
Master’s Thesis

Application for automatic tracking of
animal movements in a confined
space

Jakub Rada

PILSEN, CZECH REPUBLIC 2024

Master’s Thesis

Application for automatic tracking of
animal movements in a confined
space

Bc. Jakub Rada

Thesis advisor

Ing. Miroslav Hlaváč, Ph.D. et. Ph.D.

PILSEN, CZECH REPUBLIC 2024

© 2024 Jakub Rada.

All rights reserved. No part of this document may be reproduced or transmitted in

any form by any means, electronic or mechanical including photocopying, record-

ing or by any information storage and retrieval system, without permission from

the copyright holder(s) in writing.

Citation in the bibliography/reference list:

RADA, Jakub. Application for automatic tracking of animal movements in a confined

space. Pilsen, Czech Republic, 2024. Master’s Thesis. University of West Bohemia,

Faculty of Applied Sciences, Department ofCybernetics. Thesis advisor Ing.Miroslav

Hlaváč, Ph.D. et. Ph.D.

Declaration

I hereby declare that this Master’s Thesis is completely my own work and that I

used only the cited sources, literature, and other resources. This thesis has not been

used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from

Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that

the University of West Bohemia has the right to conclude a licence agreement for

the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

Pilsen, on 20 May 2024

. .

Jakub Rada

The names of products, technologies, services, applications, companies, etc. used in

the text may be trademarks or registered trademarks of their respective owners.

(i)

Abstract

V práci je popsán celý postup návrhu aplikace pro automatické sledování pohybu

zvířat v uzavřeném prostoru, jak z teoretického, tak praktického hlediska. Jsou

prozkoumány současné trendy v aplikacích pro sledování pohybujících se objektů

a provedena analýza záznamů pohybu daných objektů, za využití různých metod,

které budou společně se získanými výsledky porovnány a vyhodnoceny.

Abstrakt

The paper covers the whole process of designing an application for automatic track-

ing of animal movement in a confined space, both from a theoretical and practical

point of view. The current trends in applications for tracking moving objects are

investigated and the analysis of the motion records of the objects in question is

performed, using different methods, which together with the obtained results are

compared and evaluated.

Keywords

detection • tracking • application • neural networks • machine learning • biology

research • liver transplantation

(ii)

Contents

1 Introduction 5

2 Methods 7

2.1 Object representation . 7

2.1.1 Definition of bounding boxes 7

2.2 Object detection . 8

2.2.1 Faster R-CNN . 9

2.2.2 DETR . 11

2.2.3 Comparison of Faster-RCNN and DETR 12

2.3 Single object tracking . 13

2.3.1 Discriminative methods 14

2.3.2 Generative methods . 15

2.4 Multiple object tracking . 17

2.4.1 Multiple object tracking methods 18

3 Dataset 23

3.1 Detailed information . 23

3.2 Annotations . 24

4 Experiments 27

4.1 Detection model . 27

4.1.1 MMDetection . 27

4.1.2 Detectron2 . 29

1

Contents

4.1.3 Comparison of MMDetection and Detectron2 31

4.2 Single object tracking . 34

4.2.1 Implementation of methods 34

4.2.2 Results of single object tracking methods 35

4.3 Multiple object tracking . 37

4.3.1 Implementation of methods 37

4.3.2 Results of multiple object tracking methods 39

5 Web Application 43

5.1 Application structure . 43

5.1.1 Frontend . 44

5.1.2 Backend . 46

5.2 Application features . 47

5.2.1 Data storage . 47

5.2.2 Status of lights . 48

5.2.3 Pig counter overview . 49

5.2.4 Distance walked by each pig 49

5.2.5 Data export . 50

5.2.6 Reporting . 51

6 Conclusion 55

Bibliography 57

List of Figures 61

List of Tables 63

2

Foreword

This thesis details the development of a web application designed to meet the spe-

cific needs of doctors at the Biomedical Center of Faculty of medicine of Charles

University in Pilsen, aiming to facilitate their analysis of pig behavior. I am thankful

to my advisor, Ing. Miroslav Hlaváč, Ph.D. et Ph.D., for his guidance and support

throughout this research. I would also like to extend my gratitude to Ing. Miroslav

Jiřík, Ph.D., for providing the innovative topic that inspired this work.

Bc. Jakub Rada,

thesis author, (may 2024)

3

Introduction 1
In the world of biomedical research and tech innovation, creating specialized tools

to improve research methods and results has become very important. This thesis

introduces an application designed for pig tracking to monitor their health state.

Given the physiological similarities between pigs and humans, accurate and efficient

health monitoring is important to ensure the validity of research. The thesis is struc-

tured to navigate through an examination of theoretical frameworks, data analysis,

practical implementation, and the technological underpinnings of the developed

application.

The initial part of the thesis establishes a theoretical background, presenting a

detailed review of current methodologies in object tracking. This exploration into

existing literature identifies gaps and opportunities for technological intervention,

setting the stage for the development of an application created for the specific needs

of medical research involving pigs. The theoretical discourse underscores the impor-

tance of integrating technological solutions with traditional researchmethodologies

to enhance the efficiency and accuracy of health monitoring practices.

Moving from theoretical concepts to practical analysis, the thesis explores the

data provided by the Biomedical Center of Faculty of medicine of Charles Univer-

sity in Pilsen. Dataset chapter then details the extent of the videos, which capture

pigs behaviour inside of their pens, which is essential for assessing their health and

overall condition. The thorough annotation of these videos is important for both

the development and validation phases of the application, ensuring its precision.

This process of video annotation directly contributes to tailoring the application to

5

1. Introduction

effectively address the specific challenges encountered in the real-world monitoring

of pigs in research settings.

The narrative then shifts to the practical application of methods, detailing the

implementation of the earlier proposed methods. Chapter "Experiments" not only

recounts the implementation process but also examines the challenges encountered.

It also presents the results obtained from each experiment, highlighting its impact

on improving the precision and efficiency of pig tracking, thereby contributing

positively to final application functionality.

Concluding the thesis is an examination of the application’s architecture, func-

tionality, and features. This section offers a technical overview, elucidating the de-

sign principles, data management strategies, and user interface of the application.

Special attention is given to the application’s features, such as highlighting pigsmove-

ment inside their pens, analytical overview in form of graph and video information,

which collectively empower applications ability to monitor pigs.

6

Methods 2
2.1 Object representation

Object representation is a crucial construct in computer vision [1], translating the

physical world into digital data. These representations, including bounding boxes,

key-points, and semantic masks, are important for machine understanding of visual

information. The choice of object representation shapes the capabilities of computer

vision systems and plays an important role in modern technology applications. This

thesis will only employ bounding boxes as the object representationmethod, because

it is optimal formappingmovements of pigs. Other representations such as semantic

mask, would be unnecessarily complicated or inappropriate.

2.1.1 Definition of bounding boxes

Bounding boxes are mostly defined by two main parameters: the coordinates of the

top-left corner (usually denoted as (x, y)) and the dimensions (width and height) of

the rectangle that encloses the object of interest or the coordinates of the lower-right

corner.

𝑏𝑏𝑜𝑥 = [𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡] (2.1)

In single object tracking, these parameters are continuously adjusted and updated

in each frame to maintain the object’s accurate representation. Bounding boxes can

vary in complexity and definition. Simple rectangular bounding boxes are commonly

used for their easy implementation and efficiency. However,more advanced variants,

such as rotated bounding boxes or contour-based representations, are employed in

7

2. Methods

scenarios where objects exhibit non-standard shapes or orientations. These varia-

tions are particularly relevant when tracking objects with irregular silhouettes or

significant pose changes. Despite their simplicity and efficiency, bounding boxes

have limitations. They may not accurately represent the object’s shape, especially

when objects undergo deformation or exhibit non-rigid motion. Furthermore, in

cases of partial or full occlusion, bounding boxes can be less reliable, as they do not

account for the interior object structure.

2.2 Object detection

Object detection is an important part of computer vision, where the goal is to find

and identify objects in pictures or videos. Unlike classification of the image, object

detection finds where multiple objects are, classify them, and shows their location

with bounding boxes drawn around them. This is represented in figure 2.1.

Figure 2.1: Difference between classification and detection [2]

8

2.2.1. Faster R-CNN

To do this, it uses mostlymethods and systems based onNeural Networks (NNs),

which is type of machine learning based algorithms, but also classical computer

vision methods. Neural network based systems are trained on huge collections of

images that are marked to show different objects. This training helps them learn

to spot various shapes, patterns, and features, so they can recognize objects even if

they’re in different places, under different lighting, or partly hidden.

Thanks to these advanced methods, object detection can be used in many areas,

like helping self-driving cars see the road and other cars, making shopping easier

with automatic checkouts, improving security by spotting unusual activities, and

helping doctors find diseases in medical images.

Currently, the field of object detection algorithms is dominated by sophisti-

cated models, including Faster R-CNN and DETR (Detection Transformer). These

advanced frameworks represent the cutting edge in computer vision technology,

showcasing significant improvements in both accuracy and efficiency over their

predecessors.

