
Bachelor’s Thesis

Compression of connectivity for
meshes with known geometry

Stanislav Kafara

PILSEN, CZECH REPUBLIC 2024

Bachelor’s Thesis

Compression of connectivity for
meshes with known geometry

Stanislav Kafara

Thesis advisor
Doc. Ing. Libor Váša, Ph.D.

PILSEN, CZECH REPUBLIC 2024

© 2024 Stanislav Kafara.

All rights reserved. No part of this document may be reproduced or transmitted in
any form by any means, electronic or mechanical including photocopying, record-
ing or by any information storage and retrieval system, without permission from
the copyright holder(s) in writing.

Citation in the bibliography/reference list:
KAFARA, Stanislav. Compression of connectivity for meshes with known geometry.
Pilsen, Czech Republic, 2024. Bachelor’s Thesis. University of West Bohemia, Fac-
ulty of Applied Sciences, Department of Computer Science and Engineering. Thesis
advisor Doc. Ing. Libor Váša, Ph.D.

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2023/2024

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Stanislav KAFARA
Osobní číslo: A21B0160P
Studijní program: B0613A140015 Informatika a výpočetní technika
Specializace: Informatika
Téma práce: Komprese konektivity trojúhelníkových sítí se známou geometrií
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s algoritmem pro kompresi konektivity trojúhelníkové sítě se známou geometrií, vy-

víjeným na Katedře informatiky a výpočetní techniky.
2. Implementujte a otestujte vylepšení algoritmu založené na vyloučení nemanifoldních hran a hran

vedoucích na neorientovatelný povrch.
3. Navrhněte, implementujte a otestujte automatickou volbu alespoň jednoho parametru (váhy) funk-

ce pro vyhodnocení kvality kandidátního trojúhelníku na základě relevantní globální statistiky vy-
hodnocené nad vstupní trojúhelníkovou sítí (průměrný vnitřní úhel, průměrný dihedrální úhel atd.).

4. Na základě dosažených výsledků navrhněte a popište další možná vylepšení algoritmu.
5. Dosažené výsledky důkladně zdokumentujte.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná/elektronická

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Doc. Ing. Libor Váša, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 2. října 2023
Termín odevzdání bakalářské práce: 2. května 2024

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 25. října 2023

Declaration

I hereby declare that this Bachelor’s Thesis is completely my own work and that I
used only the cited sources, literature, and other resources. This thesis has not been
used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from
Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that
the University of West Bohemia has the right to conclude a licence agreement for
the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

In Pilsen, on 02 May 2024

. .
Stanislav Kafara

The names of products, technologies, services, applications, companies, etc. used in
the text may be trademarks or registered trademarks of their respective owners.

(i)

Abstract

This work aims to improve the compression ratio of the state-of-the-art single-rate
priority-based connectivity compression algorithm for triangle meshes with known
geometry developed at the Department of Computer Science and Engineering at
the University of West Bohemia.

It enriches the general encoder and decoder capabilities to filter out additional
inadmissible candidate vertices and to update gates’ priorities as the mesh traversal
proceeds. It proposes a way to automatically determine a better-than-default en-
coder’s weight configuration per mesh based on the knowledge of its global surface
statistics. The text describes the individual attempts to enhance the algorithm and
presents experimental results, evaluating their actual impact on the resulting data
rate.

Abstrakt

Tato práce se zabývámožnostmi vylepšení kompresního poměru prioritou řízeného
algoritmu, vyvinutého na Katedře informatiky a výpočetní techniky Západočeské
univerzity, který představuje aktuální stav poznání v oblasti jednostupňové komp-
rese konektivity trojúhelníkových sítí se známou geometrií.

Práce rozšiřuje schopnosti kodéru a dekodéru o filtrování dalších nepřípustných
kandidátních vrcholů a o aktualizaci priorit bran v průběhu průchodu trojúhel-
níkovou sítí. Navrhuje způsob, jak automaticky určit lepší než výchozí váhovou
konfiguraci kodéru pro každou síť na základě znalosti globálních statistik jejího
povrchu. Text práce popisuje jednotlivé pokusy o vylepšení algoritmu, prezentuje
experimentální výsledky a hodnotí jejich skutečný dopad na výsledný datový tok.

Keywords

Triangle mesh • Connectivity compression • RBF approximation • Optimisation •
Artifical neural network

(ii)

Acknowledgement

I would like to thankmy thesis supervisor, Doc. Ing. Libor Váša, Ph.D., for his willing
guidance, valuable advice and enthusiasm. I also thank Ing. Filip Hácha for providing
technical consultations.

(iii)

Contents

1 Introduction 3

2 Mesh Compression 4
2.1 Triangle Mesh . 4
2.2 Related Algorithms . 6

2.2.1 Edgebreaker . 7
2.2.2 Distance-Ranked Connectivity Coding 8

2.3 Priority-Based Connectivity Coding 10
2.3.1 Determining Quality . 12
2.3.2 Determining Priority . 13
2.3.3 Filtering Candidates . 14
2.3.4 Achieved Results . 15

3 Enhancements 17

4 Background Theory 19
4.1 Data Standardisation . 19
4.2 RBF Approximation . 19
4.3 Artificial Neural Network . 21

5 Filtering Candidates 23
5.1 Definition . 23
5.2 Implementation . 24
5.3 Experimental Results . 26
5.4 Validation . 27

6 Updating Priorities 29
6.1 Definition . 29
6.2 Implementation . 30
6.3 Experimental Results . 32
6.4 Validation . 33

1

Contents

7 Determining Weights 35
7.1 Definition . 35
7.2 Implementation . 36

7.2.1 Surface Statistics Computation 37
7.2.2 Weight Configuration Optimisation 38
7.2.3 Data Rate Approximation 40
7.2.4 Model Training . 44
7.2.5 Integration . 46

7.3 Experimental Results . 46

8 Future Work 50

9 Conclusion 51

Bibliography 52

List of Figures 54

List of Tables 55

List of Algorithms 56

2

Introduction 1
In computer graphics, we often need to work with three-dimensional objects. Rep-
resenting these objects is a fundamental field of study. Its importance stems from
its broad spectrum of applications in various domains, ranging from industrial to
entertainment.

A triangle mesh is a commonly used discrete representation of an object, ap-
proximately capturing its surface as a set of vertices and faces. Compressing meshes
becomes necessary to achieve a more detailed representation of the object or to
represent more complex objects while maintaining reasonable storage and trans-
mission costs, as the level of detail highly depends on the vertex and face count of
the mesh.

This work explores further possibilities for improving the compression ratio
of the priority-based connectivity coding algorithm [Dvo+22] developed by Dvořák
et al. at the Department of Computer Science and Engineering at the University of
West Bohemia. The performed experiments utilise the same datasets as in [Dvo+22],
making it possible to compare the results directly to the previously achieved results.

The text first describes the existing algorithm in detail and provides its con-
text in the field of mesh compression. Then, it introduces and discusses possible
enhancements. Afterwards, it proposes and discusses the solutions and analyses
the experimental results. Eventually, it gives directions and suggestions for further
research.

3

Mesh Compression 2
Compression is a process and a set of techniques that ensure the transformation of
information into another representation, i.e. the compressed representation, reduc-
ing its size while preserving the information. The encoder transforms the original
representation into the compressed representation, and the decoder reconstructs the
compressed representation back into the original representation.

Compression may be either lossless or lossy. Lossless compression exploits spe-
cific knowledge of the data and its redundancy and preserves all the information.
On the other hand, lossy compression additionally removes some not-so-important
information from the data.

The effectivity of a compression method may be expressed as a compression ratio,
formulated as

Compression Ratio =
|Original Representation|
|Compressed Representation| ,

defining it as a ratio of the size of the original representation to the size of the
compressed representation.

2.1 Triangle Mesh
A triangle mesh is a data structure comprising a set of vertices 𝑉 , i.e., mesh geom-
etry and a set of faces 𝐹, i.e., mesh connectivity. The vertices are points in a three-
dimensional space, and the faces are triangles formed by connecting these vertices
with edges. An example triangle mesh, the well-known Stanford Bunny model, is
visualised in Fig. 2.1.

The effectivity of a representation of a triangle mesh may be expressed as its
required data rate in bits per vertex (bpv), formulated as

Bits per Vertex =
|Representation| [bits]

|𝑉 | ,

defining it as a ratio of the size of the representation in bits to the mesh’s vertex
count. Analogically, it may be expressed as its required data rate in bits per face (bpf),

4

2.1 Triangle Mesh

Figure 2.1: Triangulated Stanford Bunny model [TL94]

formulated as

Bits per Face =
|Representation| [bits]

|𝐹 | ,

defining it as a ratio of the size of the representation in bits to the mesh’s face count.
Below are some terms and properties referred to later in the text. A triangle

fan is a set of triangles incident to a common central vertex. A boundary edge is an
edge incident to one face. A boundary is a set of boundary edges forming a cycle
connecting their common vertices. A mesh has an orientable surface if its edges may
be oriented so that each pair of adjacent triangles will have opposite orientations
of the edges on their common side. The genus of a surface determines the number
of handles it has. This text often mentions the property of manifoldness [Bot+10].
A manifold vertex is a vertex with one incident triangle fan. A manifold edge is an
edge incident to at most two faces. A manifold mesh is a mesh with a surface that
is locally homeomorphic to a disc or a half-disc at the boundary for every point of
the surface. Equivalently, a manifold mesh contains neither non-manifold vertices
nor non-manifold edges nor self-intersections. Fig. 2.2 illustrates examples of non-
manifold meshes and an unorientable surface.

Figure 2.2: Non-manifold vertex, non-manifold edge and unorientable surface

5

2.2 Related Algorithms

2.2 Related Algorithms
This section briefly introduces the existing and related mesh compression tech-
niques and algorithms. Several [PKJ05] have been developed in the past, each with
its advantages and disadvantages in certain situations, making each suitable for a
different practical application. They will be classified based on their principal differ-
ences.

Earlier, it was necessary to compress static meshes, i.e., meshes that do not change
in time. Later, with the advancements in the fields of object animation and scanning,
compressing dynamic meshes, i.e., meshes that are part of temporal sequences and
change over time, was needed.

Single-rate compression algorithms [PKJ05] encode and decode a mesh as a
whole. These may be practical for efficient representation, exploiting as much infor-
mation about the wholemesh as possible and allowing freedom of order in encoding
the mesh. In contrast, progressive compression algorithms [PKJ05] proceed by gradu-
ally simplifying themesh and coding consecutive steps to reconstruct themesh, with
each step getting closer to the original shape. They thus may be very efficient for
streaming, as they enable immediate work with a coarse representation of the mesh,
which is gradually refined on the go as the decoder receives further instructions.

Another fundamental property is whether they compress connectivity and ge-
ometry simultaneously or independently. Methods that compress the connectivity
and the geometry simultaneously primarily encode the connectivity, alongside en-
coding the geometry by utilising the knowledge of the connectivity. The decoder
then decodes the geometry alongside the connectivity. Methods that compress con-
nectivity and geometry independently of each other may utilise the knowledge of
the geometry at both the encoder and the decoder to achieve a better compression ra-
tio. The decoder then decodes the geometry and, exploiting its knowledge, decodes
the connectivity. Most algorithms do not utilise this approach. However, it may be
convenient in certain situations, e.g., if a mesh is a part of a temporal sequence and
its geometry can be predicted efficiently.

Most current single-rate mesh compression methods build on a canonical mesh
traversal that begins with selecting and encoding an initial triangle, splitting themesh
into the processed part and the unprocessed part divided by border edges called gates.
It progresses by selecting a gate and expanding the processed part by one triangle,
the one incident to the gate from the unprocessed part, encoding the information
required to identify the triangle later by the decoder. It repeats this process until
it processes all the triangles. The traversal is unambiguously defined, and the en-
coder utilises only the information the decoder also possesses, ensuring they stay
synchronised. The decoder then mimics the traversal the encoder performs and
reconstructs the mesh utilising the encoded information. These algorithms [PKJ05]

6

2.2.1 Edgebreaker

compress connectivity losslessly with a 1-4 bpv data rate and geometry lossy with a
9-12 bpv data rate.

The following sections describe two well-known representatives of single-rate
manifold mesh compression algorithms in more detail. One presents a connectivity-
first approach, encoding geometry alongside connectivity, and the other a separate
connectivity and geometry approach to mesh compression. They provide more
context for the algorithm this work builds upon later.

