeme z Obrázků 5.11−5.13 všimnout, že pro hodnotu γ = β_i, tj. kdy dvojice (β_i, γ), i = 1, 2, 3, protíná množinu B_{T1}, dochází k *transkritické bifurkaci*. Navíc na Obrázcích 5.12−5.13 vidíme, že pro hodnotu γ = 2√β_i − 1, i = 2, 3, dochází k *bifurkaci z čistého nebe*, neboť dvojice (β_i, γ) protíná množinu B_N.
- Na Obrázku 5.14 dochází pro β = β₄ k *vidličkové bifurkaci*, vezmeme-li v úvahu i záporné řešení, jelikož protínáme bod (1,1).
- Na posledním Obrázku 5.15 dochází pro hodnotu β = β₅ k *transkritické bifurkaci*, čemuž odpovídá protnutí množiny B_{T2} dvojicí (β₅, γ).

Příklad 5.4. Naopak uvažujme $\gamma > 0$ konstantní. V tomto případě zvolme pevné hodnoty

$$\gamma_1 \in (0,1), \quad \gamma_2 = 1, \quad \gamma_3 > 1.$$

Bifurkační diagramy vzhledem k parametru β systému (5.8) pro pevná $\gamma_i > 0$, i = 1, 2, 3, můžeme vidět na Obrázcích 5.16–5.18.

- Na Obrázku 5.16 dochází ke dvěma druhům bifurkací, kdy pro β = γ₁, tj. kdy dvojice parametrů (β, γ₁) protíná množinu B_{T1}, dochází k *transkritické bifurkaci* a pro β = (^{γ1+1}/₂)², tj. kdy dvojice (β, γ₁) protíná množinu B_N, dochází k *bifurkaci z čistého nebe*.
- Na Obrázku 5.17 vidíme bifurkační diagram, kdy dvojice (β, γ₂) protíná bod (1, 1), tudíž dochází pro β = γ₂ = 1 k *vidličkové bifurkaci*, vezmeme-li v potaz záporná řešení.
- Pro případ γ₃ > 1 dvojice (β, γ₃) protíná množinu B_{T2}, tedy dochází k *transkritické bifurkaci*, o čemž se můžeme přesvědčit na Obrázku 5.18.

Nyní uvažujme situaci, kdy se parametry β a γ mění oba najednou. Tedy v $\beta\gamma$ –rovině uvažujme křivku $\varphi(s)$, která je dána parametrizací

$$\varphi(s) = (\beta(s), \gamma(s))$$

pro $s \in (0, +\infty)$. V následujících dvou příkladech se podívejme na chování systému (5.8), kdy parametry β , γ máme provázány výše popsaným způsobem.

Příklad 5.5. Uvažujme křivku popsanou parametrizací

$$\varphi(s) = \left(\frac{s+1}{2}, \frac{4s}{1+2s}\right), \quad s \in (0, +\infty).$$
(5.13)

Průběh této křivky v $\beta\gamma$ -rovině můžeme vidět na Obrázku 5.19. Na vedlejším Obrázku 5.20 vidíme bifurkační diagram vzhledem ke křivce $\varphi(s)$. Všimněme si, že pro hodnotu s_1 , pro kterou křivka $\varphi(\tau)$ protíná množinu \mathcal{B}_N , dochází k *bifurkaci z čistého nebe* za vzniku dvou stacionárních bodů

$$x_2^* = rac{1-\gamma-\sqrt{(\gamma+1)^2-4eta}}{2}, \quad x_3^* = rac{1-\gamma+\sqrt{(\gamma+1)^2-4eta}}{2}$$

Obrázek 5.19: Křivka $\varphi(s)$ (viz (5.13)).