2.2.1 Faster R-CNN

Faster R-CNN [3] (Region-based Convolutional Neural Network) brought a signifi-

cant advancement in object detection algorithms, back in 2015, characterized by its

enhanced efficiency and accuracy. This method builds upon principles used by its

predecessors, R-CNN [4] and Fast R-CNN [5]. Through the innovative integration

of a Region Proposal Network (RPN) with a deep convolutional network, Faster R-

CNN optimizes the object detection workflow, enabling real-time application while

maintaining high accuracy. It does not only accelerate the region proposal part but

also enhances the detection accuracy. Faster-RCNN uses Loss function defined in

equation 2.2.

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁cls

∑︁
𝑖

𝐿cls(𝑝𝑖, 𝑝∗𝑖) + 𝜆
1

𝑁reg

∑︁
𝑖

𝑝∗𝑖 𝐿reg(𝑡𝑖, 𝑡∗𝑖) (2.2)

Algorithm of Faster R-CNN begins with the input image being passed through a

convolutional neural network to produce a feature map. The RPN then scans this

9

2. Methods

feature map with a sliding window approach, utilizing anchor boxes of various

scales and ratios to predict object boundaries and scores indicating the presence of

an object.

Figure 2.2: Region proposal network [3]

Figure 2.3: Graphical representation of Faster-RCNN [3]

10

2.2.2. DETR

These proposals are refined and classified through a process known as Region of

Interest (RoI) pooling, which extracts and normalizes features for each proposal, fol-

lowed by a series of fully connected layers that output the final object classifications

and adjusted bounding box coordinates. By integrating proposal generation and

object detection into a single, unified model, Faster R-CNN achieves remarkable

detection speeds and accuracy, making it well-suited for real-time applications.

2.2.2 DETR

DETR [6] (Detection Transformer) differs in object detection by applying the trans-

former architecture, traditionally used in NLP (Natural Language Processing), to

directly predict bounding boxes and class labels from an image. This method sim-

plifies the object detection algorithm by eliminating the need for manually created

parts such as creating anchors and filtering overlaps. As its backbone, DETR uses

a CNN to extract feature maps from the input image, which are then processed

by a transformer structure, using encoder-decoder architecture. The encoder cap-

tures global relationships within the image, while the decoder, using a set of learned

queries, predicts objects classes and bounding boxes in a single step. This end-to-end

model uses bipartite matching for loss calculation (defined in equation 2.3), ensuring

a direct and efficient mapping between predicted and actual objects.

LHungarian(𝑦, 𝑦̂) =
𝑁∑︁
𝑖=1

[
− log 𝑝̂𝜃 (𝑐𝑖) + 𝐼{𝑐𝑖≠∅}𝐿box(𝑏𝑖, ˆ𝑏(𝑦̂𝑖))

]
(2.3)

Despite its simplicity and the elimination of many traditional detection steps, DETR

achieves competitive performance, marking a significant advancement in object de-

tection with its ability to understand global image context, while reducing complex-

ity.

11

2. Methods

Figure 2.4: Graphical representation of DETR [6]

2.2.3 Comparison of Faster-RCNN and DETR

This subsection covers a comparison of the two NN architectures mentioned above.

As it was said earlier, both DETR and Faster R-CNN are architectures for object de-

tection in images, but their approach to the problem fundamentally differs in many

ways. They exhibit distinct characteristics in terms of model complexity, training

speed, parameter count, and model size. DETR presents an interesting contrast to

Faster R-CNN in terms of learning time and model size. Contrary to what might

be expected from its use of a Transformer architecture, DETR offers a more effi-

cient learning process and a smaller parameter count compared to the conventional

Faster R-CNN architecture. This efficiency is derived from DETR’s end-to-end de-

sign, which eliminates the need for the manually designed components and heuris-

tics, such as anchor generation and non-maximum suppression, that are typical in

Faster R-CNN. As a result, DETR not only simplifies the training and inference

pipelines but also achieves this with fewer parameters, resulting in a leaner model,

characterized by its enhanced efficiency in computational resource use, memory

consumption, all while maintaining robust performance. While Faster R-CNN has

been a fundamental architecture in object detection for its effectiveness and real-

time performance capabilities, DETR’s approach reduces model complexity and

speeds up the learning process, offering a compelling alternative that combines the

benefits of transformer architecture with the efficiency required for practical appli-

cations in object detection. Comparison table 2.1 involves Faster R-CNN models

12

2.3. Single object tracking

Model FPS #params AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

Faster RCNN-DC5 16 166M 39.0 60.5 42.3 21.4 43.5 52.5

Faster RCNN-FPN 26 42M 40.2 61.0 43.8 24.2 43.5 52.0

Faster RCNN-R101-FPN 20 60M 42.0 62.5 45.9 25.2 45.6 54.6

Faster RCNN-DC5+ 16 166M 41.1 61.4 44.3 22.9 45.9 55.0

Faster RCNN-FPN+ 26 42M 42.0 62.1 45.5 26.6 45.4 53.4

Faster RCNN-R101-FPN+ 20 60M 44.0 63.9 47.8 27.2 48.1 56.0

DETR 28 41M 42.0 62.4 44.2 20.5 45.8 61.1

DETR-DC5 12 41M 43.3 63.1 45.9 22.5 47.3 61.1

DETR-R101 20 60M 43.5 63.8 46.4 21.9 48.0 61.8

DETR-DC5-R101 10 60M 44.9 64.7 47.7 23.7 49.5 62.3

Table 2.1: Comparison of object detection models

utilizing ResNet-50 and ResNet-101 backbones [7], evaluated on the COCO valida-

tion dataset. Initially, the results presented are from Faster R-CNNmodels based on

the Detectron2 [8] framework. Subsequently, it details the outcomes for Faster R-

CNN models enhanced with GIoU (Generalized Intersection over Union), random

crop augmentations during training, and an extended 9x training regimen. DETR

models showcase performances that are on par with extensively optimized Faster

R-CNN counterparts, albeit with a decrease in AP for small objects (𝐴𝑃𝑆) but a sig-

nificant improvement in AP for large objects (𝐴𝑃𝐿). The evaluation of FLOPS and

FPS was performed using torchscript [9] versions of both Faster R-CNN and DETR

models. It is noted that models not labeled with ’R101’ are based on the ResNet-50

backbone.

2.3 Single object tracking

In the field of Single Object Tracking (SOT), the initial process involves the iden-

tification and outlining of the target object’s boundaries within the initial frame

of a video sequence. This preliminary identification serves as the foundation for

the tracking algorithm, which is then tasked with the continuous localization and

monitoring of the specified target throughout the successive frames of the video.

Distinguished as amethodwithin the detection-free tracking paradigm, SOT is char-

acterized by its reliance on manual input for the initial bounding box, obviating the

necessity for pre-trained detection algorithms to recognize the object of interest.

13

2. Methods

This manual specification facilitates the tracker’s ability to maintain focus on the

designated object across varied and potentially dynamic visual contexts.

2.3.1 Discriminative methods

Discriminative models learn a discriminative model that can distinguish between

the target object and the background. These models are typically faster to train and

deploy than generative models, but they can be more sensitive to occlusions and

changes in illumination.

Mean-shift tracking method

Mean-Shift Tracking [10] is a computer vision method for real-time object tracking

in video sequences. It works by using color or density information to define and

follow an object’s movement. This method is advantageous for its robustness to

changes in object scale, rotation, and partial occlusion, adaptability to varying object

appearance, simplicity, and computational efficiency. However, it may struggle with

abrupt object motion, significant illumination changes, or when multiple similarly

colored objects are present.

In the first frame, it creates a histogram representing the object’s color or density

distribution. In subsequent frames, it calculates a back projection, which shows the

likelihood of pixels belonging to the object. Mean-Shift iteratively updates the ob-

ject’s position by shifting the region towards the peak of the back projection. It stops

when the shift becomes minimal or after a set number of iterations, determining

the final object location. Computing a mean-shift vector is defined in equation 2.4.

A bounding box is drawn around the object for visualization.

𝑀𝑡 =

∑
𝑤𝑖 · 𝑥𝑖∑
𝑤𝑖

(2.4)

Where 𝑀𝑡 is the calculated mean-shift vector. The 𝑤𝑖 are weights that indicate how

similar a pixel is to the target object, and 𝑥𝑖 is the pixel location.

14

2.3.2. Generative methods

2.3.2 Generative methods

Generative models learn a generative model of the target object, which is then used

to predict the object’s appearance in the next frame. Thesemodels are typicallymore

robust to occlusions and changes in illumination, but they can be computationally

expensive to train and deploy.

MOSSE tracking method

MOSSE (Minimum Output Sum of Squared Errors) [11] is an effective object track-

ing algorithmwidely applied in the field of computer vision. Thismethod is renowned

for its real-time tracking capabilities, particularly in challenging tracking conditions,

such as low lighting and object occlusions.