2.2.1 Edgebreaker
Edgebreaker [Ros99], developed by Rossignac, is a manifold mesh compression al-
gorithm that encodes connectivity and geometry simultaneously. It traverses the
mesh, and based on the local state of the processed part of the mesh in each iter-
ation, it encodes a particular symbol from the CLERS alphabet into a compressed
connectivity stream and, if necessary, encodes a correction of a parallelogram pre-
diction to the actual triangle’s tip vertex into a compressed geometry stream. The
CLERS symbols represent all the possible actions the algorithm can take that drive
the traversal based on the processed or unprocessed state of the triangles in a fan
formed around the encoded triangle’s tip vertex. Fig. 2.3 illustrates these possible
cases. The blue edge represents the active gate, and 𝑋 is the currently processed tri-

J . R o s s i g n a c Edgebreaker page 7

The Edgebreaker compression algorithm performs a series of
steps. Each step removes one triangle from the current mesh.
At each stage, the remaining portion of the mesh is composed
of one or several regions, denoted Ri, which are simple
meshes. Technically, each region is the union of triangles of
T, whose interior is contained in one maximally connected
component of the interior of the union of the remaining
triangles. Note that two regions may share a vertex, but not an
edge. The edges bounding each region form a closed polygonal
curve, called loop, which has no self-intersections. One edge of
each loop is called a gate. A stack contains references, S0, S1,
S2,… to all the gates. The top of the stack, S0, references the
active gate, g. Let R0 be the region incident upon g and let B
denote the bounding loop of R0. Note that B contains g. This
notation is illustrated in Fig. 3. Note that for simple meshes,
the initial configuration has a single region and a single loop.

Figure 3: During compression, the top of the stack, S0,
points to half-edge g, called the gate, which identifies the
boundary B of the active mesh R0. The only triangle that
is incident upon g (shown in green) will be removed from
R0. When present, the other entries in the stack point to
half-edges included in the bounding loops of regions that
will be compressed later. These will become gates when
they are popped to the top of the stack. Note that R0 may
later be split into separate regions, which will be tracked
using the stack.

At each step, Edgebreaker identifies the unique triangle, X, that
is part of R0 and is incident upon g. Let v be the only vertex
of X that does not bound g. Edgebreaker analyzes the relation
that v has with respect to B and g, distinguishing 5 cases
labeled C, L, E, R, and S (see Fig. 4).

Figure 4: Triangle X is formed by the gate edge g and
vertex v. The location of v with respect to the boundary
B determines the operation type: C (v is not on B), L (v
immediately precedes g), R (v immediately follows g), E
(v precedes and follows g), S (v is elsewhere on B).

The selection of the appropriate case may be performed by the
following sequence of tests:

IF v ∉ B THEN case C
ELSE IF v follows g

THEN IF v precedes g THEN case E ELSE case R
ELSE IF v precedes g THEN case L ELSE case S

Edgebreaker constructs a compression history H by appending
op-codes selected from the set {C, L, E, R, or S} to identify
the successive steps that must be used to reconstruct the mesh
during decompression. Edgebreaker also builds a list P of
vertex references in the order in which they are reached by C
operations as the third vertex, v , of the triangle incident upon
the gate. This list will define the order in which the vertices
will be encoded. The history H will be compressed using
binary codes or any desired compression scheme. Surprisingly,
as demonstrated in the section on Decompression Algorithms,
the information contained in H suffices to recover the labeled
planar triangulated graph that represents the connectivity of T.
The vertices referenced by the graph are labeled with integer
indices (1, 2, 3…) that represent the order in which the
corresponding vertex data will be recovered at decompression.
During compression, it suffices to encode the vertices in the
order of their references in P . For meshes with boundary, P is
initialized to the references of the vertices of the initial loop B
as they are encountered by walking around it, starting with the
end-vertex of the gate. Fig. 5 illustrates this process.

Figure 5: This mesh may represent the final stages of the
compression of a large region in the mesh or the full
compression of a small simple mesh with boundary.
Starting at gate between vertex 16 and vertex 1,
Edgebreaker removes triangles by following the arrows:
first all the red arrows, then green, then blue. Triangles
are color-coded as in Figure 4 indicating the type of the
associated operation (C yellow, R blue, S green, L
brown, and E red). The thick black lines identify edges
that have never been gates. Together, the thick solid lines
define a vertex-spanning tree rooted at vertex 1 and
cutting the surface into a simply connected topological
polygon. The thick black dotted edges are gates that have
been on the stack. The vertices are marked with integer
indices that indicate the order in which their references
are to be included in P. Note that each interior vertex
corresponds to a C operation (yellow triangle). The
history is H=CCRRRSLCRSERRELCRRRCRRRE.

X

v

C

v

X
E

X

v

R
X

v

L X

v

S

16 1 2

3

4 5 6

7

89

10

11

1213

14

15

17 18

19

20

21

S2 S1 S0

g

B
R0

R1R2

Figure 2.3: Edgebreaker CLERS alphabet [Ros99]

angle with its tip vertex 𝑣. The blue triangles belong to the unprocessed part, while
the already-processed triangles are transparent.

It begins with selecting an initial triangle, encoding the positions of its vertices
andmarking the vertices and the triangle as encoded. Afterwards, the encoding loop
begins with the triangle opposite to the tip vertex of the initial triangle. It marks the
triangle as encoded and, based on the states of its tip vertex and triangles to the left
and right, proceeds as follows:

• C: encodes the correction of a prediction, encodes symbol C, marks the tri-
angle’s tip vertex as encoded and continues with the triangle to the right,

7

2.2.2 Distance-Ranked Connectivity Coding

• L: encodes symbol L and continues with the triangle to the right,

• R: encodes symbol R and continues with the triangle to the left,

• S: encodes symbol S, recursively continues with the triangle to the right and
after returning, continues with the triangle to the left,

• E: encodes symbol E and breaks from the current encoding loop.

The resulting CLERS string unambiguously describes the mesh’s connectivity
and defines the geometry associating it with the encoded C symbols. During de-
compression, it loops over the CLERS string in the encoded connectivity stream,
simulating the connectivity traversal. Traversing the mesh for the first time, it de-
codes the connectivity, knowing the common colocated vertices of consecutive
triangles. Then, it decodes the positions of the vertices of the initial triangle and,
traversing the mesh again, reconstructs the geometry from the separate stream of
predictions’ corrections by adding the correction to the prediction of the tip vertex
in the currently decoded triangle when it encounters the symbol C in the CLERS
string.

The algorithm guarantees encoding the connectivity of a mesh homeomorphic
to a sphere at a data rate of 4 bpv. However, if it additionally passes the CLERS string
to an entropy coder, it may be less than 3 bpv for large meshes. The algorithm may
be modified to support encoding meshes with boundaries and handles. However,
additional storage is required for each boundary or handle.

2.2.2 Distance-Ranked Connectivity Coding
The algorithm presented in [MGS07], developed byMarais et al., is a manifold mesh
compression algorithm that encodes connectivity and geometry separately. It ex-
ploits the knowledge of geometry at both the encoder and decoder to achieve better
results in compressing connectivity. It traverses the mesh, gradually extending the
processed part with triangles from the unprocessed part. In each iteration, it takes
one gate and constructs a prediction of the expansion triangle’s actual tip vertex. It
encodes the rank, i.e. the index in a list of vertices sorted by their Euclidean distance
from the prediction, of the actual tip vertex into the compressed connectivity stream.
The list of these candidate vertices is additionally filtered so as not to consider in-
admissible candidates, i.e., vertices having complete fans of triangles formed around
them, all of which belong to the already processed part of the mesh. Fig. 2.4 illus-
trates ranking the candidate vertices 𝑐𝑖 based on their distance from the prediction 𝑝.

It begins with selecting an initial triangle and encoding its actual vertex indices.
Afterwards, it initialises a double-ended queue of gates with the initial triangle’s

8

2.2.2 Distance-Ranked Connectivity Coding

p

g

c2

c1

Figure 2.4: Distance rank

edges. Then, it loops until the queue is empty. In every iteration, it pops a gate from
the front of the queue. If the gate is marked as completed, the next iteration follows.
Otherwise, if it is a boundary edge, it encodes 0, signalising the boundary edge.
Otherwise, it constructs a prediction and encodes the rank of the actual tip vertex,
the best being 1. Finally, it marks the gate as completed, preventing it from being
processed if popped from the queue again and pushes the newly formed left and
right gates to the queue, one to the front and the other to the back, for improved
traversal.

The decompression mirrors the compression process. First, it reads the initial
triangle’s vertices and initialises the queue with its edges. Then, it continues looping
until the queue is empty. During every iteration, it pops a gate from the queue. If the
gate is marked as completed, it proceeds to the next iteration. Otherwise, if it is a
boundary edge, no triangle is attached to the processed part of the mesh. Otherwise,
it constructs a prediction and extends the processed part of the mesh with a triangle
whose tip vertex is the one with the encoded rank. Finally, it marks the gate as
completed and pushes the newly formed left and right gates to the queue.

The algorithm’s effectiveness highly depends on the quality of predictions. The
method may and does beforehand determine which predictor it will use to exploit
the geometry better to describe the connectivity. A simple parallelogram predictor
works well for regular meshes. However, it performs poorly on irregularly triangu-
lated meshes. In [MGS07], Marais et al. discuss a few other predictors, exploiting
more information about the geometry, e.g., surface curvature or triangle sizes.

If the utilised predictor constructs good predictions, the actual tip vertex will lie
close to the prediction, yielding small rankswith low entropy,making it a good input
for the used entropy coder. The algorithm performs well on smooth and regular
meshes. However, it may perform worse than other mesh compression algorithms
on meshes on the opposite side of the spectrum. Section 2.3.4, respectively Table 2.2,
discusses its effectiveness of compression.

9

2.3 Priority-Based Connectivity Coding

2.3 Priority-Based Connectivity Coding
The algorithm presented in [Dvo+22], developed by Dvořák et al., is a manifold
mesh compression algorithm that encodes connectivity and geometry separately. It
builds on the distance-ranked approach described in [MGS07], as summarised in
Section 2.2.2, with the fundamental difference being the priority-driven mesh traver-
sal.

It traverses the mesh, prioritising expanding the processed part of the mesh with
a triangle, with its base being the best priority gate. A gate’s priority represents the
probability that the actual tip vertex can be well distinguished from the other candi-
date vertices. A candidate’s quality represents the heuristic estimate of its likelihood
to be the actual tip vertex of the triangle extending from the gate.

The algorithm additionally takes a weight configuration as an input, defining the
function to evaluate a candidate’s quality, as discussed later in Section 2.3.1. Algo-
rithm 2.1 summarises the process of encoding amesh. It shares the fundamental basis

Algorithm 2.1: Priority-based connectivity encoding
Input:Mesh, Initial triangle, Weight configuration
Output: List of candidate indices

1 Initialise data structures
2 UpdateFilter(initial triangle)
3 priority queue← initial triangle’s edges
4 while priority queue is not empty do
5 priority queue→ gate
6 if gate is completed then continue
7 if gate is boundary then
8 candidate indices← EncodeBoundary(gate)
9 UpdateFilter(gate)

10 else
11 candidates← QueryCandidates(gate, Quality(tip vertex))
12 candidates← Filter(candidates)
13 candidate indices← EncodeIndex(tip vertex, candidates)
14 UpdateFilter(triangle formed by gate and tip vertex)
15 priority queue← newly formed left and right gates
16 end
17 mark gate as completed
18 end

of the distance-ranked approach but has some significant differences. Instead of a
queue, it utilises a priority queue, preferring gates with greater priority. Section 2.3.2
provides more information on how the algorithm utilises gate priorities. Next, it

10

2.3 Priority-Based Connectivity Coding

does not determine a candidate’s rank by Euclidean distance but by a candidate qual-
ity metric discussed in Section 2.3.1. During encoding, if it encounters a completed
gate, it proceeds to the next iteration. If the gate is a boundary edge, it handles it
specifically, encoding a special index, as described in [Dvo+22]. Otherwise, it queries
all the candidates with a quality greater than or equal to the quality of the actual
tip vertex, ensuring the completeness of the list of candidates and unambiguity of
the selected candidate. Next, it filters out the inadmissible candidates, as described
in Section 2.3.3 and encodes the rank of the actual tip vertex, i.e. its index in the
list of the candidates sorted by their respective qualities, the best being 0. Then, it
computes the priority of the newly formed left and right gates and pushes them to
the priority queue. Finally, it updates the candidate filtering mechanism accordingly
and marks the gate as completed. Fig. 2.5 illustrates a typical situation the algorithm
handles in every iteration. The green edge 𝑔 represents the active gate, and the edges

base
triangle

base
vertex

parallelogram
prediction

tip vertex v
g.o

processed part of the mesh

gate g.l

gate g.r

candidate
vertices

gate g

unavailable vertex

Figure 2.5: Typical iteration of the algorithm [Dvo+22]

𝑔.𝑙 and 𝑔.𝑟 represent the newly formed left and right gates.
The decoder performs inverse operations to the encoder, starting with recon-

structing the initial triangle and initialising the priority queue. It continues with
traversing the mesh in a priority-driven manner. In each iteration, it pops a gate
from the priority queue. If the gate is marked as completed, it proceeds with the next
iteration. Otherwise, it reads the next encoded rank 𝑟. If it represents a boundary
edge, the next iteration follows. Otherwise, it queries at least 𝑟 + 1 already filtered
best candidates, ensuring the completeness of the list of candidates. The actual tip
vertex is on the index 𝑟 in the list of these candidates sorted by their respective
qualities. Then, it puts the newly formed left and right gates into the priority queue.

11

2.3.1 Determining Quality

Finally, it updates the candidate filtering mechanism accordingly andmarks the gate
as completed.