Obrázek 5.20: Bifurkační diagram vzhledem ke křivce $\varphi(s)$ (viz (5.13)).

kde x_2^* je nestabilní a x_3^* je asymptoticky stabilní. S rostoucí hodnotou parametru *s* hodnota stacionárního bodu x_2^* klesá, kdy pro s_2 , pro kterou křivka $\varphi(\tau)$ prochází množinou \mathcal{B}_{T1} , se srazí s triviálním nulovým řešením, a tedy dochází k *transkritické bifurkaci*. Pro dále zvětšující se parametr *s* se hodnota stacionárního bodu x_3^* zmenšuje, kdy pro s_3 , pro kterou křivka $\varphi(s)$ protíná množinu \mathcal{B}_{T2} , se tento stacionární bod srazí s triviálním nulovým řešením, a tedy opět dochází k *transkritické bifurkaci*.

Na tomto příkladě si můžeme ukázat, že dochází k tzv. hysterezi, tj. nereverzibilní změně vzhledem k parametrům. Uvažujme, že pro s = 0 začínáme ve stacionárním bodě $x_1^* = 0$, tj. zkoumaná populace je nulová. V případě, že dojde například vlivem externích jevů k výskytu jedinců, predace je natolik silná, že se populace není schopna rozmnožit. Dále zvětšujme hodnotu parametru s, kdy při hodnotě $s = s_1$ vzniknou dva nové stacionární body, nestabilní x_2^* a asymptoticky stabilní x_3^* . Pokud i nyní dojde k malému nárůstu populace, tato populace opět vyhyne, neboť stacionární stav $x_1^* = 0$ zůstává asymptoticky stabilní. V případě, že s hodnotou parametru s dále překročíme hodnotu s_2 , triviální řešení ztrácí vlivem srážky s x_2^* stabilitu. Pokud nyní dojde k výskytu jedinců dané populace, tato populace se začne rozvíjet a po určitém čase se dostává k hodnotě stabilního stavu x₃^{*}. Nyní uvažujme, že s hodnotou parametru s půjdeme zpět k nule. I přesto, že se zpětným přechodem přes hodnotu $s = s_2$ znovu objevuje asymptoticky stabilní stav $x_1^* = 0$ a nestabilní x_2^* , systém zůstává v blízkosti stavu x_3^* , neboť ten zůstává asymptoticky stabilní. K přechodu zpět k triviálnímu řešení, tj. k vyhynutí, dochází až přechodem parametru s přes hodnotu s_1 , kdy se stav x_3^* sráží se stavem x_2^* a zaniká. Vidíme, že změnou parametru s přes hodnoty s₁ a s₂ a zpět se systém zmenšováním parametru nevrací k původnímu chování v hodnotě s_2 ale až v hodnotě s_1 . Právě této nereverzibilní změně se říká hystereze.

Příklad 5.6. Uvažujme křivku popsanou pomocí parametrizace

$$\varphi(s) = \left(\frac{3s}{1+s}, s+\frac{1}{8}\right), \quad s \in (0, +\infty).$$
(5.14)

Obrázek 5.21: Křivka $\varphi(s)$ (viz (5.14)).

Obrázek 5.22: Bifurkační diagram vzhledem ke křivce $\varphi(s)$ (viz (5.14)).

Průběh této křivky v $\beta\gamma$ -rovině můžeme vidět na Obrázku 5.21. Bifurkační diagram vzhledem ke křivce $\varphi(s)$ můžeme vidět na Obrázku 5.22. Vidíme, že začínáme s dvěma stacionárními body

$$x_1^* = 0$$
, $x_3^* = \frac{1 - \gamma + \sqrt{(\gamma + 1)^2 - 4\beta}}{2}$,

kdy x_1^* je nestabilní a x_3^* je asymptoticky stabilní. Pro hodnotu s_1 , pro kterou křivka $\varphi(s)$ protíná množinu \mathcal{B}_{T1} , se od nuly odděluje nestabilní stacionární bod

$$x_2^* = \frac{1-\gamma - \sqrt{(\gamma+1)^2 - 4\beta}}{2}$$

v *transkritické bifurkaci* a triviální řešení x_1^* se stává asymptoticky stabilním. S rostoucí hodnotou parametru *s* se k sobě stacionární body x_2^* , x_3^* blíží, kdy pro hodnotu s_2 , pro kterou křivka $\varphi(s)$ prochází množinou \mathcal{B}_N , se srazí, a tedy dochází k *bifurkaci z čistého nebe*. S rostoucím *s* máme pouze asymptoticky stabilní stacionární bod x_1^* , kdy pro s_3 , pro které křivka $\varphi(s)$ protíná množinu \mathcal{B}_{T2} , se z tohoto triviální řešení odděluje v další *transkritické bifurkaci* asymptoticky stabilní stacionární bod x_1^* se stává nestabilním.