It works by learning a representative object template from an initial frame, train-

ing filters to spot the object efficiently, applying these filters to each video frame to

identify the object’s likely location, continually updating filters for adaptability, and

smoothly handling objects leaving or re-entering the frame. Given an input image

sequence 𝑥𝑡 and a desired output 𝑔𝑡 , the MOSSE filter 𝐻 is updated as follows:

𝐻𝑡+1 =

∑
𝑡 (𝑋𝑡 · 𝐺∗

𝑡)∑
𝑡 (𝑋𝑡 · 𝑋∗

𝑡)
(2.5)

where 𝑋𝑡 is the Fourier transform of 𝑥𝑡 , 𝐺𝑡 is the Fourier transform of 𝑔𝑡 , and
∗

denotes complex conjugation.

KCF tracking method

The Kernelized Correlation Filter (KCF) [12] is a widely used algorithm for real-time

object tracking in computer vision. It creates an object template from the initial

frame, employs the kernel trick for non-linear relationships, learns a correlation

filter for tracking, and uses correlation scores to locate the object in subsequent

frames. Given a set of training data, the KCF filter 𝐻 in the frequency domain is

updated by:

𝐻 =

∑
𝑡 𝑦𝑡 · 𝜙(𝑥𝑡)∗∑

𝑡 𝜙(𝑥𝑡) · 𝜙(𝑥𝑡)∗ + 𝜆
(2.6)

15

2. Methods

where 𝑦𝑡 is the Fourier transform of the Gaussian shaped training label for frame

𝑡, 𝜙(𝑥𝑡) is the non-linear mapping of the training data 𝑥𝑡 into a higher dimensional

space,
∗
denotes complex conjugation, 𝜆 is a regularization parameter to prevent

overfitting.

KCF is known for its speed and efficiency, making it suitable for real-time ap-

plications. However, it may have limitations with objects subject to occlusions or

abrupt motion changes, where more advanced tracking methods may be necessary.

KCF has influenced the development of other tracking algorithms.

TLD tracking method

The Tracking-Learning-Detection (TLD) [13] method is a comprehensive algorithm

for object tracking that combines tracking, learning, and detection. It tracks objects,

learns from their appearance changes, performs real-time detection, and includes

mechanisms for recovery when tracking is briefly lost. The learning module in TLD

updates the object model based on the detector’s output and tracker’s prediction:

𝑀𝑡+1 = UpdateModel(𝑀𝑡 , 𝐷𝑡 , 𝑇𝑡) (2.7)

Here, 𝑀𝑡+1 is the updated model at time 𝑡 + 1, 𝑀𝑡 is the current model, 𝐷𝑡 is the

detection result, and 𝑇𝑡 is the tracker’s prediction. The function UpdateModel rep-

resents the process of updating the model based on the incoming information from

the detector and tracker.

TLD is versatile and adaptable, but it may face challenges in complex scenar-

ios with heavy occlusions or multiple objects of similar appearance. It has been

influential in addressing complex tracking challenges by integrating these critical

components.

Neural network tracking

Neural Network tracking methods represent a modern and powerful approach to

object tracking in computer vision. These methods leverage deep neural networks

16

2.4. Multiple object tracking

for tracking, offering increased accuracy, robustness, and adaptability to various

tracking scenarios. Those methods use deep learning architectures, such as Convo-

lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) [14], to

perform object tracking. These networks are capable of learning complex object

representations, making them highly effective in handling variations in object ap-

pearance. For example Siamese network is one of the more popular architectures

used for tracking. They learn to calculate similarity scores between a target object

template and candidate regions in the video frames. This similarity score helps in

locating the object in subsequent frames. This functionality is represented in figure

2.5.

Figure 2.5: Graphical representation of SiameseRPN neural network [15]

2.4 Multiple object tracking

This part covers multiple object tracking (MOT) [16] which is important area in

computer vision that focuses on detecting and tracking several objects in videos.

This process involves identifying objects using bounding boxes and keeping track

of each one over time with uniqe identification. ManyMOTmethods connect these

boxes based on a minimum confidence level, often overlooking lower-confidence

detections caused by obstacles, leading to inaccuracies and interrupted tracking

paths. To tackle these challenges, there is a push for new tracking algorithms that

can effectively track objects, even when they are partially hidden. MOT techniques

17

2. Methods

are generally divided into two groups: Detection-BasedTracking (DBT) [17] in figure

2.6, which starts tracking fromobject detections in video frames, andDetection-Free

Tracking (DFT) in figure 2.7, which tracks objects without initial detections, using

alternative methods like motion. This division highlights the variety of approaches

within MOT to handle the complexities of tracking multiple moving objects.

Figure 2.6: Graphical representation of DBT

Figure 2.7: Graphical representation of DFT

2.4.1 Multiple object tracking methods

In line with the current trends in the field of computer vision, this thesis primarily

explores MOT methods that leverage neural networks. Additionally, for compar-

ative analysis, it incorporates one traditional approach. This approach allows for

a comprehensive understanding of how modern neural network-based techniques

measure up against conventional methods in the context of MOT.

18

2.4.1. Multiple object tracking methods

Dense optical flow

Optical flow [18] refers to the pattern of apparent motion of objects, surfaces, and

edges in a visual scene caused by the relative motion between an observer and

the scene. It is one of the classical approaches in computer vision, used for tasks

such as motion detection, object tracking, and video compression. Standard, also

called spars, optical flow method focuses on computing the motion for a set of

feature points between two image frames. These methods identify specific points

or features within an image (such as corners, edges, or significant textures) and

track their movements across frames. The essential equation that governs optical

flow, derived from the assumption of brightness constancy and spatial and temporal

smoothness, is given by the Optical Flow Constraint Equation 2.8.

𝜕𝐼

𝜕𝑥
𝑉𝑥 +

𝜕𝐼

𝜕𝑦
𝑉𝑦 +

𝜕𝐼

𝜕𝑡
= 0 (2.8)

Where 𝐼 represents the image intensity, 𝑉𝑥 and 𝑉𝑦 represents in 𝑥 and 𝑦 axis, re-

spectively
𝜕𝐼
𝜕𝑥
,
𝜕𝐼
𝜕𝑦
and

𝜕𝐼
𝜕𝑡
denote the gradients of the image intensity along 𝑥, 𝑦 and 𝑡

dimensions.

Dense optical flow, on the other hand, aims to compute the motion for every

pixel in the image frame. This approach provides a more detailed motion estima-

tion across the entire image, which is particularly useful for understanding com-

plex scenes with varied motions. Dense optical flow can capture subtle movements

and finer details of the scene, offering a comprehensive map of flow vectors. For

dense optical flow, algorithms like the Lucas-Kanade method or the Horn-Schunck

algorithm are often used. The Lucas-Kanade method for optical flow, which is im-

plemented in OpenCV [19], estimation is based on the assumption that the flow

is essentially constant in a local neighborhood of the pixel under consideration. It

solves for the flow velocities 𝑉𝑥 and 𝑉𝑦 by minimizing the error in the brightness

constancy equation over a window surrounding each pixel. The method can be for-

mulated as solving a set of linear equations derived from the brightness constancy

19

2. Methods

assumption as seen in equation 2.9.∑︁
(𝑥,𝑦)∈𝑊


𝐼2𝑥 𝐼𝑥 𝐼𝑦

𝐼𝑥 𝐼𝑦 𝐼2𝑦



𝑉𝑥

𝑉𝑦

 = −
∑︁

(𝑥,𝑦)∈𝑊


𝐼𝑥 𝐼𝑡

𝐼𝑦 𝐼𝑡

 (2.9)

Where 𝐼𝑥 , 𝐼𝑦 and 𝐼𝑡 represents partial derivatives of the image with respect to spatial

coordinates,𝑉𝑥 and𝑉𝑦 represent the components of the optical flow vector in 𝑥 and

𝑦 directions. The sum over𝑊 denotes aggregation over the pixels within a specified

window, encapsulating the assumption that flow is constant or varies smoothly

within this neighborhood.

DeepSort

DeepSORT [20] (Deep Simple Online and Realtime Tracking) is an advanced algo-

rithm designed for real-time multi-object tracking, that is building upon the foun-

dational SORT [21] (Simple Online and Realtime Tracking) algorithm by integrating

deep learning features to enhance accuracy. It excels in scenarios where objects need

to be tracked across frames in a video, combining motion information with appear-

ance information extracted from a deep convolutional neural network. This dual

approach significantly improves the tracking of objects, especially in challenging sit-

uations where objects may occlude each other or disappear from view temporarily.

DeepSORT is particularly valued in applications requiring precise object tracking

in real-time, such as in surveillance, sports analytics, and autonomous driving sys-

tems, due to its ability to maintain stable object identities over time, even in densely

populated scenes.

It operates by integrating high-dimensional appearance features extracted through

a deep neural network with the SORT algorithm, which improves the tracking ac-

curacy and robustness in complex scenarios. At its core, DeepSORT utilizes a com-

bination of Kalman filtering (2.10, 2.11) for predicting object motion.

