
Bachelor’s Thesis

Artificial intelligence for
facilitating software
development

Andrei Akhramchuk

PILSEN, CZECH REPUBLIC 2024

Bachelor’s Thesis

Artificial intelligence for
facilitating software
development

Andrei Akhramchuk

Thesis advisor
Doc. Ing. Roman Mouček, Ph.D.

PILSEN, CZECH REPUBLIC 2024

© 2024 Andrei Akhramchuk.

All rights reserved. No part of this document may be reproduced or transmitted in
any form by anymeans, electronic ormechanical including photocopying, recording
or by any information storage and retrieval system, without permission from the
copyright holder(s) in writing.

Citation in the bibliography/reference list:
AKHRAMCHUK, Andrei. Artificial intelligence for facilitating software development.
Pilsen, Czech Republic, 2024. Bachelor’s Thesis. University ofWest Bohemia, Faculty
of Applied Sciences, Department of Computer Science and Engineering. Thesis
advisor Doc. Ing. Roman Mouček, Ph.D.

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2023/2024

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Andrei AKHRAMCHUK
Osobní číslo: A21B0074P
Studijní program: B0613A140015 Informatika a výpočetní technika
Specializace: Informatika
Téma práce: Umělá inteligence pro usnadnění softwarového vývoje
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s technologiemi a programovacími jazyky použitými v produktech firmy Eurosoftware

s.r.o. (Java, XML, domain specific languages).
2. Seznamte se s přístupy, jak se v zákaznických projektech rozšiřují produkty firmy Eurosoftware

s.r.o.
3. Prostudujte přístupy a nástroje umělé inteligence, které by usnadnily vývoj ve firmě Eurosoftware.
4. Navrhněte a realizujte řešení, které bude podporovat vývojové vzory použité v Eurosoftware.
5. Efektivnost výsledného řešení otestujte na praktických případech použití a zhodnoťte.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Ing. Radek Hoštička
Eurosoftware s.r.o.

Konzultant bakalářské práce: Doc. Ing. Roman Mouček, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 2. října 2023
Termín odevzdání bakalářské práce: 2. května 2024

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 25. října 2023

Declaration

I hereby declare that this Bachelor’s Thesis is completely my own work and that I
used only the cited sources, literature, and other resources. This thesis has not been
used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from
Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that
the University of West Bohemia has the right to conclude a licence agreement for
the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

In Pilsen, on 14 February 2024

. .
Andrei Akhramchuk

The names of products, technologies, services, applications, companies, etc. used in
the text may be trademarks or registered trademarks of their respective owners.

(i)

Abstract

This bachelor thesis examines the technologies and programming languages used by
Eurosoftware. It provides a comprehensive analysis and practical evaluation of pub-
licly available Artificial Intelligence tools that can facilitate software development
processes, focusing on those that offer potential benefits to Eurosoftware and simi-
lar organisations. The study includes an evaluation of various AI tools to determine
their effectiveness. In addition, the thesis details the training of a Eurosoftware-
oriented neural network model, which is oriented to generalise architectural data
from the company’s enterprise applications. It includes the creation of a software
tool to assist in the preparation of the data necessary to train this model, as well as
the training and subsequent evaluation of the model itself.

Abstrakt

Tato bakalářská práce se zabývá zkoumáním technologií a programovacích jazyků
používaných společností Eurosoftware. Poskytuje komplexní analýzu a praktické
zhodnocení veřejně dostupných nástrojů umělé inteligence, které mohou usnadnit
procesy vývoje softwaru, se zaměřením na ty, které nabízejí potenciální výhody pro
společnost Eurosoftware a podobné organizace. Součástí výzkumu je hodnocení
různých nástrojů umělé inteligence s cílem určit jejich účinnost. Kromě toho práce
podrobně popisuje trénink modelu neuronové sítě orientovaného na společnost
Eurosoftware, který je zaměřen na zobecnění architektonických dat z podnikových
aplikací společnosti. Zahrnuje vytvoření softwarového nástroje, který pomáhá při
přípravě dat potřebných k trénování tohoto modelu, a také samotné trénování a
následné vyhodnocení modelu.

Keywords

Eurosoftware • artificial intelligence • AI • Chat GPT • TabNine • GitHub Copilot •
company-oriented NLP model

(ii)

Acknowledgement

I would like to express my sincere gratitude to Ing. Radek Hoštička, my bachelor
thesis supervisor, for his valuable advice and guidance, and for helpingme to access a
server to conduct all my research. I would also like to acknowledge Doc. Ing. Roman
Mouček, Ph.D., for his guidance on the proper structure of this thesis, his quick
replies tomy emails, and his overall support. I would also like to thank Eurosoftware
for their kind support. Special thanks to Mr Pascal Singer for his expert advice on
data validation and his invaluable guidance at the start.