Příklad 5.7. Uvažujme křivku popsanou pomocí parametrizace

$$\varphi(s) = \left(\frac{1}{8}s^2 + \frac{3}{4}s + \frac{1}{8}s\right), \quad s \in (0, +\infty),$$
(5.15)

jejíž průběh můžeme vidět na Obrázku 5.23. Vidíme, že křivka $\varphi(s)$ je ohraničena funkcemi $\beta = \gamma$ a $\beta = \left(\frac{\gamma+1}{2}\right)^2$. Pro s = 0 začínáme v množině Ω_3 , tedy mámě tři stacionární body

$$x_1^* = 0, \quad x_2^* = \frac{1 - \gamma - \sqrt{(\gamma + 1)^2 - 4\beta}}{2}, \qquad x_2^* = \frac{1 - \gamma + \sqrt{(\gamma + 1)^2 - 4\beta}}{2}$$

kdy x_1^* , x_3^* jsou asymptoticky stabilní a x_2^* nestabilní. S rostoucím parametrem *s* se oba netriviální stacionární body přibližují k nulovému stacionárnímu bodu, se kterým pro parametr

Obrázek 5.23: Křivka $\varphi(s)$ (viz (5.15)).

Obrázek 5.24: Bifurkační diagram vzhledem ke křivce $\varphi(s)$ (viz (5.15)).

 s_1 , pro který křivka $\varphi(s)$ protíná jednoprvkovou množinu \mathcal{B}_V , oba střetnou, ovšem stabilita triviálního řešení zůstává zachována. Vidíme tedy, že pro parametr s_1 dochází k *dvojité transkritické bifurkaci*. Tyto závěry můžeme vidět v bifurkačním diagramu vzhledem k parametru *s* na Obrázku 5.24.

5.3 Bistabilní model s predační funkcí p(x)

V posledním případě se zaměřme na interakci vnitřní dynamiky popsané bistabilním modelem s predační funkcí $p(x) = \frac{bx}{c+x}$. Takový systém je popsaný následující diferenciální rovnicí:

$$\dot{x} = rx(x-a)(k-x) - \frac{bx}{c+x},$$
(5.16)

kde $a \in (0, k), r, k, b, c > 0$.

Obdobně přejděme k bezrozměrnému tvaru. Zaveď me tedy substituci

$$u = \frac{x}{k}.$$
(5.17)

Po několika úpravách dostáváme

$$\frac{\dot{u}}{rk^2} = u\left(u - \frac{a}{k}\right)\left(1 - u\right) - \frac{bu}{rk^3\left(\frac{c}{k} + u\right)}$$

Zadefinováním nového času $\tau = rk^2 t$ a parametrů $\alpha = \frac{a}{k}$, $\beta = \frac{b}{rk^3}$ a $\gamma = \frac{c}{k}$ dostáváme

$$u' = u(u - \alpha)(1 - u) - \frac{\beta u}{\gamma + u'}$$

kde $u' = \frac{du}{d\tau}$. Přeznačením $u' = \dot{x}$, u = x dostáváme systém popsaný diferenciální rovnicí ve tvaru

$$\dot{x} = x(x-\alpha)(1-x) - \frac{\beta x}{\gamma+x},$$
(5.18)

Obrázek 5.25: Funkce $g(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ a funkce $p(x) = \frac{\beta x}{\gamma + x}$ pro různá $\beta, \gamma > 0$.

kde $\alpha \in (0, 1)$, β , $\gamma > 0$.

Funkci $g(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ společně s funkcí $p(x) = \frac{\beta x}{\gamma + x}$ pro různé hodnoty parametrů $\beta, \gamma > 0$ můžeme vidět na Obrázku 5.25. Všimněme si, že mohou nastat tři různé situace v závislosti na hodnotě parametrů $\beta, \gamma > 0$.