𝑥̂𝑘|𝑘−1 = 𝐹𝑘 𝑥̂𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 (2.10)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘 𝑥̂𝑘|𝑘−1) (2.11)

20

2.4.1. Multiple object tracking methods

And a Hungarian algorithm (2.12) for assignment optimization.

min

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 (2.12)

subject to:

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 = 1 for 𝑗 = 1, 2, . . . , 𝑚, (2.13)

𝑚∑︁
𝑗=1

𝑥𝑖 𝑗 = 1 for 𝑖 = 1, 2, . . . , 𝑛, (2.14)

𝑥𝑖 𝑗 ∈ {0, 1}. (2.15)

The deep learning component comes into play by generating appearance descriptors

from detected objects, which are used to compute similarity scores. These scores

help in associating detections across frames, even in situations of temporary oc-

clusion or when objects closely interact. A complete DeepSORT architecture can

be seen in figure 2.8. By maintaining a continuous identity for each tracked object

and employing a more sophisticated matching mechanism that considers both spa-

tial and appearance information, DeepSORT effectively addresses the limitations of

purely motion-based tracking systems, making it highly effective for applications

that requires a precise object tracking in real-time video feeds.

Figure 2.8: Architecture of DeepSORT [22]

21

Dataset 3
This chapter provides details on the dataset used in this project, including its fea-

tures and how it was prepared. The quality of data is crucial in machine learning.

Good data preparation is a key to building models that learn well and make accu-

rate predictions. It involves cleaning and organizing the data to reduce errors and

make sure the model gets the right information. This helps in faster training and

better outcomes. Simply put, well-prepared data is the foundation of any successful

machine learning project.

3.1 Detailed information

The input data are video recordings from the Biomedical Centre of the Faculty of

Medicine of Charles University in Pilsen. This centre mainly focuses on a research

and a development in the field of organ replacement and regeneration. Specifically,

it involves video recordings of pigs from several pens. Total number of videos was

21, of which 18 were used. These videos were selected primarily on the basis of the

pigs’ activity, so that recording holds as many different conditions as possible. Also

nighttime video footage and footage where multiple pigs were in the same pen were

included. All of these video recordings were in .mp4 format. Table 3.1 shows those

summed up information about dataset.

23

3. Dataset

Number of videos 18

Number of frames 44 821

Total length of videos 31.12 min

Dataset size 48.97 GB

Table 3.1: Dataset information

3.2 Annotations

Data was processed using the CVAT [23] (Computer vision annotation tool), which

is a free and web-based image and video annotation tool used to annotate data for

computer vision algorithms. The tool currently also supports supervised learning,

image classification and segmentation, and 3D annotation.

The first step in the processing was to upload the data to the project in the CVAT

tool. This tool then takes each video and divides it into the appropriate number

of frames so that it can be labeled. The annotation itself was then done by simply

marking the position of the pig with a bounding box, which then allowed the tool

to record the position of the pig for that frame. Bounding boxes were used to rep-

resent detected objects. The following table displays the class names alongside the

respective counts for each class.

Class name Number of occurrences
pig_shape 79708

feeder_empty 52712

feeder_full 9893

drinker 96707

Table 3.2: Information about classes

24

3.2. Annotations

Figure 3.1: Example of input frame and annotated frame

Annotations were exported in COCO [24] format to json file. An example of

annotations can be seen below. Each image within the dataset is distinctly identified

by a specific ID and is accompanied by a set of parameters underlining its char-

acteristics, such as width, height, and file name. In parallel, each annotated object

within these images is linked to its corresponding image by image ID and carries

a comprehensive array of attributes, including bounding box coordinates, object

class, and the area encompassed by its bounding box.

25

3. Dataset

1 "images ": [{"id": 1,

2 "width ": 1280,

3 "height ": 720,

4 "file_name ": "frame_000000.PNG",

5 "license ": 0,

6 "flickr_url ": "",

7 "coco_url ": "",

8 "date_captured ": 0}]

9

10 "annotations ":[{" id": 2,

11 "image_id ": 1,

12 "category_id ": 2,

13 "segmentation ": [],

14 "area": 19137.7 ,

15 "bbox": [0.0, 440.5 , 90.7, 211.0] ,

16 "iscrowd ": 0,

17 "attributes ": {" occluded ": false ,

18 "rotation ": 0.0}} ,

19 {"id": 3,

20 "image_id ": 1,

21 "category_id ": 3,

22 "segmentation ": [],

23 "area": 27577.000000000007 ,

24 "bbox": [258.29 , 455.14 , 115.0, 239.8] ,

25 "iscrowd ": 0,

26 "attributes ": {" occluded ": false ,

27 "rotation ": 0.0}}]

After the preprocessing phase, which included manual annotations, the dataset was

partitioned into three distinct subsets: one designated for training, another for test-

ing, and a third for validation. This division into three sets serves the purpose of

enabling effective model training, assessing its generalization capabilities, and refin-

ing it for optimal performance on unseen data, ultimately enhancing the model’s

robustness and reliability.

26

Experiments 4
This section focuses on the experiments conducted in this thesis. Detailed expla-

nations of the experiments will be provided, including how they were carried out,

the tools and methods used, and the results obtained. The goal is to give a clear and

comprehensive view of the experiments, their importance, and the insights they

provide, contributing to the overall thesis.

4.1 Detection model

To address the specific requirements of this thesis, a new detection model was de-

veloped, primarily to accommodate additional classes. The training dataset was

described in the chapter 3. Two distinct fine-tuning approaches were undertaken.

The first involved fine-tuning with MMDetection, using Faster-RCNN and DETR

as a backbone, while the second employed Detectron2, using just Faster-RCNN.

4.1.1 MMDetection

MMDetection [25] is an open-source object detection toolbox based on PyTorch.

It is part of the OpenMMLab project, which aims to develop an unified codebase

for object detection, segmentation, and instance recognition. It is known for its

modularity, flexibility, and scalability. It supports a wide range of object detection

algorithms, including one-stage detectors, two-stage detectors, and cascade detec-

tors. It also supports a variety of common datasets, such as COCO, Pascal VOC, and

ImageNet.

27

4. Experiments

DETR

Initially,my attempt to train aDETRmodel faced challenges because the used dataset

was too small and lacked variety, despite the images being correctly labeled. This

issue made it difficult for the model to effectively learn and identify the intended

objects. The training process took over 26 hours to complete, with no applicable

results.

Given that the FasterRCNNmodel had showngood resultswith the samedataset,

I decided to halt my work with the DETR model and concentrate solely on devel-

oping with FasterRCNN for my thesis.

FasterRCNN

Following the decision to shift my focus, I continued thesis by working with the

Faster R-CNN model. Training was performed on MetaCentrum [26], which is vir-

tual organization, that operates and manages distributed computing infrastructure

consisting of computing and storage resources owned by CESNET as well as those

of cooperative academic centers within the Czech Republic. Training information

is summed up in table the 4.1. Number of epochs was set to 10 with regard to model

complexity, to address optimal computational time and to prevent overfitting. Num-

ber of iterations per epoch was calculated as shown in equation below:

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(4.1)

Initial learning rate, optimizer and augmentations were default to MMDetection

framework.

Epochs 10

Iteration per epoch 21 163

Initial learning rate 0.02

Optimizer Momentum SGD

Augmentations random flip, resizing

Table 4.1: Training parameters

28

4.1.2. Detectron2

The training process finished after 21 hours and 41 minutes. Training outcomes

are quantified using the AP (Average Precision) metric for IoU (Intersection over

Union), a pivotal metric in object detection. AP evaluates the overlap between pre-

dicted and actual bounding boxes and aggregates precision, recall, and model confi-

dence into a singular measure of performance. It details accuracy per object class,

condensing the Precision-Recall curve into a numerical summary. Specifically, met-

rics AP50 and AP75, highlighted in table 4.2, offer insights into model accuracy at

50% and 75% IoU thresholds. AP50 focuses on themodel’s object detection capability,

requiring a minimum 50% overlap between bounding boxes for a positive identifica-

tion. AP75 sets a stricter criterion of 75% overlap, underscoring the model’s ability

for precise object localization.

Epoch test-0.50 test-0.75 val-0.50 val-0.75
1 0.8423 0.7867 0.8420 0.7870
2 0.8434 0.7680 0.8430 0.7680

3 0.8251 0.7603 0.8250 0.7600

4 0.8439 0.7508 0.8440 0.7510

5 0.8118 0.7632 0.8120 0.7630

6 0.7976 0.6982 0.7980 0.6980

7 0.8057 0.6931 0.8060 0.6930

8 0.8365 0.7605 0.8370 0.7610

9 0.7980 0.7261 0.7980 0.7260

10 0.8536 0.7498 0.8540 0.7500

Table 4.2: IoU statistic over training - MMDetection

4.1.2 Detectron2

Detectron2 [8] is a state-of-the-art open-source computer vision library developed

by Facebook AI Research that serves as a powerful and flexible framework for build-

ing and training object detection, instance segmentation, and other computer vision

models.