2.3.1 Determining Quality
A significant enhancement this algorithm implements over the distance-ranked ap-
proach is how it ranks the candidate vertices. Instead of only considering the distance
from the prediction, it considers three additional factors. It considers the inner an-
gle at the tip vertex of the candidate triangle, i.e., the triangle having the gate as its
base and the candidate vertex as its tip vertex. It also considers the dihedral angle
of the candidate triangle and the base triangle, i.e. the triangle sharing the gate edge
with the candidate triangle. It also considers the similarity of the base and candidate
triangles.

The individual factors are weighted by their importance in contributing to the
resulting quality 𝑞𝑐 of the candidate vertex 𝑐, formulated as

𝑞𝑐 = 𝜃𝐶𝑐 −
𝑤1

𝑙𝑎𝑣𝑔
· 𝑑𝑐𝑝 + 𝑤2 · 𝜙𝐵𝐶 + 𝑤3 · 𝑆𝐵𝐶 , (2.1)

defining it as a linear combination of these factors. The symbol 𝜃𝐶𝑐 represents the
inner angle at the tip vertex of the candidate triangle, computed as in Eq. (2.2); 𝑑𝑐𝑝
represents the distance of the candidate from a prediction, computed as in Eq. (2.3);
𝜙𝐵𝐶 represents the dihedral angle between the base triangle and candidate triangle,
computed as in Eq. (2.4), and 𝑆𝐵𝐶 represents the similarity of the base and candidate
triangle, as computed in Eq. (2.5). The symbols 𝑤1, 𝑤2 and 𝑤3 represent the weight of
the respective terms, and 𝑙𝑎𝑣𝑔 is the average edge length of the mesh used to ensure
mesh scale invariance.

Let 𝐵 be a base triangle defined by the vertices 𝑔2, 𝑔1 and 𝑏. Let𝐶 be a candidate
triangle defined by the vertices 𝑔1, 𝑔2 and 𝑐. The vertices 𝑔1 and 𝑔2 are the vertices
of the gate 𝑔. The point 𝑝 is a constructed prediction, and 𝑏 and 𝑐 are the base and
the candidate vertices. Fig. 2.6 illustrates this situation. Then, the inner angle 𝜃𝐶𝑐 at

p

c
b

g1

g

g2

B
dcpC

Bl

Bs

Cl

Cs

𝜃𝐶𝑐

𝜙𝐵𝐶

Figure 2.6: Candidate’s quality metric components

12

2.3.2 Determining Priority

the vertex 𝑐 of a candidate triangle 𝐶 is formulated as

𝜃𝐶𝑐 = arccos
(

cg1 · cg2
∥cg1∥ · ∥cg2∥

)
, (2.2)

where cg1 and cg2 are the vectors pointing from the vertex 𝑐 to the vertices 𝑔1 and
𝑔2. The distance 𝑑𝑐𝑝 of the candidate vertex 𝑐 from the prediction 𝑝 is formulated as

𝑑𝑐𝑝 = ∥c − p∥. (2.3)

The dihedral angle 𝜙𝐵𝐶 between the base and the candidate triangle 𝐵 and 𝐶 is
formulated as

𝜙𝐵𝐶 = 𝜋 − arccos (n𝐵 · n𝐶) , (2.4)

where n𝐵 and n𝐶 are the unit normal vectors of the base and the candidate triangles.
The similarity 𝑆𝐵𝐶 of the base and the candidate triangle 𝐵 and 𝐶 is formulated as

𝑟𝑠 =
∥𝐵𝑠∥
∥𝐶𝑠∥

, 𝑟𝑙 =
∥𝐵𝑙∥
∥𝐶𝑙∥

, 𝑟 =
𝑟𝑠 + 𝑟𝑙
2

,

𝑆𝐵𝐶 = − |𝑟 − 𝑟𝑠 | + |𝑟 − 𝑟𝑙 |
2

,

(2.5)

where 𝐵𝑠 and 𝐵𝑙 are the shorter and the longer non-gate edges of the base triangle
𝐵, and 𝐶𝑠 and 𝐶𝑙 are the shorter and the longer non-gate edges of the candidate
triangle 𝐶.

The weight for the inner angle 𝜃𝐶𝑐 is implicitly set to 1 to reduce the number of
degrees of freedom of the weights of the quality metric function and relate other
weights to this one. The goal is to set these weights so that the actual tip vertices
have the best quality compared to other candidates. The weights are non-negative
numbers, assuming that a greater inner angle at the tip vertex of a candidate tri-
angle, a smaller distance of a candidate from prediction, a greater dihedral angle
and a greater similarity of base and candidate triangles contribute positively to a
candidate’s quality.

2.3.2 Determining Priority
Another significant difference between this algorithm and the distance-ranked ap-
proach is how it traverses the mesh. Instead of just popping the gate from the front
of the queue, it pops the gate with the best priority. The algorithm evaluates a gate’s
priority once, at the moment when it is about to put it into the priority queue. The
priority is interpreted as the probability that the actual tip vertex is well distinguish-
able in the list of candidates, assuming that the quality metric function, defined by
Eq. (2.1), suits the mesh well.

13

2.3.3 Filtering Candidates

The algorithm utilises the approximated priority 𝑝𝑔 of gate 𝑔, defined as

𝑝𝑔 = 𝑞𝑐1 − 𝑞𝑐2, (2.6)

where 𝑞𝑐1 and 𝑞𝑐2 are the best and the second-best candidate qualities. Fig. 2.7 illus-
trates the property of priority. Suppose there are the red and blue gates, and the

candidate tips

Figure 2.7: Gate priority [Dvo+22]

two vertices are the two best candidates for both gates. In the case of the blue gate,
assume that the candidates have identical qualities, resulting in the priority being
zero. In the case of the red gate, assume that one candidate has greater quality than
the other, resulting in priority being greater than the blue gate’s priority, thus being
preferred over the blue one to extend the processed part of the mesh with a trian-
gle, since it is more probable to distinguish the actual tip vertex well in the list of
candidates than the blue gate.

2.3.3 Filtering Candidates
In every iteration, the algorithm needs to query possible candidates for the actual
tip vertex forming a triangle extending from the active gate, either to determine its
rank, to determine it by its rank, or to evaluate the gate’s priority before putting
it into the priority queue. However, based on the particular weights of the utilised
candidate’s quality metric function (Eq. (2.1)) and possible local distribution of the
mesh vertices for which it is not well-suited, many candidates may have greater
quality than the actual tip vertex. Therefore, to yield smaller ranks and improve
accuracy by not considering inadmissible candidates when evaluating the gate’s
priority, the algorithm implements a candidate filtering mechanism that filters out
the inadmissible candidates, i.e. the candidates that cannot possibly form a triangle
extending from the gate.

The algorithm implements the same candidate filtering mechanism utilised by
the distance-ranked approach [MGS07]. It filters out every vertex that has a complete
fan of triangles formed around it, all of which belong to the already processed part of
the mesh. Such a vertex may not be considered since expanding the processed part

14

2.3.4 Achieved Results

of the mesh with such a triangle violates the assumption that the mesh is manifold.
Of course, it also filters out the gate vertices and the base triangle’s tip vertex. During
the traversal, the candidate filtering mechanism is regularly updated to reflect the
state of the already processed part of the mesh.

2.3.4 Achieved Results
In [Dvo+22], Dvořák et al. performed experiments to evaluate the effectiveness
of their proposed method. They tested it against six datasets, providing a general
overview of its performance on various meshes and comparing it to the distance-
ranked approach. These datasets include abc_regular and abc_irregular, which con-
tain regular and irregular meshes of the CADmodels from the ABC [Koc+19] dataset.
The thingi10k [ZJ16] dataset comprises 3D-printed models with varying regularity.
The tosca [BBK08] and mcgill [Zha+05] datasets contain synthetic models in dif-
ferent poses. Finally, the casual_man dataset consists of a proprietary 3D-scanned
sequence ofmeshes of varying connectivity representing amoving human. Fig. 2.8 vi-
sualises a representativemesh from each dataset, from left to right: tosca, casual_man,
abc_irregular, abc_regular, mcgill and thingi10k.

Figure 2.8: Representative meshes of the experimental datasets [Dvo+22]

Aweight configuration refers to the weights 𝑤1, 𝑤2 and 𝑤3 of the respective com-
ponents of the candidate’s quality metric function defined by Eq. (2.1). Dvořák et al.
determined the dataset-optimised weight configuration for each dataset by randomly
selecting 10 meshes from each dataset and optimising the total sum of the data rates.
Additionally, they determined a default weight configuration by optimising the data
rates of 40 selected meshes of varying properties. Table 2.1 shows the particular
weight configurations.

They evaluated the compression performance for the default and the dataset-
optimised weight configurations. Table 2.2 summarises the results and compares
themwith the distance-ranked approach. They both use aCABAC [MSW03] entropy
coder to encode candidate indices. The mentioned data rate is the average data rate
weighted by the respective mesh vertex count.

15

2.3.4 Achieved Results

Table 2.1: Dataset-optimised weight configurations [Dvo+22]

dataset 𝒘1 𝒘1 𝒘3

default 0.4094 0.7920 0.1350

abc_regular 0.252 0.654 0.151
abc_irregular 0.84 1.8125 0.089
thingi10k 0.24 0.905 0.000015
tosca 2.18 1.05 0.0005
mcgill 0.362 0.116 0.845
casual_man 0.1406 0.8781 0.0272

Table 2.2: Compression performance summary [Dvo+22]

bpf
dataset # meshes wdefault wdataset [MGS07]

abc_regular 10000 0.191 0.181 0.331
abc_irregular 10000 1.059 1.050 2.261
thingi10k 8133 0.988 0.919 1.523
tosca 80 1.129 1.112 1.343
mcgill 458 0.487 0.448 0.708
casual_man 546 0.165 0.152 0.264

16

Enhancements 3
The priority-based connectivity coding algorithm [Dvo+22], described in Section 2.3,
leaves room for improvement. This work attempts to further improve the data rate
of the reference implementation by filtering out additional inadmissible candidate
vertices, continuously updating priorities of unprocessed gates and estimatingmesh-
optimal weight configurations.

As described in Section 2.3.3, the reference implementation already filters the
candidate vertices utilising a candidate filtering mechanism. While it generally re-
duces the encoded candidate ranks and entropy, additional inadmissible candidates
may be identified and filtered out. This work implements a candidate filtering mech-
anism that additionally filters out the candidates, which would lead to a mesh with
a non-manifold edge or an unorientable surface if the candidate triangle extended
the processed part of the mesh, violating the assumption of an orientable manifold
mesh on input.

The reference implementation evaluates a gate’s priority once, as described in
Section 2.3.2. The priority remains unchanged throughout the gate’s existence in the
priority queue. However, as the mesh traversal proceeds, the local area determining
one’s gate priority may change as the processed part of the mesh expands, and so
may its priority. Assuming that the candidate’s quality metric function is well-suited
and the priority represents the probability of distinguishing the actual tip vertexwell
in the list of candidates, continuously updating priorities should further improve
the traversal and, thus, the data rate, as it would utilise additional more accurate
recent information. This work implements a mechanism that synchronises the gate
priorities with the changes in the unprocessed part of the mesh.

The data rate depends primarily on the choice of a weight configuration, as dis-
cussed in Section 2.3.4, as it determines the encoded candidate ranks and defines
the priority, as described in Section 2.3.2, that drives the mesh traversal. However,
achieving this algorithm’s optimal compression ratio for different meshes requires
different utilised weight configurations. Assuming it is possible to obtain complete
descriptive statistics of a mesh, such as a mean inner of its triangles or a mean dihe-
dral angle of adjacent pairs of its triangles, and that there exists a relation between

17

3 Enhancements

the mesh statistics and the respective optimal weight configurations, it is possible
to create a dataset of many sample pairs of mesh statistics and the related optimal
weight configurations and approximate the other optimal weight configurations, as-
suming a well-behaved relation between the mesh statistics and the optimal weight
configurations. This work implements a mechanism that automatically determines
a weight configuration per mesh based on its evaluated global surface statistics.

18

Background Theory 4
This chapter provides the necessary information and context to implement the
enhancements presented in Chapter 3 and defines the terminology and techniques
used later in the text.

4.1 Data Standardisation
Data standardisation [SHH96] is a technique widely used to transform original data
into other data with desired properties. It may often be a necessary step in data
preprocessing, as various applications and algorithms require standardised input
data to operate or improve performance. This section mentions two well-known
methods used to transform the data range.