Jelikož pro přesné zanalyzování tohoto systému, tj. exaktní určení stacionárních bodů, bychom museli řešit rovnice vyšších řádů (viz dále), zaměřme se na kvalitativní popis tohoto systému.

Uvažujme $\alpha \in (0, 1)$ libovolné pevné a zaměřme se na vliv parametrů β , $\gamma > 0$ vystupujících ve funkci $p(x) = \frac{\beta x}{\gamma + x}$ na počet stacionárních bodů systému (5.18). Z Obrázku 5.26 vidíme, že pro libovolné $\gamma > 0$ a pevné

$$\beta \leq \max_{x \geq 0} g(x) = g\left(\frac{1 + \alpha + \sqrt{\alpha^2 - \alpha + 1}}{3}\right) = g_{max}(\alpha)$$

má diferenciální rovnice (5.18) kromě nulového stacionárního bodu $x_1^* = 0$ další dva stacionární body

$$lpha < x_2^* < rac{1+lpha+\sqrt{lpha^2-lpha+1}}{3},$$

 $rac{1+lpha+\sqrt{lpha^2-lpha+1}}{3} < x_3^* < 1,$

přičemž stacionární body x_1^* , x_3^* jsou asymptoticky stabilní a x_2^* nestabilní, neboť

$$f(x) = x(x - \alpha)(1 - x) - \frac{\beta x}{\gamma + x} < 0 \text{ pro všechna } x \in (0, x_2^*) \cup (x_3^*, +\infty),$$

$$f(x) = x(x - \alpha)(1 - x) - \frac{\beta x}{\gamma + x} > 0 \text{ pro všechna } x \in (x_2^*, x_3^*).$$

V případě, že

$$\beta > \max_{x \ge 0} g(x) = g_{max}(\alpha)$$

Obrázek 5.26: Funkce $g(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ společně s funkcí $p(x) = \frac{\beta x}{\gamma + x}$ pro pevné $\beta \le \max_{x \ge 0} g(x)$ a různé hodnoty parametru $\gamma > 0$.

Obrázek 5.27: Funkce $g(x) = x(x - \alpha)(1 - x)$ pro pevné $\alpha \in (0, 1)$ společně s funkcí $p(x) = \frac{\beta x}{\gamma + x}$ pro pevné $\beta > \max_{x \ge 0} g(x)$ a různé hodnoty parametru $\gamma > 0$.

je pevné, závisí počet průsečíků funkcí p(x) a g(x) na parametru γ (viz Obrázek 5.27). Jelikož pro $p(x) = \frac{\beta x}{\gamma + x}$ je

$$p'(0)=\frac{\beta}{\gamma},$$

platí $p'(0) \gg 1$ pro $\gamma \ll 1$ a funkce p(x) má s funkcí g(x) právě jeden průsečík $x_1^* = 0$. Tento stacionární bod je asymptoticky stabilní. Naopak pro $\gamma \gg 1$ je $p'(0) \ll 1$ a dochází k protnutí funkce g(x) funkcí p(x) za vzniku dvou stacionárních bodů, a sice nestabilního stacionárního bodu x_2^* a asymptoticky stabilního stacionárního bodu x_3^* , kdy nezapomínejme na asymptoticky stabilní stacionární bod $x_1^* = 0$. Mezní hodnota $\overline{\gamma}$, pro kterou funkce p(x) protne funkci g(x) pouze jednou (viz Obrázek 5.27), opomeneme-li $x_1^* = 0$, je opět řešením soustavy

$$p(x) = g(x),$$

$$p'(x) = g'(x),$$

v závislosti na parametru γ . Po dosazení dostáváme

$$x(x-\alpha)(1-x) = \frac{\beta x}{\gamma+x}$$

-3x² + 2(1+\alpha)x - \alpha = $\frac{\beta \gamma}{(\gamma+x)^2}$. (5.19)

V průběhu řešení soustavy (5.19) bychom dostali rovnici čtvrtého řádů, kterou nelze jednoduše analyticky vyřešit. Proto pro následující úvahy předpokládejme, že tuto mezní hodnotu $\bar{\gamma}$ parametru γ známe.