29

4. Experiments

FasterRCNN

Upon realizing that the dataset was not suited for training the DETR model, the

decision was made to train just the Faster R-CNN model. As with previous exper-

iment, the training process was carried out on the MetaCentrum infrastructure,

leveraging its computational resources. Detailed information regarding the training

parameters, settings, and configurations used during this phase is summarized in

the table 4.3. As previously number of epochs was set to 10 with regard to model

complexity, to address optimal computational time and to prevent overfitting and

to match MMDetection settings. Number of iterations per epoch was aslo calcu-

lated as 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑖𝑚𝑎𝑔𝑒𝑠/𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑖𝑚𝑎𝑔𝑒𝑠_𝑝𝑒𝑟_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. Initial learning rate,

optimizer and augmentations had to be changed to match MMDetection settings.

Training outcomes are quantified in table 4.4 and the evaluation of the model’s

performance adhered to the same metrics as previously established to ensure con-

sistency.

Epochs 10

Iteration per epoch 21163

Initial learning rate 0.02

Optimizer Momentum SGD

Augmentations random flip, resizing

Table 4.3: Training parameters

30

4.1.3. Comparison of MMDetection and Detectron2

Epoch test-0.50 test-0.75 val-0.50 val-0.75
1 0.8358 0.7513 0.8199 0.7540
2 0.8344 0.7441 0.8183 0.7438

3 0.8120 0.7342 0.8118 0.7339

4 0.8119 0.7338 0.8112 0.7331

5 0.8099 0.7269 0.8069 0.7250

6 0.8071 0.7232 0.8001 0.7123

7 0. 8189 0.7401 0. 8091 0.7322

8 0. 8282 0.7425 0. 8180 0.7419

9 0.8375 0.7487 0.8123 0.7489

10 0.8298 0.7312 0.8259 0.7398

Table 4.4: IoU statistic over training - Detectron2

4.1.3 Comparison of MMDetection and Detectron2

I will start by comparing MMDetection and Detectron2 based on their documenta-

tions, looking at their features and how they stack up against each other. After that, I

will compare the outcomes I got from training models with each framework, focus-

ing on howwell they performed. Finally, I will provide subjective comparison based

on personal experience using both frameworks, touching on how user-friendly and

flexible I found them to be. This way, a clear picture of both frameworks from a

technical standpoint and from my own hands-on perspective will be provided.

First I will provide tables of how well each framework works based on perfor-

mance, training speed, inference speed and training memory. Those results were

obtained on same machine with this hardware specifications - processor: Intel(R)

Xeon(R) Gold 6148 CPU @ 2.40GHz, GPU: 8x NVIDIA Tesla V100 (32G) and those

software specifications: Python 3.7, PyTorch 1.4, CUDA10.1, CUDNN7.6.03,NCCL

2.4.08.

31

4. Experiments

Performance

In table 4.5 below the learning rate schedule defines how the learning rate changes

over time (or over epochs/batches) and the numbers in Detectron2 and MMDetec-

tion columns refers to performance metrics, specifically mean Average Precision

(mAP) percentages, which are standard for evaluating object detection models.

Model LR schedule Detectron2 MMDetection
Faster R-CNN 1x 37.9 38.0

Mask R-CNN 1x 38.6 & 35.2 38.8 & 35.4

RetinaNet 1x 36.5 37.0

Table 4.5: Performance details of each framework

Traininig speed

The speed of model training is gauged by the metric "seconds per iteration" (s/iter).

A lower value for this metric is preferable, as it indicates faster training per iteration.

Table 4.6 illustrates the results.

Model Detectron2 MMDetection
Faster R-CNN 0.210 0.216

Mask R-CNN 0.261 0.265

RetinaNet 0.200 0.205

Table 4.6: Training speed details of each framework

Inference speed

The metric used to assess the inference speed of a model is frames per second (fps),

also referred to as images per second (img/s), when running on a single GPU. Higher

fps values indicate better performance, as more images can be processed in less

time. In alignment with Detectron2’s reporting standards, raw inference speeds is

presented, which do not account for the time taken to load data. For the Mask R-

32

4.1.3. Comparison of MMDetection and Detectron2

CNNmodel, the time taken for Run-Length Encoding (RLE) in post-processing is

also not included. Results are shown in the table 4.7

Model Detectron2 MMDetection
Faster R-CNN 25.6 22.2

Mask R-CNN 22.5 19.6

RetinaNet 17.8 20.6

Table 4.7: Inference speed details of each framework

Training memory

Values in columns Detectron2 and MMDetection refer to GB (gigabytes). Smaller

number indicates less memory allocated during training process. Obtained results

are show in table 4.8

Model Detectron2 MMDetection
Faster R-CNN 3.0 3.8

Mask R-CNN 3.4 3.9

RetinaNet 3.9 3.4

Table 4.8: Training speed details of each framework

Thesis result comparison

Table below 4.9 shows a comparison of training results performed on test set with

the usage of AP50 metrics. Table below shows, that better results got MMDetec-

tion framework, that was later used in application development, even though the

inference speed was a little worse.

33

4. Experiments

Epoch Detectron2 MMDetection
1 0.8358 0.8423

2 0.8344 0.8434

3 0.8120 0.8251

4 0.8119 0.8439

5 0.8099 0.8118

6 0.8071 0.7976

7 0. 8189 0.8057

8 0. 8282 0.8365

9 0.8375 0.7980

10 0.8298 0.8536

Table 4.9: IoU statistic over training - Detectron2

4.2 Single object tracking

This section will cover comparative analysis of different SOT methods. At the end

of this section a table will provide an overview, where precision, calculated using

average Intersection over Union (IoU), and time, representing method performance,

are key metrics for evaluation. This comparison sheds light on the effectiveness and

efficiency of these SOT techniques. This section will also present a brief description

of implementation of methods presented in section that describes single object

tracking methods.

4.2.1 Implementation of methods

Each of the classical tracking methods were implemented using OpenCV frame-

work. All methods were given the same initial bounding box, that was provided by

detection neural network and same input video, from dataset provided in chapter

3. Every new bounding box provided by OpenCV trackers was stored in python

list, that was exported to file, so it can be evaluated later. The only neural network

method was implemented using MMTracking framework, where the initial bound-

ing box and input video was same as in OpenCV implementation and the output, as

34

4.2.2. Results of single object tracking methods

file containing bounding boxes was also the same. To determine a code runtime a

python time library was used. The input video was 69 seconds long.

4.2.2 Results of single object tracking methods

All obtained results are stored in table below. Last row of table contains results

for single object tracking that was achieved by using neural network model Faster-

RCNN trained on specific data.

Method Elapsed time [s] Average IoU [%]

Mean shift 4.05 2.19

MOSSE 2.23 55.01

KCF 5.49 59.95

TLD 31.60 30.31

NN (SiameseRPN) 20.74 70.98

Detection per frame 56.38 94.62

Table 4.10: Comparison of used methods

Based on the obtained results, it becomes evident that classical tracking tech-

niques are generally faster but not as precise. An exception to this trend is the TLD

tracking method, which is a classical approach that not only adjusts the bounding

box position but also accounts for changes in its appearance. However, this method

struggles with larger and more erratic movements, making it less effective than the

others. As anticipated, the discriminative tracking method proved to be the least

accurate, mainly due to its simplicity. On the other hand MOSSE and KCF tracking

methods were quite fast and accurate. After watching the output video, it could be

assumed that those methods were tracking the object really well, but due to the

change of bbox appearance the IoU metric was not as high. The best results were

obtained by NN method - specifically by used SiameseRPN model. Although the

code runtime for this method was longer than for classical methods, considering

the video’s length, these results are entirely acceptable.

35

4. Experiments

Figure 4.1: Example of Mean-Shift tracking output

Figure 4.2: Example of TLD tracking output

Figure 4.3: Example of KCF tracking output

36

4.3. Multiple object tracking

4.3 Multiple object tracking

This section covers a detailed comparative analysis of various MOT techniques. It

concludes with a summary table that highlights two critical metrics for evaluation:

precision, measured by average Intersection over Union (IoU), and performance

time. This table allows for a clear comparison of the effectiveness and efficiency of

these MOT strategies. Additionally, this section will include a concise explanation

on the implementation of the methods introduced in the section on MOT methods.

4.3.1 Implementation of methods

In the previous part anOpenCV frameworkwas used for classical methods, this goes

same for the dense optical flow used here, which, while is not a tracking method

itself, serves as a tool to analyze the motion between consecutive frames. Since op-

tical flow alone does not track objects, a basic tracking mechanism was integrated

into a code. This simple tracking logic was essential for maintaining continuity in

object identification across frames, building on the motion information provided

by optical flow to assign and update object positions. Tracking mechanism imple-

mented assigns unique IDs to detected objects in video frames and tracks their

movement across frames based on the Euclidean distance between their centroids.

Initially, each detected object is identified by a bounding box. For each new frame,

this mechanism calculates the centroids of new detections and compares them to

the centroids of previously tracked objects. If the distance between a new centroid

and an existing tracked object’s centroid is below a specified threshold, the new

detection is considered to be the same object, and thus retains the original ID.

For the implementation of other method, neural network-based in this case, I

used the MMTracking framework [27], a complex library designed for both single

and multi-object tracking tasks. To prepare these methods to my specific require-

ments, adjustments to the configurations files and certain sections of the code were

necessary to achieve the desired output. Those adjustments were crucial for adapt-

37

4. Experiments

ing the tracking algorithms to work efficiently with the unique characteristics of

my dataset and objectives.

