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UAV Trajectory Planning with Path Processing
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Trajectory planning is a critical aspect of autonomous Unmanned Aerial Vehicle (UAV)
operations, defining the vehicle’s path, velocity, attitude, and in some cases control signals as
functions of time (LaValle (2006)). Several distinct approaches exist, including graph-based
algorithms for path planning and subsequent trajectory generation, potential field methods, and
model-based optimal control problem (OCP) formulations (Betts (2010)).

When dealing with nonlinear dynamics, OCP becomes intractable. To address this chal-
lenge, we employed the Chebyshev single and multisegment pseudospectral method (PSM)
(Trefethen (2000); Young (2019)), a collocation technique that approximates the nonlinear dy-
namics at collocation points using Chebyshev polynomials. The resulting discretized nonlinear
program can be solved using solvers such as IPOPT (Wächter and Biegler (2006)).

However, obtaining an optimal trajectory can still be challenging. To streamline the
search, we explored leveraging path-planning algorithms and an understanding of the UAV’s
dynamic model to generate an initial trajectory guess, facilitating the optimization process.

1 Initial Guess through Graph-Based Path Planning
The considered UAV model is based on quaternion rotational dynamics, incorporating

effects like air drag and blade flapping, with parameters corresponding to the 32g Crazyflie
microUAV (Förster (2015)).

Table 1: Summary of initial guess construction for state
and control (separated by the line)

Component Method Purpose
Simple Straight line interpolation Basic path planning
Position Spline Smooth path following
Velocity Differentiation of position Smooth velocity profile
Orientation Quaternion curve Align with forces
Angular rate Quaternion derivative Orientation changes
Thrust Rotation of force Translation and orientation
Torque Dynamic equation Desired angular motion

While a common approach
is to use a simple linear interpo-
lation between boundary conditions
as an initial guess, this can be inef-
fective in scenarios with non-linear
constraints or non-convex obstacles.
Therefore, we proposed a set of
more complex initial guesses with
varying degrees of influence on the
trajectory, as shown in Table 1.

The initial guess leverages the Lazy Theta* (LT*) graph-based path planning algorithm
(Nash et al. (2006)), an extension of A* that identifies direct paths between visible gridmap
nodes. Time parametrization follows known velocity constraints, providing an optimistic time
frame. Other state and control guesses are derived from the UAV dynamics (Table 1).

Figure 1a illustrates an LT* path example. Figure 1b shows an optimal trajectory with
a speed profile, while Figure 1c depicts the position at the collocation points and obstacles
constraints. We evaluated the impact of the initial guess on computational time, approximation
error, and constraint violation across constructed environments.

1 student of the doctoral degree program Applied Sciences and Informatics, field of study Cybernetics, special-
ization Intelligent Adaptive Systems, e-mail: zboucek@kky.zcu.cz

23



(a) LT* path (b) Trajectory (c) Position in col. points
Figure 1: Path and trajectory in the environment

2 Conclusion
We evaluated different levels of initial guessing. While the values differed between lev-

els, the use of a simple guess based on boundary conditions alone, without path information,
failed to find trajectories for scenarios with one or two obstacles. Conversely, the multi-segment
PSM with segments composed according to a multi-segment initial position guess gave stable
and interesting results for all criteria but often resulted in collision trajectories.

Future efforts could focus on improving trajectory finding by assessing collision rates
and potential constraint violations or providing more precise dynamics-based initial guesses.
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