Linear transformation is a method for transforming data 𝑋 ⊂ R with values in
the range ⟨min(𝑋),max(𝑋)⟩ into other data 𝑋 ′ with values in the range ⟨0, 1⟩. The
data transformation function 𝑓 : R→ ⟨0, 1⟩ for data 𝑥 ∈ 𝑋 is defined as

𝑓 (𝑥) = 𝑥 −min(𝑋)
max(𝑋) −min(𝑋) . (4.1)

Statistical standardisation is a method used to transform data 𝑋 ⊂ R into other
data 𝑋 ′, which has a mean 𝑋 ′ = 0 and variance var(𝑋 ′) = 1. The new data 𝑥′i
represents the multiple of the standard deviation std(𝑋) the data 𝑥i deviates from
the mean 𝑋 . The data transformation function 𝑓 : R→ R for data 𝑥 ∈ 𝑋 is defined
as

𝑓 (𝑥) = 𝑥 − 𝑋

std(𝑋) . (4.2)

4.2 RBF Approximation
A radial basis function (RBF) [MS17] is a function 𝜙 : ⟨0,∞) → R. Generally, a radial
basis function Φ : Ed → R is a function in d-dimensional Euclidean space centred
around a point c ∈ Ed. This function has a property that values Φ(x) depend only

19

4.2 RBF Approximation

on the radial distance 𝑟 = ∥c−x∥ of the point x ∈ Ed from the centre c, as illustrated
in Fig. 4.1. It is defined as

Φ(x) = 𝜙(𝑟) = 𝜙(∥c − x∥). (4.3)

Radial basis functions are popular in applications involving data interpolation
and approximation, as they enable efficient work with higher-dimensional and scat-
tered data. Let 𝑋 = {x1,x2, ...,xN} ⊂ Ed be data of size |𝑋 | = N. Then, the RBF
interpolant 𝑓 is formulated as

𝑓 (x) =
𝑁∑︁
𝑖=1

𝜆𝑖Φ𝑖(x) =
𝑁∑︁
𝑖=1

𝜆𝑖𝜙(∥c𝑖 − x∥), (4.4)

defining it as a linear combination of N radial basis functions Φ𝑖 centred around the
points c𝑖, weighted by their respective weights 𝜆𝑖. This leads to a system of linear
equations, written asA𝝀 = y in the matrix form, whereA𝑖 𝑗 = Φ𝑗(x𝑖) = 𝜙(∥c𝑗−x𝑖∥),
𝝀 = (𝜆1, 𝜆2, ..., 𝜆N)T and y = (𝑓 (x1), 𝑓 (x2), ..., 𝑓 (xN))T.

However, depending, e.g., on the size, type, and quality of data 𝑋 , it may be more
appropriate to use RBF approximation, as it may be more effective or yield better
overall results. Let 𝑋 = {x1,x2, ...,xN} ⊂ Ed be data of size |𝑋 | = N. Then, the RBF
approximant 𝑓 is formulated as

𝑓 (x) =
𝑀∑︁
𝑖=1

𝜆𝑖Φ𝑖(x) =
𝑀∑︁
𝑖=1

𝜆𝑖𝜙(∥c𝑖 − x∥), (4.5)

defining it as a linear combination of M ≪ N radial basis functions Φ𝑖 centred
around the points c𝑖, weighted by their respectiveweights 𝜆𝑖. This leads to an overde-
termined system of linear equations, written as A𝝀 = y in the matrix form, where
A𝑖 𝑗 = Φ𝑗(x𝑖) = 𝜙(∥c𝑗 −x𝑖∥), 𝝀 = (𝜆1, 𝜆2, ..., 𝜆M)T and y = (𝑓 (x1), 𝑓 (x2), ..., 𝑓 (xN))T.
This system may be solved as ATA𝝀 = ATy, using the least squares method.

Choosing an appropriate RBF kernel, i.e. the radial basis function used in the
interpolation or approximation, is essential to ensure desired results. Different RBF
kernels have different properties, so the choice of RBF kernel depends on the spe-
cific application. The thin plate spline and Gaussian functions are well-known RBF
kernels. The thin plate spline function, defined as 𝑓 (𝑟) = 𝑟2 log 𝑟, diverges with an in-
creasing radius and has no free parameters that must be explicitly set. The Gaussian
function, defined as 𝑓 (𝑟) = 𝑒−𝜖𝑟

2
, on the other hand, has a shape parameter 𝜖 that

needs to be tuned to fit the problem well. It is infinitely differentiable and converges
to zero with an increasing radius. Fig. 4.1 illustrates its behaviour for various shape
parameters.

20

4.3 Artificial Neural Network

Figure 4.1: Gaussian RBF kernel

4.3 Artificial Neural Network
An artificial neural network [Dre05] is a computational model used in machine learn-
ing originating from the structure and function of biological neural networks. It
comprises layers of interconnected nodes, the neurons, that process and transmit in-
formation. Themodel can learn to recognise complex patterns andmake predictions
based on input data.

Artificial neural networks vary in organisation, the simplest being a fully con-
nected feed-forward network, in which every neuron in a layer processes its input and
passes its output to all the neurons in the next layer. The network’s input proceeds
from the input layer through all the hidden layers to the output layer as the network’s
output, as illustrated in Fig. 4.2. The computation performed by the 𝑗-th neuron in

i1

o1

o2

i2

i3

i4

Figure 4.2: Artificial neural network

the 𝑖-th hidden layer is formulated as

out𝑖 𝑗 = 𝑓𝑖
(
w𝑖 𝑗 · out𝑖−1 + 𝑏𝑖 𝑗

)
, (4.6)

21

4.3 Artificial Neural Network

where out𝑖 𝑗 is the neuron’s output,w𝑖 𝑗 is the vector of the neuron’s weights, out𝑖−1 is
the vector of all neuron outputs of the previous layer, 𝑏𝑖 𝑗 is the neuron’s output bias,
and 𝑓𝑖 is the 𝑖-th layer’s activation function.

The neuron determines its output by applying the activation function to the
biased sumof its inputs, eachmultiplied by its respectiveweight. The neuronweights
and utilised activation functions define the functionmodelled by the neural network.
Artificial neural networks use specific activation functions to model general non-
linear functions. Several are widely used, including hyperbolic tangent or ReLU,
defined as 𝑓 (𝑥) = max{0, 𝑥}.

Artificial neural network training is the iterative process of adjusting neuron
weights to improve a model’s performance. During training, the model predicts
outputs given a set of inputs. The predictions are then compared to the target val-
ues to determine the error of predictions, defined by a loss function. The goal is
to minimise the error. The model optimiser minimises the error by computing its
gradient with respect to a neuron’s weights, adjusting its weights by performing a
gradient descent, and propagating the error backwards through the network using
the backpropagation algorithm.

22

Filtering Candidates 5
This chapter discusses the enhanced candidate filtering mechanism. It also describes
the implementation and provides experimental results and their analysis, comparing
it to the original mechanism [MGS07], described in Section 2.3.3.

5.1 Definition
Generally, filtering candidate vertices leads to encoding smaller ranks with lower
entropy and improving a gate’s priority evaluation accuracy, resulting in exploiting
more information during the priority-based traversal. Both these factors contribute
to reducing the overall data rate.

The algorithm assumes an orientable manifold mesh on input. It divides the
mesh into processed and unprocessed parts and starts to traverse the mesh. In every
iteration, it extends the processed part of the mesh with a triangle from the unpro-
cessed part. The processed part is always an orientable manifold. Thus, when con-
sidering extending the processed part from a gate, triangles that make the extended
processed part unorientable or non-manifold cannot be considered candidate tri-
angles, making their tip vertices inadmissible candidates for the gate.

Extending the processed part from the gate 𝑔 with a triangle having an edge
in common with the processed part, where it already has two incident triangles,
forms a non-manifold edge in the extended processed part, as it increases this edge’s
triangle incidence count to three. On the other hand, extending the processed part
with a triangle with an opposite orientation forms an unorientable surface in the
extended processed part, as it violates the surface orientation. Fig. 5.1 illustrates these
scenarios. The processed part is represented by the black triangles and the vertex 𝑐
is inadmissible to extend the processed part with the blue triangle.

The original candidate filtering mechanism partially checks whether the already
processed part, when extended with a candidate triangle, violates the assumption of
being manifold. However, it only checks for the formation of a non-manifold vertex
in the extended processed part. An enhanced mechanism filtering out additional

23

5.2 Implementation

gg

c c

Figure 5.1: Inadmissible candidate vertices

candidate vertices is introduced to ensure the orientability and manifoldness of the
extended processed part of the mesh.

5.2 Implementation
The elimination of candidates leading to the formation of a non-manifold edge in
the extended processed part may be implemented by storing the edges of triangles
in the processed part and keeping track of their triangle incidence count. Then, a
candidate triangle is inadmissible if its left or right edge or both have a triangle
incidence count of two in the processed part. Similarly, filtering out candidates that
lead to the formation of an unorientable surface in the extended processed part may
be implemented by storing the half-edges [Bot+10], i.e. oriented edges of triangles
in the processed part. Then, a candidate triangle is inadmissible if its left or right
half-edge or both exist in the processed part.

The mechanism that filters out the candidates leading to the formation of an
unorientable surface in the extended processed part also excludes the candidates
leading to the formation of a non-manifold edge. If a non-manifold edge shall be
formed, there must already be an edge with a triangle incidence count of two in the
processed part. The half-edge representation of this edge with two incident triangles
corresponds to two half-edges with opposite orientations, as the processed part is
orientable. Suppose a candidate triangle is considered inadmissible by the mecha-
nism checking the formation of a non-manifold edge because its left or right edge
already has a triangle incidence count of two in the processed part. In that case, it is
also considered inadmissible by the mechanism checking the formation of an unori-
entable surface because the half-edges of both possible orientations corresponding
to the particular edge already exist in the processed part.

The original candidate filtering mechanism considered only the tip vertex of
the candidate triangle to determine its admissibility. However, to determine this

24

5.2 Implementation

enhanced candidate admissibility, the left and right edges of the candidate triangle
are also considered. The overall algorithm remains the same as summarised in Al-
gorithm 2.1 with the enhanced procedure UpdateFilter, updating the state of the
candidate filtering mechanism and the function Filter, filtering out the inadmissi-
ble candidate vertices.

Procedure 5.1 describes the enhanced process of updating the mechanism’s state.
As the algorithm iteratively extends the processed part of the mesh with a triangle,
it adds the half-edges forming the triangle to the set of half-edges of triangles in the
processed part.

Procedure 5.1: Updating the state of the candidate filtering mechanism
Input: Processed triangle or boundary edge

1 if boundary edge was processed then
2 ... reference implementation ...
3 processed half-edges← boundary edge
4 else
5 ... reference implementation ...
6 processed half-edges← triangle’s half-edges
7 end

Function 5.2 describes the enhanced process of filtering the candidate vertices.
It evaluates each candidate for inadmissibility by checking whether any of the can-
didate triangle’s left or right half-edges already exists in the set of half-edges of
triangles in the processed part.

Function 5.2: Filtering out the inadmissible candidates
Input: List of candidates, Candidate triangle’s gate
Output: List of admissible candidates

1 inadmissible candidates← base triangle’s vertices
2 foreach candidate in candidates do
3 ... reference implementation ...
4 left half-edge← HalfEdge(candidate, V1(gate))
5 right half-edge← HalfEdge(V2(gate), candidate)
6 if left half-edge is in processed half-edges then
7 inadmissible candidates← candidate
8 else if right half-edge is in processed half-edges then
9 inadmissible candidates← candidate
10 end
11 end
12 admissible candidates← complement of inadmissible candidates
13 return admissible candidates

25

5.3 Experimental Results

It stores the half-edges of triangles belonging to the processed part of the mesh
in a hash set to enable the constant-time addition and look-up operations required
by Procedure 5.1 and Function 5.2. As a result, Procedure 5.1 requires additional
constant time to update the mechanism, as it performs at most three addition oper-
ations. On the other hand, Function 5.2 performs at most two look-up operations
for every candidate. Therefore, it requires additional linear time with respect to the
number of filtered candidates. As discussed in Section 2.3, the algorithm queries a
complete filtered list of candidates every time it determines the rank of the actual
tip vertex or evaluates a gate’s priority. The number of these candidates depends
on the ranks the utilised candidate’s quality metric function yields for the actual tip
vertices for respective gates. Therefore, the additional time required by Function
5.2 equivalently depends on the mesh type and the appropriateness of the utilised
weight configuration. Assuming that the weight configuration is well-suited for a
particular mesh, the additional time required to filter the candidates is constant with
respect to the mesh size, as the number of candidates can be bounded by a small
constant independent of the mesh vertex count.

5.3 Experimental Results
The impact of the enhanced candidate filtering mechanism was assessed by mea-
suring the data rate and encoding and decoding time across all the datasets used in
[Dvo+22], described in Section 2.3.4. The experiment was performed on the tosca,
mcgill, and casual_man datasets without any changes. However, the abc_regular,
abc_irregular, and thingi10k datasets are represented by different random mesh sam-
ples with triangle counts ranging from 1000 to 20000. Table 5.1 presents the results,
comparing the mean per-mesh change in data rate and encoding and decoding time
to the original candidate filtering mechanism.

Table 5.1: Enhanced candidate filtering mechanism performance summary

mean per-mesh change [%]
wdefault wdataset

dataset # meshes bpf te td bpf te td
abc_regular 1000 -0.68 37.0 38.9 -0.75 40.6 40.0
abc_irregular 1000 -0.79 51.9 49.5 -0.68 52.4 48.2
thingi10k 1000 -1.13 44.8 44.7 -1.01 49.3 46.7
tosca 80 -0.49 49.0 45.9 -0.99 42.0 39.4
mcgill 458 -0.81 37.3 38.1 -0.70 36.4 35.7
casual_man 546 -0.55 39.4 39.4 -0.41 44.8 44.4

Depending on the weight configuration, utilising the enhanced candidate filter-

26

5.4 Validation

ingmechanism decreases the data rate by 0.41 to 1.13 per cent per-mesh on average on
the experimental datasets. It does not provide a significant improvement, especially
considering that the computational overhead of the enhanced candidate filtering
mechanism costs an additional 35.7 to 52.4 per cent of the encoding and decoding
time.