Second used method was DeepSORT. Modifications were made to integrate it

with a custom detection model that I had previously trained on videos of pigs in

a confined space. This model was crucial for accurately detecting objects, pigs in

my case, in the challenging conditions of a confined space, where lighting, occlu-

sion, and the animals’ proximity to each other could significantly impact detection

performance. Additionally, for the re-identification (Re-ID) process within Deep-

SORT, I opted for a TRACTOR [28] approach, that was chosen for its effectiveness in

distinguishing individual subjects based on unique features, an essential capability

for maintaining consistent tracking of each pig over time, despite the potential for

occlusion and movement within the confined space.

These modifications and the choice of specific models for detection and Re-ID

processes were instrumental in optimizing the tracking performance for the specific

scenario of monitoring pigs in a confined space. This used approach facilitated the

extraction of accurate andmeaningful data from the video footage, enabling detailed

analysis and insights into the behavior of pigs in confined environments.

Upon realizing that the Dense Optical Flow technique fell short in terms of

performance, subsequent development efforts were concentrated on the DeepSort

method. In earlier stages, as modifications to this method were implemented, par-

ticular attention was paid to ensuring that the format of its output is standardized.

This meant aligning the data structures and types produced by this method to be

always the same, a strategic decision that aimed at facilitating a more efficient de-

velopment process. This standardization of outputs was critical for several reasons.

Firstly, it allowed easy integration of data into subsequent stages of the code, en-

suring that any tools or analyses developed could be universally applied without

needing adjustments specific to each method. Secondly, this uniformity in output

formats simplified the comparison and evaluation, making it easier to assess its

strength and weakness.

38

4.3.2. Results of multiple object tracking methods

4.3.2 Results of multiple object tracking methods

All obtained results are stored in table below. Last row of table contains results for

multiple object tracking that was achieved by using neural network model Faster-

RCNN trained on specific data.

Method Elapsed time [s] Average IoU [%]
Dense optical flow 7.03 4.67

DeepSort 232.23 89.79

Detection per frame 56.38 94.62

Table 4.11: Comparison of used MOT methods

From those results it is clear that classical multiple object tracking technique of-

fers speed but lack the precision of neural networkmethods. The primary drawback

of classical approach lies in accurately detecting the correct object. For instance,

dense optical flow methods, while fast, are not ideal for this task. It only detects

moving objects, which can be seen in figure 4.4 at position (0,1), and even then, it

struggles to identify individual objects like a single pig as a complete entity, which

is evident when the algorithm only detects head, or part of pig’s body. This can be

seen in the figure 4.4 at position (0,0) where the flow map is visualized and showing

only part of one pig’s body, while the second pig remains still. Flowmap, sometimes

referred to as a "heatmap" or color wheel, is a visualization where color represents

the direction of motion and intensity (brightness or saturation) indicates the speed

of motion. This color-coding is done using the Hue, Saturation, Value (HSV - "H"

meaning Hue and representing direction of motion, "S" meaning saturation and "V"

meaning value and representing magnitude or speed of motion) color space.

In the figure 4.4 at position (0,1) is a final output of Dense optical flow method.

It is worth mentioning that tracking output represented by bounding box is only

detected on non-static part of a pigs body, while the rest of its body remains un-

detected just as with second pig, which is not moving at all. In case, where one pig

is moving, can be seen, that this method is able to detect and track properly with

39

4. Experiments

only a little noise, in this case, represented by small bounding box inside of bigger

bounding box. If I were to proceed with this method, then a filtering method would

be implemented, which would likely help in removing noise from final results, as

smaller, less significant objects, that can often create false positives or irrelevant

information, would be filtered.

Continuing with the evaluation of the Deep SORT, it becomes apparent that this

method, although slower, offers significantly enhanced precision in terms of IoU

metrics. Despite its reduced speed, the computing performance is still meeting the

requirements for the purposes outlined in this thesis. The algorithm demonstrates

exceptional accuracy, particularly in scenarios where only a single pig is present

within each pen, that aligns with the video datasets to be analyzed in the application.

These outcomes are illustrated in figure 4.4 at positions (1,0) and (2,1).

An instance of tracking inaccuracies is observed when multiple pigs are present

within the same enclosure. Under such circumstances, although the pigs are initially

detected and tracked accurately, their proximity causes the tracking bounding boxes

to merge into one temporarily. Consequently, upon separation, there is occasionally

a swap of identity tags among the individuals. This scenarios are visualized in figure

4.4 at positions (1,0), (1,1) and (2,1). However, as previously noted, the scenario

involvingmore than one pig per penwill not be happening in the operational setting

of the application. Thus, the Deep SORT algorithm is well-optimized and nearly

ideal for its intended deployment in the final application.

40

4.3.2. Results of multiple object tracking methods

Figure 4.4: Example of MOT outputs

41

Web Application 5
In this chapter a final result of this thesis will be presented as a user-friendly web

application designed to monitor the movements of pigs, facilitating tracking of their

medical condition. This application provides a streamlined platform for doctors to

observe and analyze pig behavior, aiding in the early detection of potential health

issues.

5.1 Application structure

The web application was developed using the Flask framework, effectively integrat-

ing backend frameworks from previous experiments. The frontend is crafted with

HTML and CSS, providing an intuitive user interface. To enhance scalability and de-

ployment efficiency, the entire application is containerized usingDocker, distributed

across three distinct containers. The first container hosts the Flask web application,

serving as the main interface for users. The second container is dedicated to video

processing, handling computational tasks related to video manipulation and anal-

ysis. Lastly, the third container is utilized for MongoDB [29], offering a robust and

scalable database solution. This architecture not only simplifies deployment across

different environments but also facilitates independent scaling and maintenance

of each component, ensuring high availability and performance of the application.

Whole solution represented by diagram is shown in figure below.

43

5. Web Application

Figure 5.1: Simple app structure diagram

5.1.1 Frontend

As mentioned earlier, the web application’s frontend is meticulously designed us-

ing HTML and CSS, focusing on delivering content with precision and aesthetic

appeal. The design philosophy centers around simplicity and clarity, aiming to offer

an effortless and engaging browsing experience. Instead of streaming live video, the

application provides access to a collection of pre-processed videos. This decision

was made to ensure that the application will run smoothly, with possible playback.

These videos come enhanced with bounding boxes around each pig, allowing for

easy identification and analysis. Users have the flexibility to play these videos, ob-

serving the highlighted pigs within their environments.

44

5.1.1. Frontend

In addition to video playback, the application introduces a feature for in-depth

analysis. Users can explore various graphical representations, such as trajectories

illustrating the paths walked by each pig or bar graphs detailing the distance cov-

ered by individual pigs. This analytical component enriches the user experience by

providing meaningful insights into the behavior and movement patterns of pigs,

making the data not only accessible but also comprehensible. The application com-

prises three main pages: the homepage, where users can select and view videos

alongside their analyses; an informational page detailing the thesis and the research

it encompasses and a video detail page. This structured design ensures navigational

ease, allowing users to seamlessly interact with the application’s diverse features

and content.

Figure 5.2: Web application - homepage

45

5. Web Application

Figure 5.3: Web application - video detail

5.1.2 Backend

In the backend architecture of the application, a combination of technologies and

frameworks is employed across three dockerized containers to optimize the pro-

cessing, analysis, and management of data.

The first andmain container is hosting the Flask web application. This container

is responsible for several critical functions: it handles requests for videos, performs

data analysis to generate graphical reports for the frontend, manages communica-

tion with the MongoDB database for data storage and retrieval. This multifaceted

container ensures the seamless integration of frontend requests with backend pro-

cessing and data management.

The second container operates as a processing unit. It runs scripts that is using

the MMDetection and MMTracking frameworks, taking the path to a video as

input. These frameworks are instrumental in analyzing themovement of pigs within

the videos. After processing, the container outputs JSON-formatted data, which

encapsulates the analyzed information, ready for further use by the web application

in generating insights and visual representations.

46

5.2. Application features

The third container is dedicated for hosting a local MongoDB database. This

database acts as the central repository for storing and managing the vast amounts

of data generated and used by the application. By containerizing the MongoDB

instance, the application ensures data persistence, scalability, and efficient data ac-

cess, facilitating robust data management practices that support the application’s

complex data processing and analysis needs.

Together, these containers form a cohesive backend system that is not only

modular and scalable but also capable of handling complex data analysis, storage,

and communication tasks with efficiency and reliability. This backend structure

supports the application’s objective of providing detailed insights into the behavior

and health of pigs through advanced data processing and analysis techniques.

5.2 Application features

This section provides a detailed overview of the many features integrated into the

application, highlighting their implementation. The application offers a wide range

of functionalities, each developed to enhance user experience and effectiveness.

Main feature of this application is tracking of pigs, more specifically drawing of

bounding box for each pig in video. Since this implementation is already described

in previous sections 4.1 and 4.2.1, this section will cover other application features,

leveraging upon data obtained by the main feature.