V případě, kdy $\beta > g_{max}(\alpha)$ je pevné, dostáváme tedy tři možné situace v závislosti na hodnotě parametru γ . Pro $\gamma > \overline{\gamma}$ dostáváme model kvalitativně odpovídající bistabilnímu modelu s prahovou hodnotou x_2^* a kapacitou x_3^* . Se zmenšující se hodnotou parametru γ se tyto hodnoty k sobě přibližují, kdy pro $\gamma = \overline{\gamma}$ splynou a dostáváme tak již několikrát popsaný systém, kdy máme zprava polostabilní stacionární bod x_2^* . V posledním případě pro $\gamma < \overline{\gamma}$ dostáváme model, kdy pro libovolnou x(0) > 0 dochází k vymírání zkoumané populace. Tomuto odpovídá bifurkační diagram vzhledem k parametru γ na Obrázku 5.28 s *bifurkací z čistého nebe* pro $\gamma = \overline{\gamma}$.

Průběh funkce

$$f(x) = x(x - \alpha)(1 - x) - \frac{\beta x}{\gamma + x}$$

Obrázek 5.28: Bifurkační diagram vzhledem k parametru γ systému popsaného diferenciální rovnicí (5.18) pro pevné $\alpha \in (0,1)$ a $\beta > \max_{x \ge 0} g(x)$.

Obrázek 5.29: Funkce $f(x) = x(x - \alpha)(1 - x) - \frac{\beta x}{\gamma + x}$ pro pevná $\alpha \in (0, 1)$, $\beta > \max_{x \ge 0} g(x)$ a různé hodnoty parametru $\gamma > 0$.

pro $\beta > g_{max}(\alpha)$ pevné a různé hodnoty parametru γ můžeme vidět na Obrázku 5.29.

Závěr 6

V této práci jsme studovali interakční populační modely typu *lovec-kořist*. Uvažovali jsme však, že známe dynamiku lovce a tato závisí přímo na velikosti populace kořisti. Tyto modely se poté nechají matematicky popsat ve tvaru skalární diferenciální rovnice ve tvaru

$$\dot{x} = g(x) - p(x),$$

kde funkce g(x) popisuje samotnou vnitřní dynamiku populace kořisti bez vlivu predace (tj. kořist se sama vyvíjí podle dynamického zákona $\dot{x} = g(x)$) a funkce p(x) je predační člen popisující vliv lovce na kořist (angl. harvesting).

Uvažovali jsme tři základní vnitřní dynamiky – exponenciální model, logistický model a bistabilní model popisující tzv. Alleeho efekt. Pro tyto volby jsme pak vyšetřovali, jak se změní chování daných systémů přidáním různých predačních členů p(x). Zkoumali jsme vliv konstantní predace, mocninné predace a predace ve formě lineární lomenné funkce, jako jednoduchého příkladu přechodu od lineární růstu (pro male populace kořisti) ke konstantnímu (pro velké populace kořisti).

Dále jsme se zaměřili na vliv síly predace na výsledné chování, tj. na vliv přítomných parametrů. V mnoha případech dochází k tzv. bifurkacím, tj. k významným kvalitativním změnám v závislosti na těchto parametrech. Tyto změny jsme se pokusili popsat a biologicky interpretovat. Často jsme došli k závěru, že slabá predace původní dynamiku ovlivní pouze kvantitativně nikoli však kvalitativně, tj. charakter původní dynamiky zůstane zachován (např. vždy u bistabilní vnitřní dynamiky). Naopak silná predace často logicky vede k vyhynutí (např. logistická dynamika či bistabilní dynamika s mocninnou predací).