5.4 Validation
Another experiment was performed on one specific mesh to validate the results.
This mesh, the delaunay_plane, comprises one million vertices randomly uniformly
distributed on a plane restricted by a rectangle. The Delaunay triangulation [Bot+10]
defines the connectivity for this geometry. The experiment evaluated the mecha-
nism’s performance for different weight configurations that determine the candi-
date’s quality metric function, as discussed in Section 2.3.1. This experiment should
provide nearly error-unbiased results, as it amortises the randomness over almost
two million triangles.

The experiment considers four different weight configurations. The first tested
weight configuration maximises the quality of a candidate triangle based on the
inner angle at its tip vertex, minimises the influence of the distance from the pre-
diction, and omits other quality metric components. It is considered optimal for
this particular mesh as the Delaunay triangulation favours large inner angles. The
other weight configurations gradually introduce errors to the respective candidate’s
quality metric functions by considering other quality metric components. The sec-
ond weight configuration considers the distance from the prediction, and the third
additionally considers the triangle similarity, giving them all equal weights. The last
tested weight configuration is the default weight configuration discussed in Sec-
tion 2.3.4. The weight configurations are introduced in the order of their expected
performance to suit the quality metric function sufficiently well for this particular
mesh, as each next introduces some error by considering other components, and
the last additionally introduces the weighting of the components. However, the De-
launay triangulation optimises the inner angles but does not directly consider other
properties of the triangles.

Table 5.2 summarises the experimental results. Depending on the appropriate-
ness of the weight configuration, the enhanced candidate filtering mechanism im-
proves the data rate by 2.5 to 19.2 per cent over the original candidate filtering mech-
anism. Assuming that the observed relation between the sufficiently well-suited
weight configuration for a particular mesh and the data rate improvement the en-
hanced candidate filtering mechanism provides applies in general, then the data rate
improvement is more significant the more sufficiently well the weight configuration
is suited for a particular mesh.

27

5.4 Validation

Table 5.2: Enhanced candidate filtering mechanism performance validation

change [%]
w bpf te td
optimal -19.18 57.1 79.1
𝑤1 = 1 -9.21 35.2 35.1
𝑤1,3 = 1 -6.18 38.7 43.4
default -2.54 69.1 66.9

28

Updating Priorities 6
This chapter discusses the enhancement of the algorithm based on continuously
updating the priorities of unprocessed gates. It also describes the implementation
and provides experimental results and their analysis.

6.1 Definition
The algorithm benefits from the priority-driven mesh traversal, as described in Sec-
tion 2.3.2. During the traversal, it forms new gates every time it extends the processed
part of the mesh with a triangle. It evaluates their priorities and adds them to the
priority queue. The priority of a gate remains unchanged for its existence in the
priority queue and is bound to the state of the unprocessed part of the mesh at the
moment when it was evaluated. However, the state of the local area, which deter-
mines the priority, may change as the traversal proceeds, and so may the priority.
Keeping the priorities of the unprocessed gates synchronised with the changes in
the unprocessed part provides additional information the algorithm may utilise to
improve the mesh traversal, eventually improving the data rate.

The algorithm utilises the approximated gate priorities defined by Eq. (2.6) and
discussed in Section 2.3.2. A gate’s priority may change only at the moment when
its best or second-best candidate or both cease to be candidate vertices. A candidate
vertex ceases to be a candidate when the algorithm extends the processed part of
the mesh with a triangle, updating the candidate filtering mechanism so that the
candidate vertex becomes inadmissible for the particular gate. As discussed in Sec-
tion 2.3.3 and Chapter 5, a candidate vertex is inadmissible if all the triangles of the
fan formed around it belong to the processed part of the mesh, defining it to be a
closed vertex, or if any of the left or right half-edges of the candidate triangle already
exists in the processed part of the mesh.

Suppose a gate 𝑔 and its best and second-best candidate vertices 𝑐1 and 𝑐2. Ex-
tending the processed part of the mesh from the gate 𝑔′ with a triangle that com-
pletes a fan formed around the best or the second-best candidate vertex with all
the triangles belonging to the processed part of the mesh, closing the particular

29

6.2 Implementation

vertex, updates the candidate filtering mechanism so that the particular candidate
vertex becomes inadmissible for the gate 𝑔. Also, extending the processed part with
a triangle having a half-edge in common with the best or the second-best candidate
triangle results in the particular candidate vertex becoming inadmissible for the
gate 𝑔. Fig. 6.1 illustrates these scenarios.

g

g'c1 c2

g

g'c1
c2

Figure 6.1: Guarding gate’s relevance for a priority update

A new mechanism is introduced to ensure the priorities of unprocessed gates
reflect the actual state of the unprocessed part of the mesh. It mimics the logic
of the candidate filtering mechanism and, based on that, updates the priorities of
relevant gates. A gate is relevant for a priority update if any of its best or second-best
candidate vertices ceases to be a candidate.

6.2 Implementation
The mechanism may be implemented by storing the gates and associating them
with their best and second-best candidate vertices and their best and second-best
candidate triangle’s left and right half-edges. It cooperates with the candidate fil-
tering mechanism, which stores the vertices closed and the half-edges added to the
processed part of the mesh in the last iteration of the algorithm. Then, a gate is
relevant for a priority update if it has a stored association with any of the vertices
closed or any of the half-edges added to the processed part in the last iteration of
the algorithm.

As many gates may be associated with a particular vertex or half-edge, the gates
associated with one vertex or half-edge are stored in a hash set. In the case of vertex
associations, a set of associated gates to a vertex is stored on the particular vertex
index in an array. In the case of half-edge associations, a set of associated gates to a
half-edge is stored in a dictionary.

Algorithm 6.1 illustrates the algorithm enhanced by the continuous priority up-
dating mechanism. It introduces two new processes that enable its functionality.
First, when the algorithm forms new gates, it sets up a guard that monitors their

30

6.2 Implementation

relevance for a priority update, handled by the procedure Guard. Then, when the
algorithm extends the processed part of the mesh with a triangle or processes a
boundary edge, it queries the gates whose priority it affected, handled by the func-
tion QueryRelevantGates, and reevaluates their priorities.

Algorithm 6.1: Continuous priority updating of unprocessed gates
Input:Mesh, Initial triangle, Weight configuration
Output: List of candidate indices

1 Initialise data structures
2 UpdateFilter(initial triangle)
3 priority queue← initial triangle’s edges
4 Guard(...initial triangle’s edges)
5 while priority queue is not empty do
6 priority queue→ gate
7 if gate is completed then continue
8 if gate is boundary then
9 candidate indices← EncodeBoundary(gate)
10 UpdateFilter(gate)

11 else
12 candidates← QueryCandidates(gate, Quality(tip vertex))
13 candidates← Filter(candidates)
14 candidate indices← EncodeIndex(tip vertex, candidates)
15 UpdateFilter(triangle formed by gate and tip vertex)
16 priority queue← newly formed left and right gates
17 Guard(...newly formed left and right gates)
18 end
19 relevant gates← QueryRelevantGates()
20 foreach gate in relevant gates do
21 Unguard(gate)
22 if gate is completed then continue
23 priority queue← gate
24 Guard(gate)

25 end
26 mark gate as completed
27 end

Procedure 6.2 illustrates setting up a guard for a gate’s priority update. It asso-
ciates the gate with its best and second-best candidate vertices and the left and right
half-edges of its best and second-best candidate triangle.

Function 6.3 illustrates the process of listing the gates relevant for a priority
update. It utilises the vertices closed and the half-edges processed in the last iteration
of the algorithm to determine the gates whose priority the last iteration affected.

31

6.3 Experimental Results

Procedure 6.2: Setting up a guard for a gate’s priority update
Input: Gate

1 Associate gate→ best candidate
2 Associate gate→ second-best candidate
3 Associate gate→ HalfEdge(best candidate, V1(gate))
4 Associate gate→ HalfEdge(V2(gate), best candidate)
5 Associate gate→ HalfEdge(second-best candidate, V1(gate))
6 Associate gate→ HalfEdge(V2(gate), second-best candidate)

Function 6.3: Querying gates relevant for a priority update
Output: List of gates relevant for a priority update

1 foreach vertex in latest closed vertices do
2 relevant gates← QueryAssociatedGates(vertex)
3 end
4 foreach half-edge in latest processed half-edges do
5 relevant gates← QueryAssociatedGates(half-edge)
6 end
7 return relevant gates

After a triangle extends the processed part of the mesh or a boundary edge is
processed, the algorithm queries relevant gates and reevaluates their priorities. The
gate’s priority update process begins with removing the set-up associations between
the gate and its former best and second-best candidate vertices and the best and
second-best candidate triangle’s left and right half-edges, handled by the Unguard
procedure, ensuring the mechanism cannot later falsely assess the gate as relevant
for a priority update. Then, if the gate is not marked as completed, it evaluates its
priority and puts it into the priority queue. Finally, it sets up a guard for its priority
update again.

6.3 Experimental Results
The impact of continuous priority updates of unprocessed gates was experimen-
tally evaluated by measuring the data rate and encoding and decoding time. The
experiment used the same datasets as in Section 5.3, and the algorithm utilised the
enhanced candidate filtering mechanism discussed in Chapter 5. Table 6.1 presents
the results by comparing the mean per-mesh change in data rate and encoding and
decoding time when the algorithm utilises the continuous priority updating mech-
anism to the results obtained when the algorithm does not utilise this mechanism.

The results show that the experimental datasets do not benefit from utilising

32

6.4 Validation

Table 6.1: Continuous priority updating mechanism performance summary

mean per-mesh change [%]
wdefault wdataset

dataset # meshes bpf te td bpf te td
abc_regular 1000 1.90 104.9 102.1 1.53 154.4 143.7
abc_irregular 1000 7.84 94.7 80.0 9.18 87.3 68.5
thingi10k 1000 3.32 67.3 61.3 3.53 77.9 66.7
tosca 80 0.11 117.4 95.5 0.15 77.4 59.3
mcgill 458 0.19 112.5 107.0 -0.17 137.5 129.3
casual_man 546 -0.13 124.5 120.1 0.15 253.9 246.9

this mechanism for the default and the dataset-optimised weight configurations. It
leads to a significant processing time increase, ranging from 59.3 to 253.9 per cent,
and, more importantly, it actually worsens the data rate, as the improvement ranges
from negative 9.18 per cent to 0.17 per cent. The mechanism likely performs bet-
ter, but still rather worse than if it is not utilised, on datasets containing meshes
with smoother surfaces and more regular triangulation, e.g., the tosca, mcgill, or ca-
sual_man datasets. On the other hand, it performsworse on datasets containingCAD
models with sharply curved surfaces and more sliver triangles, e.g., the abc_regular,
abc_irregular and thingi10k datasets.

6.4 Validation
A validation experiment was performed on a subset of the experimental datasets
comprising ten meshes with at most 5000 triangles to disprove a mistake in the im-
plementation, as this data rate worsening behaviour was not expected. It compared
the implemented mechanism to one that updates the priority of every unprocessed
gate in every iteration of the algorithm. It checked whether the priorities of unpro-
cessed gatesmatched the ones determined by the othermechanism in every iteration.
This dataset-restricted experiment indicates that they do, and the mechanismworks
as expected.

Another experiment was performed on the delaunay_planemesh. It is the same
experiment as in Section 5.4, but it evaluates the performance of the continuous
priority updating mechanism. Table 6.2 summarises the experimental results. Util-
ising the mechanism improves the data rate by 1.5 percent when the algorithm uses
the optimal weight configuration. However, the improvement decreases for less
appropriate weight configurations, eventually resulting in a worse data rate by 0.2
percent for the default weight configuration. Assuming that this observation applies
in general, then the mechanism improves the data rate for well-suited weight con-

33

6.4 Validation

Table 6.2: Continuous priority updating mechanism performance validation

change [%]
w bpf te td
optimal -1.50 170.2 103.2
𝑤1 = 1 -1.25 63.1 55.9
𝑤1,3 = 1 -0.16 59.2 48.8
default 0.39 80.6 73.0

figurations, and the improvement decreases and eventually becomes negative for
less appropriate weight configurations.

Several factors may contribute to the data rate increasing behaviour. The mesh
traversal utilises the priority as defined by Eq. (2.6) in Section 2.3.2. However, it only
approximates the property the priority represents, resulting in an approximation
error. As defined, the priority also depends on the accuracy of the utilised candi-
date’s quality metric function, which introduces additional errors to the utilised
approximated priority if it is not well-suited. Another factor that needs to be con-
sidered is how Dvořák et al. obtained the default and the dataset-optimised weight
configurations, as discussed in Section 2.3.4. They only provide a globally optimised
data rate for the small sample of selected meshes for which they were optimised.
However, more importantly, they were optimised without considering continuous
updating of the priorities of unprocessed gates, which may later introduce addi-
tional error, as the weight configurations were optimised to provide only the initial
heuristic estimate of the priority and considered less the actual candidate’s qual-
ity metric function. Then, the weight configuration is not sufficiently well-suited
for a particular mesh and does not determine the priority well when later utilising
the continuous priority updating mechanism. Therefore, the traversal yields ranks
with higher entropy, which the utilised CABAC entropy coder adapts to, eventually
resulting in the increased data rate.