5.2.1 Data storage

The application employs local MongoDB for the storage of data, capitalizing on its

flexible schema and robust performance to manage diverse data formats efficiently.

MongoDB’s document-oriented nature allows the application to store data in a

JSON-like format,which is both flexible and scalable. This ensures that data captured

from various inputs is consistently formatted, facilitating easier data manipulation

and retrieval. This approach enhances the application’s capability to handle large

47

5. Web Application

volumes of data seamlessly, while maintaining high performance and reliability. An

example of stored data is shown below.

1 "object_ID ": "123456" ,

2 "processed_path ": "usr/src/processed_videos/zverinec1 −001. mp4",

3 "original_path ": "usr/src/videos/zverinec1 −001. mp4",

4 "width ": "1280" ,

5 "height ": "720" ,

6 "data": {

7 "0": {

8 "track_bboxes ": [

9 [

10 0,

11 286.43 ,

12 165.18 ,

13 119.9 ,

14 271.61

15]

16]

17 }

18 },

19 "scale_factor ": "0.78" ,

20 "fps": "25",

21 "frame_count ": "1350" ,

22 "camera ": "zverinec01",

23 "date_processed ": "2024 −04 −12 12:00:00"

5.2.2 Status of lights

To gather and display information about lighting conditions, a straightforward

Python method that returns boolean values indicative of the lighting situation was

developed. Essentially, this method returns 𝑇𝑟𝑢𝑒 if the lights are on and 𝐹𝑎𝑙𝑠𝑒when

they are off. This approach provides effective way to understand whether the en-

vironment was illuminated or not, enabling a clear and immediate insight into the

48

5.2.3. Pig counter overview

lighting status, without the need of seeing an actual video output. Another simple,

yet useful feature providing practical information shown in video description.

The input for this method is a frame that is initially converted to gray-scale, fol-

lowed by calculating the average brightness of all of its pixels. Utilizing this average

brightness and a experimentally predetermined threshold the method then returns

a boolean value. Equation representing this functionality is shown below.

output =


True, if

1

𝑁

∑
𝑓 (𝑖, 𝑗)grayscale > 𝑇,

False, otherwise.

(5.1)

Figure 5.4: Lights on video on left and lights off video on right

5.2.3 Pig counter overview

Another simple feature of this application is the "pig counter" overview. This func-

tionality is achieved by summing IDs in tracking algorithm output which is returned

as .json file returned by video processing container. While a simple feature, it still

provides a fine and useful insight for user, that can be shown in video description.

5.2.4 Distance walked by each pig

Next feature aimed to accurately visualize the distance each pig has traveled within

a given environment. To do that pretrained object detection model was deployed

to identify and locate the "feeder" object within the observational field, then co-

ordinates of the "feeder" object’s bounding box were extracted to determine the

49

5. Web Application

pixel dimensions of the "feeder" object by calculating the differences between the

bounding box coordinates.

After that a comparison of the pixel dimensions of the "feeder" object to its

known real-world dimensions is made, to establish a pixel-to-physical dimension

conversion ratio - scale factor. This conversion is represented in equations 5.2 and

5.3, where 𝑙 represents the length feeder bounding box in the image, calculated as the

Euclidean distance between two points within the image. This length is measured

in pixels. 𝐿 denotes the real-world length of the line. This length is known from

measurements and is expressed in real-world units, specifically in meters. 𝑆 is the

scale factor, which quantifies the number of real-world units represented by each

pixel in the image.

𝑙 =
√︁
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (5.2)

𝑆 =
𝐿

𝑙
(5.3)

This conversion ratio is used to translate the distances traveled by the pigs,

measured in pixels between bounding box centroids, into real-world distance units.

Conversion ratio is returned in .json file as one of the parameters, because it will be

used in reporting part.

5.2.5 Data export

Another notable feature of the application is its ability to export data pertinent to

a specific video upon the press of a button within the app. This function converts

data from JSON format stored in MongoDB into a CSV file with usage of Python

framework Pandas [30]. This transformation is crucial for users, as the CSV format

is notably easier to read and manage. The exported CSV file is structured with

columns that include 𝑐𝑎𝑚𝑒𝑟𝑎, 𝑝𝑖𝑔_𝑖𝑑, 𝑝𝑖𝑔_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑙𝑖𝑔ℎ𝑡_𝑠𝑡𝑎𝑡𝑢𝑠 and 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝.

This structured data presentation allows for a straightforward analysis and review,

enabling veterinarians to quickly assess the environmental and behavioral contexts

50

5.2.6. Reporting

captured in the video footage. An example of how the exported data are structured

is shown in table 5.1.

Camera Pig_ID Pig_Position Light_Status Time_Stamp
Zverinec1 001 (x1,y1,x2,y2) 1 2023-04-01 12:00:00

Zverinec2 002 (x3,y3,x4,y4) 0 2023-04-01 12:05:00

Table 5.1: Example of CSV file structure exported from the app

5.2.6 Reporting

The final and perhaps most significant feature introduced is reporting. This feature

utilizes data provided by the video processing container, which are stored in the

MongoDB database. Web application container retrieves this data through queries

to MongoDB, leveraging it to create detailed reports. To present this data in an

engaging and informative manner, the Python framework Plotly [31] is employed

for its ability to generate interactive graphs. This approach not only enhances the

presentation of data but also allows users to interact with the information for deeper

insights.

For the purposes of this thesis, two specific types of graphs were implemented.

The first is a bar graph that quantifies and displays the distance each pig has walked,

providing a clear visual representation of their activity levels in meters. Data for this

graph are obtained by summing the distances between two consecutive bounding

boxes.

𝐷𝑝𝑖𝑔𝐼𝐷 =

𝑛−1∑︁
𝑖=1

√︁
(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 (5.4)

The second graph is designed to visualize the trajectories of each pig within their

pen, mapping out the paths they have taken. It is created by adding the centroids of

bounding boxes that represent the location of each pig over time, to a list represent-

ing the trajectory. The centroid of a bounding box is determined by the equation

5.5, where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the coordinates of the top-left and bottom-right

51

5. Web Application

corners of the bounding box.

(𝑐𝑥 , 𝑐𝑦) =
(𝑥1 + 𝑥2

2

,
𝑦1 + 𝑦2
2

)
(5.5)

Creation of the final list is represented by the equation 5.6. This list serves as a set of

simplified positional data points that is used to create the visualization of trajectory.

𝐶𝑖 =

(𝑥1𝑖 + 𝑥2𝑖
2

,
𝑦1𝑖 + 𝑦2𝑖
2

)
for 𝑖 = 1 to 𝑛 (5.6)

The data, having been standardized by the video processing phase and subse-

quently stored in MongoDB, facilitates the creation of enhanced reporting in the

future, thereby enabling doctors to derive deeper insights. These visualizations pro-

vide observations into the behavioral and movement dynamics of the pigs, aug-

menting the comprehensive understanding of their physical activities. Notably, this

reporting functionality emerges as an integral element of the application, present-

ing users with a mechanism for the analysis and interpretation of the data obtained

during the video processing stage.

Figure 5.5: Web application - reporting

52

5.2.6. Reporting

Figure 5.6: Reporting - walked distance

Figure 5.7: Reporting - walked trajectory

53

Conclusion 6
In conclusion, this thesis dealt with a problem of development and implementation

of application for pig tracking that will help doctors and researchers with monitor-

ing of pigs health state. By researching classical and current methods in the field of

computer vision in first part, analyzing real-world data in second part, and over-

coming practical challenges in last part, this thesis underlines the role of technology

in enhancing the precision and efficiency in biomedical research.

The collaboration with the Biomedical Center of Faculty of medicine of Charles

University in Pilsen provided a foundation for this thesis, offering dataset that fa-

cilitated the development and validation of the application. The process of video

annotation and the subsequent implementation of object tracking and data analysis

technologies underscore the potential for specific, technology-driven solutions to

biomedical research, which is conducted at the Biomedical Center of Faculty of

medicine of Charles University in Pilsen.

In the practical segment of this thesis, an extensive exploration and evaluation

of various methods for single object tracking and multiple object tracking were con-

ducted. To augment the functionality of some of these methods, it became necessary

to develop and integrate a detection algorithm. A notable instance of this approach

involved the DeepSORT method, which combines the Faster R-CNN pretrained

detection model with the SORT algorithm. This methodology demonstrated good

performance in tracking accuracy and efficiency, making it the preferred choice for

incorporation into the application’s development.

The last section of this thesis is dedicated to the web application that repre-

55

6. Conclusion

sents the culmination of this research. It details the operational functionality, design

principles, and key features of the application, highlighting its utility and efficiency

in the context of biomedical research. Significantly, the application was developed

using a containerized approach, which underscores its scalability and ease of deploy-

ment. This design choice ensures that any future enhancements or modifications

can be seamlessly integrated, facilitating continuous improvement and adaptation

to emerging research needs.

Ultimately, this thesis contributes to the advancement of biomedical research

by providing a tool for the health monitoring of pigs, an important animal model in

medical research. It showcases the advantages of adopting technological solutions

to enhance research methodologies. In future many new features may be needed

for this application. One of the biggest improvement could be a new algorithm, that

not only tracks pigs movements, but also tracks whether the pig is breathing or how

much time does it spend eating or drinking.