Nicméně v mnoha případech tyto závěry neplatí a např. charakter původního chování systému podle zákona $\dot{x} = g(x)$ se změní již vlivem libovolně slabé predace. Jako příklad uveď me nejjednodušší exponenciální model, který vlivem libovolně malé konstantní predace vykazuje přítomnost Alleeho efektu, tj. malé populace nejsou schopné přežít, zatímco větší populace ano. Dále ani nemusí platit, že pro libovolně silnou predaci musí populace nutně vyhynout. Například pro lineární lomennou predaci platí, že i přes to, že maximální schopnost lovit je vysoká, nemusí dojít k vyhynutí vlivem pomalého nástupu schopnosti lovit (tj. k maximální predaci dochází až pro velké populace).

Jedním z nejzajímavějších modelů je interakce logistického růstu právě s lineární lomennou predací. Tato predační funkce zavisí na dvou parametrech, což vede k bohatému chování a přítomnosti zajímavých efektů jako např. tzv. "cusp catastrophe" a hystereze.

Veškeré tyto závěry jsou shrnuty v Tabulce 6.1, kde je uveden úplný popis změny charakteru původní dynamiky populace vlivem predačních členů a jejich síly.
Vnitřní dynamika	Predace		$\beta < \overline{\beta}$	$\beta = \overline{\beta}$	$\beta > \overline{\beta}$
	Konstantní		Alleeho efekt ($k = +\infty$)	Alleeho efekt ($k = +\infty$)	Alleeho efekt ($k = +\infty$)
		$m\in(0,1)$	Alleeho efekt ($k = +\infty$)	Alleeho efekt ($k = +\infty$)	Alleeho efekt ($k = +\infty$)
Exponenciální	Mocninná	m = 1	Exponenciální růst	Stabilita všech $x^* \ge 0$	Vyhynutí
1		m > 1	Logistická dynamika	Logistická dynamika.	Logistická dynamika
	Lineární lon	nenná	Neomezený růst, nebo A	Alleeho efekt ($k = +\infty$)	
	Konstantní		Alleeho efekt	Alleeho efekt ($a = k$)	Vyhynutí
		$m\in(0,1)$	Alleeho efekt	Alleeho efekt ($a = k$)	Vyhynutí
Logistická	Mocninná	m = 1	Logistická dynamika	Vyhynutí	Vyhynutí
1		m > 1	Logistická dynamika	Logistická dynamika	Logistická dynamika
	Lineární lon	nenná	Cusp catastrophe, hystereze		
	Konstantní		Alleeho efekt	Alleeho efekt ($a = k$)	Vyhynutí
		$m\in(0,1)$	Alleeho efekt	Alleeho efekt ($a = k$)	Vyhynutí
Bistabilní	Mocninná	m = 1	Alleeho efekt	Alleeho efekt ($a = k$)	Vyhynutí
		m > 1	Alleeho efekt	Alleeho efekt ($a = k$)	Vyhynutí
	Lineární lon	nenná	Vyhynutí, nebo Alleeho e	efekt	
= - - - - - - - - - - - - -				- ` ` ` ` `	

Tabulka 6.1: Tabulka popisující výsledné chování systému v závislosti na volbě vnitřní dynamiky a predačního členu. Rozlišujeme případy se slabou predací ($\beta < \overline{\beta}$) a silnou predací ($\beta > \overline{\beta}$). V mezním případě (pokud je přítomen) $\beta = \overline{\beta}$ dochází zpravidla k bifurkacím.

Literatura

- [1] J. D. Murray, Mathematical Biology, Springer, 2002.
- [2] L. J. S. Allen, An Introduction to mathematical biology, Prentice Hall, 2007.
- [3] W. G. Kelley, A. C. Peterson, The Theory of Differential Equations, Springer, 2010.
- [4] S. H. Strogatz, Nonlinear Dynamics and Chaos, Persus, 2000.
- [5] T. R. Malthus, An Essay on the Principle of Population, London, 1798.
- [6] P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, 1838.
- [7] P. Tomiczek, Matematická analýza I, Fakulta aplikovaných věd ZČU, Plzeň 2006.
- [8] P. Tomiczek, Matematická analýza II, Fakulta aplikovaných věd ZČU, Plzeň 2006.
- [9] W. C. Allee, Animal Aggregations, The Quarterly Review of Biology 1927 2:3, 367-398.