34

Determining Weights 7
This chapter proposes an enhancement based on estimating the optimal weight
configuration per mesh, i.e. the mesh-optimal weight configuration, utilising the
knowledge of its global surface statistics. It also describes the implementation and
provides experimental results and their analysis, comparing it to the default and the
dataset-optimised weight configurations.

7.1 Definition
Choosing an appropriate weight configuration for a mesh is a critical step in the
compression process, as it defines the utilised candidate’s quality metric function,
defined by Eq. (2.1) in Section 2.3.1. Also, the utilised approximated priority derives
from the best and the second-best candidate qualities, as discussed in Section 2.3.2.
The algorithm’s resulting data rate benefits from the priority-driven mesh traversal,
assuming that the utilised candidate’s quality metric function consistently ranks the
candidates appropriately and the utilised priority well approximates the probability
that the gate can distinguish the actual tip vertex well in the list of candidates.

Assuming that the meshes from the same dataset share common properties,
Dvořák et al. determined the optimised weight configuration per dataset, as dis-
cussed in Section 2.3.4. However, the dataset-optimised weight configuration only
provides a globally optimised data rate for the small subset of the dataset. Thus, it
generally cannot suit the individual meshes sufficiently, as every dataset comprises
varying meshes, even though they may share some relevant properties. This chapter
introduces a new mechanism for estimating the mesh-optimal weight configura-
tions independent of the dataset to which the mesh belongs.

The mechanism may estimate the optimal weight configurations for meshes
based on a pre-computed dataset comprising sample complete descriptive statistics
of meshes and the related optimal weight configurations, utilising the well-behaved
relation between them, as discussed in Chapter 3. A well-behaved relation is a func-
tion that behaves predictably and smoothly at every local point of its domain and
has some convenient properties. It is continuous and differentiable at every point.

35

7.2 Implementation

Additionally, it is monotonic and, therefore, can be well-utilised to find its optimum
unambiguously by iteratively performing gradient descent.

Since obtaining the complete descriptive statistics of amesh is generally impossi-
ble, the mechanism utilises only a subset of selected descriptive properties of a mesh.
Utilising incomplete descriptive mesh statistics introduces an approximation error
and violates the assumption of a well-behaved relation between the mesh statistics
and the related optimal weight configurations. The relation cannot be injective since
many meshes may possess the same incomplete descriptive statistics but differ in
the optimal weight configurations.

The implemented mechanism approaches the problem more comprehensively
than the one mentioned in Chapter 3, computing the global surface statistics of a
mesh and determining the respective approximant of the data rate function instead
of only considering the optimal weight configuration. It compresses the mesh using
various weight configurations to obtain the samples for approximation. It builds
a dataset of many sample pairs of global surface statistics and respective data rate
approximants and utilises an artificial neural network tomodel the relation. It trains
the model to predict weight configurations that minimise the data rate, utilising the
approximate data rate provided by the approximants.

7.2 Implementation
Assuming the relation between the incomplete descriptive mesh statistics and the
optimal weight configurations is complex and difficult to represent, the mechanism
uses an artificial neural network to model it, as discussed in Section 7.2.4. The algo-
rithm’s data rate for amesh is a function of three parameters defining the candidate’s
quality metric function. Considering the diversity of meshes, the corresponding
functions of the data rate are also diverse since different weight configurations suit
different meshes optimally, and different changes in particular weights influence the
data rate differently. Considering this diverse data rate behaviour and the insuffi-
cient description of a mesh with incomplete global surface statistics, the goal is not
to predict the optimal weight configuration, focusing on minimising the error of
the predicted weights, as it is too constraining and, more importantly, impossible
to achieve, since the modelled relation is not well-behaved. The goal is to predict
the weight configuration, focusing on minimising the data rate, which relaxes the
modelled relation and makes the problem tractable.

The mechanism samples and approximates the data rate function, as discussed
in Section 7.2.2, respectively Section 7.2.3, to enable the model to utilise the knowl-
edge of the data rate for various weight configurations. The following sections de-
scribe the process of building a dataset of sample pairs of global surface statistics
of meshes and the respective approximated functions of the data rate, as discussed

36

7.2.1 Surface Statistics Computation

in Section 7.2.3, which is then used to train the model to estimate the mesh-optimal
weight configurations, which is discussed in Section 7.2.4. The dataset comprises
meshes from the datasets described in Section 2.3.4, utilised in [Dvo+22] to assess
the performance of the reference implementation.

7.2.1 Surface Statistics Computation
The mechanism considers seven mesh properties to determine its global surface
statistics. These are:

1. triangle inner angles,

2. distances from the parallelogram prediction,

3. dihedral angles between adjacent triangles,

4. similarity of adjacent triangles,

5. triangle equilaterality,

6. edge lengths and

7. vertex degrees.

The first four properties directly relate to the components of the candidate’s quality
metric function. The other three may provide additional information about the
mesh.

The implemented mechanism determines the inner angles of triangles and uses
them to compute the absolute value of its deviation from sixty degrees, which is the
inner angle of an equilateral triangle. It also determines the distance of a triangle’s
tip vertex from the parallelogram prediction constructed from every half-edge as if
it were a gate. Also, it determines the dihedral angle between every pair of adjacent
triangles. It also determines the similarity of every pair of adjacent triangles. Also, it
determines the measure of equilaterality of triangles, defined as the distance of the
tip vertex of a unit equilateral triangle to the tip vertex of a triangle scaled so that
its base has a unit length and is aligned with the base of the unit equilateral triangle,
considering each triangle’s edge as a base. Finally, it determines the lengths of edges
and degrees of vertices.

The algorithm traverses the mesh and measures the data while marking the
processed vertices, edges and triangles, ensuring that data is collected only once. It
utilises the corner table [Ros01] data structure to detect a boundary, query adjacent
triangles and move around the mesh. Measuring all the data, it normalises the dis-
tances by the average edge length to ensure mesh scale invariance and computes the
twelve resulting statistics. These are the mean values and the standard deviations

37

7.2.2 Weight Configuration Optimisation

of the first five values and the standard deviations of the other two. It does not con-
sider the mean values of the lengths of edges or the vertex degrees since they do not
provide any information.

7.2.2 Weight Configuration Optimisation
The data rate is a function 𝑓𝑀 : R3≥0 → R+ of a mesh 𝑀 and a weight configuration
w ∈ R3≥0. Since this function cannot be expressed analytically and its behaviour is
generally unknown, the optimal weight configuration can be found by searching
for it exhaustively over the range of feasible values. Considering the computational
cost of the compression and the unlimited range of feasible weight configurations,
limiting the search range and the number of measured samples is necessary.

The mechanism proceeds by defining an initial grid of feasible weight configura-
tions and measuring the data rate for each of them. Iteratively, the neighbourhood
of the weight configuration resulting in minimal data rate defines a local grid that
the mechanism evaluates again. The mechanism converges to finding the optimal
weight configuration, assuming the data rate function is well-behaved, or the grid
is fine enough not to get stuck at a local minimum.

The mechanism utilises a limited range of feasible weight configurations de-
rived from the dataset-optimisedweight configurations, assuming themesh-optimal
weight configurations do not differ significantly from the dataset-optimised ones.
The utilised space of feasible weight configurations is defined as?

𝑖=1,2,3

〈
2/3 argmin

𝐷∈datasets
𝑤𝐷
𝑖 , 3/2 argmax

𝐷∈datasets
𝑤𝐷
𝑖

〉
,

bounded by the constant multiples of the minimal and the maximal weights of the
dataset-optimised weight configurations. The symbol 𝑤𝐷

𝑖
represents the 𝑖-th weight

of the dataset-optimised weight configuration for the dataset 𝐷.
The mechanism samples the data rate using local equidistant grids for simplicity

but in a transformed weight configuration space. A weight configuration transforma-
tion function transforms the points of this space to the respective weight configura-
tions. The utilised weight configuration transformation function is derived from the
dataset-optimised weight configurations and is set to map the space ⟨0, 1⟩3 to the
utilised space of feasible weight configurations, ⟨0, 1⟩3 representing the transformed
utilised space of feasible weight configurations. It is specifically tuned to approxi-
mately match the expected distribution of the mesh-optimal weight configurations,
assuming the mesh-optimal weight configurations lie close to the dataset-optimised
weight configurations. Satisfying this assumption leads to sampling the data rate
function for the weight configurations lying close to the mesh-optimal ones, requir-
ing fewer samples in total and speeding up the optimisation process.

38

7.2.2 Weight Configuration Optimisation

Algorithm 7.1 summarises the process of searching for the optimal weight con-
figuration for a mesh alongside sampling the data rate function. The mechanism

Algorithm 7.1:Weight configuration optimisation
Input:Mesh
Output: Optimal weight configuration, Data rate function samples

1 initial grid← Partition(space of feasible weight configurations)
2 samples← Evaluate(initial grid)
3 do
4 if improvement search depth is exceeded then break
5 neighbourhood← Neighbourhood(best sample)
6 grid← Partition(neighbourhood)
7 samples← Evaluate(grid)
8 while best sample improves
9 while best sample lies on the border do
10 if extended search depth is exceeded then fail
11 neighbourhood← Neighbourhood(best sample)
12 grid← Partition(neighbourhood)
13 samples← Evaluate(grid)
14 end

additionally requires a pre-defined maximum search depth, grid partitioning and
weight configuration transformation function. It starts with partitioning the trans-
formed space ⟨0, 1⟩3 of feasible weight configurations, forming the initial grid. Then,
it evaluates the data rates for the points of the initial grid by transforming them to the
respective weight configurations, utilising the weight configuration transformation
function and compressing the mesh with these weight configurations. Afterwards, it
iteratively refines the local grid formed in the neighbourhood of the best-performing
point of the grid. It stops this local refinement process when the best data rate stops
improving, or the algorithm exceeds the maximum search depth to improve the
data rate. Then, if the best-performing point of the grid lies on its border, it is likely
that a better-performing point exists outside the already sampled grid. Therefore,
it iteratively further attempts to search for it, repeating the refinement process. The
optimisation process ends successfully if the best-performing point of the grid lies
inside the grid before exceeding the maximum search depth of the extended grid
search, and the best-performing weight configuration is declared to be the mesh-
optimal weight configuration. Otherwise, it ends with a failure since the process
failed to find the best-performing weight configuration even with the extended grid
search. Fig. 7.1 visualises the sampled data rate function of an example mesh.

The mechanism is implemented to perform at most three grid refinements to
improve the data rate and at most five local grid searches in total. It partitions

39

7.2.3 Data Rate Approximation

Figure 7.1: Sampled data rate function

the initial space into eight, six, and four partitions in the axes corresponding to
the transformed weights 𝑤1, 𝑤2, and 𝑤3. The partitions are defined in this ratio
based on the assumed impact of a particular weight on the data rate, trying not to
introduce an error leading to the mechanism getting stuck at a local minimum since
the global minimum cannot be recognised due to a too coarse grid. It defines the
neighbourhood to be centred around the best-performing grid point and to be one
local grid partition wide per axis. It partitions this local space into five partitions
per axis. In case there are many best-performing grid points, it prefers selecting
the one lying on the border, if there are any, and selecting the one positioned in
their centre. The mechanism stores the processed points of the grid in order not
to evaluate the data rate for the already processed points of the refined grids when
they overlap. The mechanism evaluates the data rate for the grid points in parallel,
utilising maximum computational power.

7.2.3 Data Rate Approximation
As obtained by Algorithm 7.1 in Section 7.2.2, the sampled data rate function is
subject to approximation since it enables estimating the data rate for the weight
configurations for which the function was not evaluated, assuming a well-behaved
relation between the weight configurations and the resulting data rate. Also, it is
computationally effective since it enables using a small number of costly evaluations
of the data rate by compressing the mesh and a much larger number of much less
costly approximations of the data rate by evaluating the approximant.

The RBF approximation, described in Section 4.2, is used to approximate the data
rate function. Before determining the approximant, the utilised RBF kernel must

40

7.2.3 Data Rate Approximation

be considered, and the RBF centres must be selected. The approximant’s accuracy
depends on this selection and the choice of explicit RBF shape parameters, if there
are any.

As discussed in Section 7.2.2 and visualised in Fig. 7.1, the weight configuration
optimisation process partitions the local grids of the transformed weight configu-
ration space equidistantly, respectively the local grids of the weight configuration
space with a different distribution for every axis, determined by the weight configu-
ration transformation function. Therefore, the approximant operates in the trans-
formedweight configuration space to capture the behaviour of the data rate function
well and not to depend on the scale of the axes.

The implemented approximant comprises 50 radial basis functions and respec-
tive centres, which are the selected weight configurations for which the data rate
is known, assuming that a sum of this many functions can sufficiently well capture
the behaviour of the approximated data rate function. The centre selection mecha-
nism selects the optimal weight configuration as the first centre. Then, it iteratively
selects the remaining centres. In every iteration, it selects the weight configuration
that is the farthest, in terms of the Euclidean distance in the transformed weight
configuration space, from all the already selected weight configurations, leading
to a convenient distribution of the centres across the space. Fig. 7.2 visualises the
selected weight configurations for the centres of the RBF approximant of the same
sampled data rate function visualised in Fig. 7.1.