56

Bibliography

1. SONKA, Milan; HLAVAC, Vaclav; BOYLE, Roger. Image processing, analysis,

and machine vision. Cengage Learning, 2014.

2. HACHUEL, David; ESTRIN, Deborah; MARTINEZ, Alfonso; STALLER, Kyle;

VELEZ, Christopher. Augmenting Gastrointestinal Health: A Deep Learning

Approach to Human Stool Recognition and Characterization in Macroscopic

Images. 2019.

3. REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross; SUN, Jian. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. 2016. Avail-

able from arXiv: 1506.01497 [cs.CV].

4. GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor; MALIK, Jitendra. Rich

feature hierarchies for accurate object detection and semantic segmentation. 2014.

Available from arXiv: 1311.2524 [cs.CV].

5. GIRSHICK, Ross.Fast R-CNN. 2015. Available fromarXiv: 1504.08083[cs.CV].

6. CARION, Nicolas et al. End-to-End Object Detection with Transformers. 2020.

Available from arXiv: 2005.12872 [cs.CV].

7. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual

Learning for Image Recognition. 2015. Available fromarXiv: 1512.03385[cs.CV].

8. WU, Yuxin; KIRILLOV, Alexander; MASSA, Francisco; LO, Wan-Yen; GIR-

SHICK, Ross.Detectron2 [https://github.com/facebookresearch/detectron2].

2019.

57

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/1512.03385
https://github.com/facebookresearch/detectron2

Bibliography

9. PASZKE, Adam et al. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In: Advances in Neural Information Processing Systems 32.

Curran Associates, Inc., 2019, pp. 8024–8035. Available also from: http://

papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

10. ISWANTO, Irene Anindaputri; LI, Bin. Visual object tracking based on mean-

shift and particle-Kalmanfilter.Procedia computer science. 2017, vol. 116, pp. 587–

595.

11. BOLME, David S; BEVERIDGE, J Ross; DRAPER, Bruce A; LUI, Yui Man.

Visual object tracking using adaptive correlation filters. In: 2010 IEEE com-

puter society conference on computer vision and pattern recognition. IEEE, 2010,

pp. 2544–2550.

12. HENRIQUES, João F;CASEIRO,Rui;MARTINS, Pedro; BATISTA, Jorge.High-

speed tracking with kernelized correlation filters. IEEE transactions on pattern

analysis and machine intelligence. 2014, vol. 37, no. 3, pp. 583–596.

13. KALAL, Zdenek; MIKOLAJCZYK, Krystian; MATAS, Jiri. Tracking-learning-

detection. IEEE transactions on pattern analysis and machine intelligence. 2011,

vol. 34, no. 7, pp. 1409–1422.

14. MEDSKER, Larry; JAIN, Lakhmi C. Recurrent neural networks: design and ap-

plications. CRC press, 1999.

15. LI, Bo; YAN, Junjie; WU, Wei; ZHU, Zheng; HU, Xiaolin. High performance

visual tracking with siamese region proposal network. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2018, pp. 8971–

8980.

16. CIAPARRONE, Gioele et al. Deep learning in video multi-object tracking: A

survey. Neurocomputing. 2020, vol. 381, pp. 61–88. issn 0925-2312. Available

from doi: 10.1016/j.neucom.2019.11.023.

58

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/j.neucom.2019.11.023

Bibliography

17. HAN, Mei; SETHI, Amit; HUA, Wei; GONG, Yihong. A detection-based mul-

tiple object tracking method. In: 2004 International Conference on Image Pro-

cessing, 2004. ICIP’04. IEEE, 2004, vol. 5, pp. 3065–3068.

18. O’DONOVAN, Peter. Optical flow: Techniques and applications. International

Journal of Computer Vision. 2005, vol. 1, p. 26.

19. BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 2000.

20. WOJKE, Nicolai; BEWLEY, Alex; PAULUS, Dietrich. Simple Online and Re-

altime Tracking with a Deep Association Metric. 2017. Available from arXiv:

1703.07402 [cs.CV].

21. BEWLEY, Alex; GE, Zongyuan; OTT, Lionel; RAMOS, Fabio; UPCROFT, Ben.

Simple online and realtime tracking. In: 2016 IEEE International Conference on

Image Processing (ICIP). IEEE, 2016. Available from doi: 10.1109/icip.2016.

7533003.

22. PARICO, Addie Ira; AHAMED, Tofael. Real Time Pear Fruit Detection and

Counting Using YOLOv4 Models and Deep SORT. Sensors. 2021, vol. 21,

p. 4803. Available from doi: 10.3390/s21144803.

23. SEKACHEV, Boris et al. opencv/cvat: v1.1.0. Zenodo, 2020. Version v1.1.0.

Available from doi: 10.5281/zenodo.4009388.

24. VEIT, Andreas;MATERA, Tomas;NEUMANN,Lukas;MATAS, Jiri; BELONGIE,

Serge. Coco-text: Dataset and benchmark for text detection and recognition

in natural images. arXiv preprint arXiv:1601.07140. 2016.

25. CHEN, Kai et al. MMDetection: Open MMLab Detection Toolbox and Bench-

mark. arXiv preprint arXiv:1906.07155. 2019.

26. ŠUSTR, Z et al. Metacentrum, the czech virtualized ngi. In: EGEE Technical

Forum. 2009.

59

https://arxiv.org/abs/1703.07402
https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.3390/s21144803
https://doi.org/10.5281/zenodo.4009388

Bibliography

27. CONTRIBUTORS, MMTracking. MMTracking: OpenMMLab video percep-

tion toolbox and benchmark [https://github.com/open-mmlab/mmtracking].

2020.

28. BERGMANN, Philipp; MEINHARDT, Tim; LEAL-TAIXE, Laura. Tracking

without bells and whistles. In: Proceedings of the IEEE international conference

on computer vision. 2019, pp. 941–951.

29. CHODOROW, Kristina; DIROLF, Michael.MongoDB - The Definitive Guide:

Powerful and Scalable Data Storage. O’Reilly, 2010. isbn 978-1-449-38156-1.

30. TEAM, The pandas development. pandas-dev/pandas: Pandas. Zenodo, 2020.

Latest. Available from doi: 10.5281/zenodo.3509134.

31. INC., Plotly Technologies. Collaborative data science. Montreal, QC: Plotly

Technologies Inc., 2015. Available also from: https://plot.ly.

60

https://github.com/open-mmlab/mmtracking
https://doi.org/10.5281/zenodo.3509134
https://plot.ly

List of Figures

2.1 Difference between classification and detection [2] 8

2.2 Region proposal network [3] . 10

2.3 Graphical representation of Faster-RCNN [3] 10

2.4 Graphical representation of DETR [6] 12

2.5 Graphical representation of SiameseRPN neural network [15] 17

2.6 Graphical representation of DBT . 18

2.7 Graphical representation of DFT . 18

2.8 Architecture of DeepSORT [22] . 21

3.1 Example of input frame and annotated frame 25

4.1 Example of Mean-Shift tracking output 36

4.2 Example of TLD tracking output . 36

4.3 Example of KCF tracking output . 36

4.4 Example of MOT outputs . 41

5.1 Simple app structure diagram . 44

5.2 Web application - homepage . 45

5.3 Web application - video detail . 46

5.4 Lights on video on left and lights off video on right 49

5.5 Web application - reporting . 52

5.6 Reporting - walked distance . 53

5.7 Reporting - walked trajectory . 53

61

List of Tables

2.1 Comparison of object detection models 13

3.1 Dataset information . 24

3.2 Information about classes . 24

4.1 Training parameters . 28

4.2 IoU statistic over training - MMDetection 29

4.3 Training parameters . 30

4.4 IoU statistic over training - Detectron2 31

4.5 Performance details of each framework 32

4.6 Training speed details of each framework 32

4.7 Inference speed details of each framework 33

4.8 Training speed details of each framework 33

4.9 IoU statistic over training - Detectron2 34

4.10 Comparison of used methods . 35

4.11 Comparison of used MOT methods 39

5.1 Example of CSV file structure exported from the app 51

63

	Introduction
	Methods
	Object representation
	Definition of bounding boxes

	Object detection
	Faster R-CNN
	DETR
	Comparison of Faster-RCNN and DETR

	Single object tracking
	Discriminative methods
	Generative methods

	Multiple object tracking
	Multiple object tracking methods

	Dataset
	Detailed information
	Annotations

	Experiments
	Detection model
	MMDetection
	Detectron2
	Comparison of MMDetection and Detectron2

	Single object tracking
	Implementation of methods
	Results of single object tracking methods

	Multiple object tracking
	Implementation of methods
	Results of multiple object tracking methods

	Web Application
	Application structure
	Frontend
	Backend

	Application features
	Data storage
	Status of lights
	Pig counter overview
	Distance walked by each pig
	Data export
	Reporting

	Conclusion
	Bibliography
	List of Figures
	List of Tables