Figure 7.2: Selected RBF centres

The implementation considered the thin plate spline RBF kernel for its simple
application, as it does not require tuning any explicit shape parameter. However,
it diverges with an increasing radius. Therefore, the approximant diverges outside
the space defined by the selected centres, extrapolating the data rate. However, ex-

41

7.2.3 Data Rate Approximation

trapolating the data rate may help train the model since some mesh-optimal weight
configurations can lie outside the initial grid of feasible weight configurations and
can be found during the extended grid search, as discussed in Section 7.2.2. There-
fore, the approximant utilises the Gaussian RBF kernel, which converges to zero
as the radius increases. It utilises this property to define a limit value the approxi-
mant converges to, distancing from the space defined by the selected centres and
extrapolating the data rate. Fig. 7.3 illustrates this behaviour on a simplified one-
dimensional example. It shows that the value estimated by the approximant is the
weighted sum of the Gaussian RBF kernels subtracted from the limit value. The
kernels are visualised so that their sum models the estimated values into the level
specified by the limit value.

Figure 7.3: Convergence to the limit value

The approximant is obtained by solving the overdetermined system A𝝀 = y
of linear equations as ATA𝝀 = ATy, using the least squares method, as discussed
in Section 4.2. The matrix A is of size 𝑀 × 𝑁 , where 𝑀 and 𝑁 are the number
of the selected centres and the number of all the data rate function samples, and
is defined as A𝑖 𝑗 = 𝜙𝜖 (∥c𝑗 − w𝑖∥t), where 𝜙𝜖 is the Gaussian RBF kernel with the
shape parameter 𝜖, c𝑗 is the 𝑗-th centre, w𝑖 is the 𝑖-th weight configuration and
∥.∥t is the Euclidean distance in the space of transformed weight configurations.
The vector y = (𝑦1, 𝑦2, ..., 𝑦𝑁)T is a vector of the transformed data rate for the
respective weight configuration, defined as 𝑦𝑖 = 𝑑lim − 𝑑w𝑖

, where 𝑑lim = 4𝑑max

is the data rate limit value, 𝑑w𝑖
is the data rate for the 𝑖-th weight configuration

and 𝑑max is the maximum sampled data rate. The vector 𝝀 = (𝜆1, 𝜆2, ..., 𝜆𝑀)T is a
vector of the weight of the respective RBF in the linear combination defining the
approximant. Then, the approximated data rate 𝑑′w for a weight configuration w
is evaluated as 𝑑′w = 𝑑lim −

∑𝑀
𝑖=1 𝜆𝑖𝜙(∥c𝑖 − x∥t). Transforming the data rate when

defining the approximant and then when evaluating the approximant ensures that

42

7.2.3 Data Rate Approximation

the approximant yields the expected data rate inside the space defined by the selected
centres and that the extrapolated data rate converges to the data rate limit value, as
illustrated in Fig. 7.3.

Since the implemented approximant utilises the Gaussian RBF kernel, it is re-
quired to set its shape parameter 𝜖. It is tuned to optimise the sum of squares of
the differences between the actual and the approximated data rate for the weight
configurations appearing in the system of linear equations, which is solved to define
the approximant. This implementation determines it by solving this system for a
range of feasible values and selecting the best-performing one. Fig. 7.4 visualises the
relation between the shape parameter 𝜖 and the sum of squares of the residuals, i.e.
the approximation error for three randomly selected meshes of the utilised dataset.

Figure 7.4: Relation between the Gaussian shape parameter and error

The data rate function may be too complex to be sufficiently well approximated
by the approximant mentioned earlier, impairing the overall accuracy, for example,
when the data rate function contains an outlier to which the approximant cannot
adapt sufficiently or the data rate function behaviour is too volatile to be captured
well by the limited number of utilised radial basis functions. Therefore, the approx-
imant implements a measure to mitigate this problem. It does so by weighting the
squared residuals of the least squares solution. It sets the weights so that it prefers
minimising the residuals for weight configurations that result in a better data rate
over the residuals for weight configurations that result in a worse data rate, and it
does not consider the residuals for the weight configurations resulting in an out-
lier data rate at all. This process leads to smoothing the approximation curve of
the data rate function. However, it sufficiently preserves the data rate function be-
haviour around the optimal weight configuration. The implemented approximant
is then obtained by solving the overdetermined system A𝝀 = y of linear equations
as (WA)TWA𝝀 = (WA)TWy, using the weighted least squares method, whereW is
a diagonal matrix of the square roots of the weights of respective squared residuals.

43

7.2.4 Model Training

The implementation sets

W𝑖𝑖 =

√︄
1 −

𝑑w𝑖
− 𝑑opt

𝑑t − 𝑑opt

for the respective data rate 𝑑w𝑖
∈ ⟨𝑑opt, 𝑑t⟩, where 𝑑opt is the mesh-optimal data

rate and 𝑑t = 10𝑑opt is the outlier-threshold data rate. Otherwise, the respective
data rate is considered an outlier andW𝑖𝑖 = 0. Thus, the weight of a squared sum
of residuals decreases from one to zero linearly from the optimal to the outlier-
threshold data rate and is zero for the outlier data rate. Fig. 7.5 visualises the resulting
approximation of the sampled data rate function, as visualised in Fig. 7.1, with centres
as visualised in Fig. 7.2, by the implemented approximant.

Figure 7.5: Data rate function approximant

7.2.4 Model Training
The dataset utilised to train the model comprises sample pairs of global surface
statistics of meshes, obtained as in Section 7.2.1, and the respective approximated
functions of the data rate, obtained as in Section 7.2.2, respectively Section 7.2.3.

The training mechanism partitions the dataset into the training subset and the
validation subset. It uses the training subset to train the model, i.e. predict the op-
timal weight configuration based on the mesh’s global surface statistics and adjust

44

7.2.4 Model Training

the neuron weights accordingly based on a computed loss. It utilises the validation
subset to control the learning process and stops it when the model performs the best
to prevent overfitting using the early stopping mechanism [Pre98]. This mechanism
works by computing the loss on the separate validation subset and automatically
stopping the learning process at the moment when the loss on this subset stops
decreasing. If it did not stop, the loss on the training subset would continue decreas-
ing. However, the loss on the validation subset would start increasing as the model
learns the specific patterns of the training subset but loses the ability to generalise
the patterns of the whole dataset, worsening the overall performance.

Generally, the artificial neural network can learn better [SHH96] if the input
data has a suitable range and variance. Since the global surface statics of meshes
have wide and unsuitable ranges of possible values, which may vary substantially,
the training mechanism applies statistical standardisation to them, as described in
Section 4.1, before passing them as input data to the artificial neural network.

The model optimiser adjusts the neuron weights to minimise the loss, defining
the modelled relation between the global surface statistics of meshes and weight
configurations. Therefore, choosing the loss function is critical to achieving the
desired results. This work trains two models with different objectives. The first
model utilises the loss function 𝑙sum defined as

𝑙sum(𝑀,w) = 𝑑′𝑀 (w), (7.1)

where 𝑑′
𝑀
is the data rate function approximant for a mesh 𝑀, and w is the pre-

dicted weight configuration. This loss function minimises the total sum of the ap-
proximated data rate for the meshes of the dataset. The other model utilises the loss
function 𝑙ratio defined as

𝑙ratio(𝑀,w) =
𝑑′
𝑀
(w)

𝑑′
𝑀
(w𝑀

opt)
, (7.2)

where w𝑀
opt is the optimal weight configuration for a mesh 𝑀. This loss function

minimises the total sum of the ratio of the approximated data rate to the approxi-
mated optimal data rate for the meshes of the dataset. It utilises the approximated
optimal data rate to improve the accuracy of the computed ratio. If the approximant
fits the approximated function well, it is equivalent to using the actual optimal data
rate. However, if it does not, it may help to preserve the ratio accuracy in the neigh-
bourhood of the optimal weight configuration since the implemented approximant
may scale the resulting data rate rather than provide entirely erroneous results as
it smooths the approximation curve for the data rate functions that are difficult to
approximate.

45

7.2.5 Integration

7.2.5 Integration
The models are trained using the PyTorch [SAV20] framework and saved in the
ONNX [SAV20] format. This format enables the model to be independent of the
training and inferring environments, requiring a runtime to load the model and per-
form inference. Amodel represents an end-to-end transformation of a mesh’s global
surface statistics to the respective estimated mesh-optimal weight configuration. As
implemented, it also allows loading various models with an arbitrary internal struc-
ture, trained on arbitrary datasets, and using it to estimate the mesh-optimal weight
configurations.

The end-to-end compression process is integrated into the project and per-
formed automatically. First, it computes the mesh’s global surface statistics, as de-
scribed in Section 7.2.1. Then, it passes them to the model that standardises this
input, as described in Section 7.2.4 and infers the respective weight configuration.
Finally, it compresses the mesh with the collected output weight configuration.

7.3 Experimental Results
This work builds an experimental dataset to evaluate the performance of the pro-
posed and implemented mechanism estimating the mesh-optimal weight configura-
tion based on the knowledge of the global surface statistics of a mesh. It comprises
subsets of the datasets used in [Dvo+22], described in Section 2.3.4. It builds the
dataset by pairing the global surface statistics of meshes, obtained as in Section 7.2.1,
and the respective data rate function approximants, obtained as in Section 7.2.2,
respectively Section 7.2.3. To preserve dataset quality, it filters out the meshes with
outlying global surface statistics, primarily the highly irregularly triangulated CAD
models. Table 7.1 presents the composition of the dataset, partitioned into the part

Table 7.1: Experimental dataset

train test
dataset # meshes
abc_regular 16570 1819
abc_irregular 8130 903
thingi10k 1313 153
tosca 68 11
mcgill 392 54
casual_man 490 55

used for training, respectively validating the models and the part utilised to evaluate
their performance, i.e. the test subset of the dataset.

46

7.3 Experimental Results

The Gaussian RBF kernel shape parameter 𝜖 is determined by experimentally
testing feasible values and selecting the best-performing one, as discussed in Sec-
tion 7.2.3. A common pattern is observed, as visualised in Fig. 7.4, repeating the
process for many meshes, based on which the shape parameter is selected and ap-
plied to all the data rate function approximants.

The experimental dataset comprises 29958 meshes and is partitioned into the
training, validation and test subsets in the ratio 7:2:1. The number of layers and
neurons is tuned manually, training the models and minimising the loss on the vali-
dation subset. Both the models have 3 layers with 96 neurons per each. The models
use the hyperbolic tangent function as the activation function between layers.

Determining the approximant, as discussed in Section 7.2.3, for the sampled
data rate function, as discussed in Section 7.2.2, does not always, on the utilised
dataset, lead to the desired property of it steadily converging to the data rate limit
value while distancing from the sampled space of weight configurations and instead
providing erroneous approximations since the approximant, as defined, does not fit
the approximated function well. Therefore, an additional measure is implemented
to train the model, limiting the range of predicted weight configurations. A custom
layer is implemented that maps the output of the last layer of the artificial neural
network to the feasible range of predicted weight configurations. It is a conveniently
scaled and transformed hyperbolic tangent function. Doing this limits the potential
of improving the data rate. However, it is necessary to train the model correctly. The
results are not expected to worsen significantly since this problem does not arise
frequently, and if it does, a significantly lower data rate is not expected to be located
outside the feasible range of predicted weight configurations. The implementation
experimentally sets the feasible range of predicted weights 𝑤1, 𝑤2 and 𝑤3 to be
𝑤1 ∈ ⟨0.0657, 4.6847⟩, 𝑤2 ∈ ⟨0.0097, 3.3888⟩ and 𝑤3 ∈ ⟨0.000003, 4.1043⟩ by
observing the model’s ability to learn with various tested ranges.

The impact of the mechanism was experimentally assessed by measuring the
data rate for the meshes of the test subset of the experimental dataset, using the esti-
mated mesh-optimal, default, dataset-optimised and optimal weight configurations.
The experiment utilises the enhanced candidate filtering mechanism discussed in
Chapter 5 and does not use the continuous priority updating mechanism discussed
in Chapter 6. Table 7.2 presents the experimental results, comparing the results ob-
tained for both the trained models to the default, dataset-optimised and optimal
weight configurations.

The results show that there exists a relation between themeasured global surface
statistics of meshes and the corresponding well-performing weight configurations
for the compression, and the model can learn it. The results differ based on the loss
function utilised in the learning process.

The model that utilises the loss function defined by Eq. (7.1) decreases the total

47

7.3 Experimental Results

Table 7.2: Mesh-optimal weight configuration estimation performance summary

bpv change [%] total sum mean per-mesh
losssum lossratio

dataset wdefault wdataset woptimal wdefault wdataset woptimal

abc_regular -19.00 -14.50 18.04 -20.63 -12.23 15.14
abc_irregular -17.31 -20.02 25.90 -15.68 -18.50 27.51
thingi10k -12.73 -3.63 15.09 -11.73 -4.03 17.36
tosca -5.83 -4.80 2.14 -5.59 -3.64 2.87
mcgill -1.03 8.52 20.44 1.45 18.85 23.70
casual_man -6.07 2.19 2.96 -6.90 1.36 2.12

data rate by 1.03 to 19.00 per cent per dataset, comparing it to the default weight
configuration and up to 20.02 per cent per dataset, comparing it to the dataset-
optimised weight configurations, resulting in 16.69, respectively 16.51 per cent im-
provement of the total data rate across the dataset over the default and the dataset-
optimised weight configurations. However, it performs worse by 2.19, respectively,
8.52 per cent for the casual_man and the mcgill datasets. The default and the dataset-
optimisedweight configurations perform 46.85, respectively, 46.55 per cent worse for
the meshes of the dataset than the optimal weight configurations. This mechanism
improves it to 22.34 per cent of the optimal performance.

The other model, which utilises the loss function defined by Eq. (7.2), estimates
the weight configurations, improving the resulting data rate up to 20.63, respec-
tively 18.50 per cent per mesh of respective datasets over the default and the dataset-
optimised weight configurations. It performs 17.98, respectively, 12.86 per cent better
per mesh than the default and the dataset-optimised weight configurations across
the dataset. However, it performs up to 18.85 per cent worse per mesh for the meshes
of the mcgill dataset. The default and the dataset-optimised weight configurations
perform 53.56, respectively, 46.56 per cent worse per mesh for the meshes of the
dataset than the optimal weight configurations. This mechanism improves it to 18.85
per cent per mesh of the optimal performance. It shows that the model knows the
individual mesh-specific properties and exploits them to estimate the weight con-
figuration that performs well for the specific mesh.

The data rate worsening behaviour may be addressed to the inaccuracy of the
data rate approximants for the meshes of the respective datasets since there is a
correlation between them. The more inaccurate the approximations they provide,
the worse the weight configuration estimationmechanism performs. Since the other
loss function requires the approximants to fit the data rate function curve well, as
it needs to compute the ratio of the data rate for any weight configuration to the
optimal weight configuration, the worse is the performance if it does not satisfy the

48

7.3 Experimental Results

assumption and does not fit the data rate function well enough.

49

Future Work 8
The reference implementation of the priority-based connectivity coding algorithm
leaves room for improvement, and so does the implementation described in this
work. Based on the experimental results obtained in this work, some weak areas of
the reference implementation and this implementation were identified.

The experimental results in Section 5.4 and Section 6.4 show that utilising a
gate’s priority as defined by Eq. (2.6) may result in a significant inaccuracy since
it considers only the best and second-best candidate vertices. The priority-based
traversal would benefit from incorporating more complete information into the
priority, approaching its meaning and purpose.

As discussed in Section 7.3, the implemented approximant does not always cap-
ture the behaviour of the respective data rate function well. However, the approx-
imated data rate is essential for the artificial neural network to learn the model
effectively. Despite the quality of approximants, the experimental results in Sec-
tion 7.3 show that the data rate improves considerably. Therefore, it is promising
to improve the data rate function approximation, respectively, the sampling of the
data rate function.

This work only briefly discusses the descriptivemesh statistics, as in Section 7.2.1,
used as the input to the mechanism estimating the mesh-optimal weight configura-
tions. However, which mesh properties contribute to improving the mesh-optimal
weight configuration estimation was not thoroughly assessed. Exploring this prob-
lem may result in reducing the number of descriptive mesh statistics, respectively,
the computational cost while preserving reasonable performance or developing
more descriptive mesh statistics, improving the compression performance.

50

Conclusion 9
This work explored possibilities for improving the compression ratio of the priority-
based connectivity coding algorithm [Dvo+22] developed by Dvořák et al. at the De-
partment of Computer Science and Engineering at the University of West Bohemia.

It introduced the algorithm and put it into the context of mesh compression
and a few other existing algorithms. Then, it introduced the possible enhancements
and provided the background theory necessary to address these problems. Next, it
discussed all the enhancements in detail, describing the implementation, presenting
the experimental results, and validating and analysing them.

The first enhancement filters out the additional candidate vertices, which, if con-
sidered to extend the processed part of the mesh, would form a non-manifold edge
or an unorientable surface in the extended processed part, violating the assumption
of an orientable manifold mesh on input. The second enhancement handles continu-
ous priority updates of unprocessed gates, synchronising the priorities with changes
in the unprocessed part, exploiting additional recent, more accurate information.
The last enhancement estimates the optimal weight configuration for a mesh based
on the knowledge of its global surface statistics, defining the candidate’s quality
metric function and influencing the priority, eventually improving the traversal.

The experiments evaluated the performance of the enhancements, comparing
the resulting data rate and computational cost to the reference implementation.
Most of the experiments used the same datasets and weight configurations as in
[Dvo+22], making the results directly comparable. The experimental results identi-
fied weak areas that were suggested for further research.

The enhanced candidate filteringmechanism consistently improved the data rate
by 0.41 to 1.13 per cent, costing an additional 35.7 to 52.4 per cent computation time.
The continuous priority updatingmechanism improved the data rate by 0.17 per cent
at best, generally worsening the performance by up to 9.18 per cent and requiring an
additional 59.3 to 253.9 per cent computation time. The last enhancement, estimating
the mesh-optimal weight configurations, improved the total data rate by 16.69 per
cent for the whole experimental dataset, respectively, by 17.98 per cent per mesh of
the dataset.

51

Bibliography

[Bot+10] BOTSCH,Mario; KOBBELT, Leif; PAULY,Mark; ALLIEZ, Pierre; LÉVY,
Bruno. Polygon mesh processing. CRC press, 2010.

[BBK08] BRONSTEIN, Alexander; BRONSTEIN, Michael; KIMMEL, Ron. Nu-
merical Geometry of Non-Rigid Shapes. 1st ed. Springer Publishing Com-
pany, Incorporated, 2008. isbn 0387733000.

[Dre05] DREYFUS, G. Neural Networks: Methodology and Applications. Springer
Berlin Heidelberg, 2005. isbn 9783540229803.

[Dvo+22] DVOŘÁK, Jan; KÁČEREKOVÁ, Zuzana; VANĚČEK, Petr; VÁŠA, Libor.
Priority-based encoding of triangle mesh connectivity for a known ge-
ometry. Computer Graphics Forum. 2022, vol. 42, no. 1, pp. 60–71. Avail-
able from doi: 10.1111/cgf.14719.

[Koc+19] KOCH, Sebastian et al. ABC: A Big CADModel Dataset for Geometric
Deep Learning. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019, pp. 9593–9603. Available from doi: 10.
1109/CVPR.2019.00983.

[MS17] MAJDISOVA, Zuzana; SKALA, Vaclav. Big geo data surface approxima-
tion using radial basis functions: A comparative study. Computers &
Geosciences. 2017, vol. 109, pp. 51–58. issn 0098-3004. Available from doi:
https://doi.org/10.1016/j.cageo.2017.08.007.

[MGS07] MARAIS, P.; GAIN, J.; SHREINER, D. Distance-Ranked Connectivity
Compression of TriangleMeshes.Computer Graphics Forum. 2007, vol. 26,
no. 4, pp. 813–823. Available from doi: https://doi.org/10.1111/
j.1467-8659.2007.01026.x.

[MSW03] MARPE, D.; SCHWARZ, H.; WIEGAND, T. Context-based adaptive bi-
nary arithmetic coding in the H.264/AVC video compression standard.
IEEE Transactions on Circuits and Systems for Video Technology. 2003,
vol. 13, no. 7, pp. 620–636. Available from doi: 10.1109/TCSVT.2003.
815173.

52

https://doi.org/10.1111/cgf.14719
https://doi.org/10.1109/CVPR.2019.00983
https://doi.org/10.1109/CVPR.2019.00983
https://doi.org/https://doi.org/10.1016/j.cageo.2017.08.007
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01026.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01026.x
https://doi.org/10.1109/TCSVT.2003.815173
https://doi.org/10.1109/TCSVT.2003.815173

Bibliography

[PKJ05] PENG, Jingliang; KIM, Chang-Su; JAY KUO, C.-C. Technologies for 3D
mesh compression: A survey. Journal of Visual Communication and Image
Representation. 2005, vol. 16, no. 6, pp. 688–733. issn 1047-3203. Available
from doi: https://doi.org/10.1016/j.jvcir.2005.03.001.

[Pre98] PRECHELT, Lutz. Early Stopping - But When? In: Neural Networks:
Tricks of the Trade. Ed. by ORR, Genevieve B.; MÜLLER, Klaus-Robert.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 55–69. isbn 978-
3-540-49430-0. Available from doi: 10.1007/3-540-49430-8 3.

[Ros99] ROSSIGNAC, J. Edgebreaker: connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graphics. 1999,
vol. 5, no. 1, pp. 47–61. Available from doi: 10.1109/2945.764870.

[Ros01] ROSSIGNAC, J. 3D compression made simple: Edgebreaker with Zi-
pandWrap on a corner-table. In: Proceedings International Conference on
Shape Modeling and Applications. 2001, pp. 278–283. Available from doi:
10.1109/SMA.2001.923399.

[SHH96] SHANKER, M.; HU, M.Y.; HUNG, M.S. Effect of data standardization
on neural network training. Omega. 1996, vol. 24, no. 4, pp. 385–397.
issn 0305-0483. Available from doi: https://doi.org/10.1016/0305-
0483(96)00010-2.

[SAV20] STEVENS, Eli; ANTIGA, Luca; VIEHMANN, Thomas. Deep learning
with PyTorch. Manning Publications, 2020.

[TL94] TURK, Greg; LEVOY, Marc. Zippered polygon meshes from range im-
ages. In: Proceedings of the 21st Annual Conference on Computer Graphics
and Interactive Techniques. New York, NY, USA: Association for Com-
puting Machinery, 1994, pp. 311–318. SIGGRAPH ’94. isbn 0897916670.
Available from doi: 10.1145/192161.192241.

[Zha+05] ZHANG, J.; KAPLOW, R.; CHEN, R.; SIDDIQI, K. McGill 3D Shape
Benchmark. 2005. Available also from: https://www.cim.mcgill.ca/
~shape/benchMark.

[ZJ16] ZHOU, Qingnan; JACOBSON, Alec. Thingi10K: A Dataset of 10,000 3D-
Printing Models. 2016. Available from arXiv: 1605.04797 [cs.GR].

53

https://doi.org/https://doi.org/10.1016/j.jvcir.2005.03.001
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1109/2945.764870
https://doi.org/10.1109/SMA.2001.923399
https://doi.org/https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/10.1145/192161.192241
https://www.cim.mcgill.ca/~shape/benchMark
https://www.cim.mcgill.ca/~shape/benchMark
https://arxiv.org/abs/1605.04797

List of Figures

2.1 Triangulated Stanford Bunny model [TL94] 5
2.2 Non-manifold vertex, non-manifold edge and unorientable surface . . 5
2.3 Edgebreaker CLERS alphabet [Ros99] 7
2.4 Distance rank . 9
2.5 Typical iteration of the algorithm [Dvo+22] 11
2.6 Candidate’s quality metric components 12
2.7 Gate priority [Dvo+22] . 14
2.8 Representative meshes of the experimental datasets [Dvo+22] 15

4.1 Gaussian RBF kernel . 21
4.2 Artificial neural network . 21

5.1 Inadmissible candidate vertices . 24

6.1 Guarding gate’s relevance for a priority update 30

7.1 Sampled data rate function . 40
7.2 Selected RBF centres . 41
7.3 Convergence to the limit value . 42
7.4 Relation between the Gaussian shape parameter and error 43
7.5 Data rate function approximant . 44

54

List of Tables

2.1 Dataset-optimised weight configurations [Dvo+22] 16
2.2 Compression performance summary [Dvo+22] 16

5.1 Enhanced candidate filtering mechanism performance summary . . . 26
5.2 Enhanced candidate filtering mechanism performance validation . . . 28

6.1 Continuous priority updating mechanism performance summary . . . 33
6.2 Continuous priority updating mechanism performance validation . . 34

7.1 Experimental dataset . 46
7.2 Mesh-optimal weight configuration estimation performance summary 48

55

List of Algorithms

2.1 Priority-based connectivity encoding 10

5.1 Updating the state of the candidate filtering mechanism 25
5.2 Filtering out the inadmissible candidates 25

6.1 Continuous priority updating of unprocessed gates 31
6.2 Setting up a guard for a gate’s priority update 32
6.3 Querying gates relevant for a priority update 32

7.1 Weight configuration optimisation 39

56

	Introduction
	Mesh Compression
	Triangle Mesh
	Related Algorithms
	Edgebreaker
	Distance-Ranked Connectivity Coding

	Priority-Based Connectivity Coding
	Determining Quality
	Determining Priority
	Filtering Candidates
	Achieved Results

	Enhancements
	Background Theory
	Data Standardisation
	RBF Approximation
	Artificial Neural Network

	Filtering Candidates
	Definition
	Implementation
	Experimental Results
	Validation

	Updating Priorities
	Definition
	Implementation
	Experimental Results
	Validation

	Determining Weights
	Definition
	Implementation
	Surface Statistics Computation
	Weight Configuration Optimisation
	Data Rate Approximation
	Model Training
	Integration

	Experimental Results

	Future Work
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