(iii)

Contents

1 Introduction 6

2 Eurosoftware s.r.o. 7
2.1 Company introduction . 7
2.2 Basic technologies . 8

2.2.1 Confluence . 8
2.2.2 Jira . 9
2.2.3 Anna . 9

2.3 Development Technologies . 10
2.3.1 Git Lab . 10
2.3.2 Eclipse . 10
2.3.3 JetBrains Products . 11
2.3.4 SoapUI and Postman . 11
2.3.5 Dbeaver . 12

2.4 Programming Languages . 12
2.4.1 Java . 13
2.4.2 XML . 14
2.4.3 Web Development Languages at Eurosoftware 15
2.4.4 ProMo . 16
2.4.5 ProMoJ . 16
2.4.6 Domain Specific Language (DO DSL) 17

2.5 Architecture . 17
2.5.1 Core Architectural Solutions 18
2.5.2 OmniPoint Of Sale (POS) Architecture 19

3 Possible development facilitations 21
3.1 Universal Improvement Opportunities 21

3.1.1 Structured Query Language (SQL) Operations 21
3.1.2 Lambda Expressions . 21
3.1.3 Advanced Code Refactoring 22
3.1.4 Cross-Language Code Translation 22

1

Contents

3.1.5 Code Explanation and Interpretation: 22
3.2 Facilitation Opportunities for Eurosoftware 23

3.2.1 Confluence . 23
3.2.2 Domain Specific Languages 23
3.2.3 CustomExtensibleMarkupLanguage (XML) andCascading

Style Sheets (CSS) . 24
3.2.4 Integrated Coding Advisor Plugin 24

4 Leveraging Existing Tools for Enhanced Development 25
4.1 Exploring ChatGPT: A Comparative Analysis 25

4.1.1 ChatGPT 3.5 . 26
4.1.2 ChatGPT 4 . 26
4.1.3 Conclusion . 27

4.2 Exploring Tabnine: Artificial Intelligence (AI)-Powered Code Assis-
tance . 27
4.2.1 Cloud-Based Model . 27
4.2.2 Local Processing Model 28
4.2.3 Hybrid Model Adaptability 28
4.2.4 Conclusion . 28

4.3 Exploring GitHub Copilot: AI-Assisted Coding 28
4.3.1 Adaptive Learning . 28
4.3.2 Security Considerations 29
4.3.3 Personal Evaluation . 29
4.3.4 Conclusion . 29

4.4 CustomNatural Language Processing (NLP)Model: Eurosoftware’s
Approach . 29
4.4.1 Potential of NVIDIA NeMo in Custom AI Development . . 30
4.4.2 Llama 2 7B Model . 30
4.4.3 Megatron-GPT 5B Model 31

5 Practical Application of General Tools 32
5.1 ChatGPT 3.5: Free-to-use conversational AI 32

5.1.1 Explaining SQL Scripts . 32
5.1.2 Optimizing SQL Queries 33
5.1.3 Explaining Lambda expression 33
5.1.4 Optimizing Lambda expression 34
5.1.5 Lambda expression generation 35
5.1.6 Conclusion . 35

5.2 ChatGPT 4: Paid conversational AI 35
5.2.1 Code Interpretation with ChatGPT Version 4.0 (GPT-4) . . 36

2

Contents

5.2.2 Advanced Code Refactoring with GPT-4 36
5.2.3 Groovy to JShell Translation 37
5.2.4 Java to Python Translation 37
5.2.5 ExtensibleHypertextMarkupLanguage (XHTML) toVue.js

Translation . 38
5.2.6 Conclusion . 39

5.3 TabNine: Enhancing Development with AI 39
5.3.1 Evaluating TabNine with TypeScript 39
5.3.2 Evaluating TabNine with Vue.js Projects 40
5.3.3 Conclusion . 41

5.4 GitHub Copilot: A Revolution in AI-Assisted Coding 41
5.4.1 GitHub Copilot with TypeScript 42
5.4.2 GitHub Copilot in Java Development 42
5.4.3 Vue.js code generation with GitHub Copilot Chat 43
5.4.4 GitHub Copilot Chat for TypeScript Development 44
5.4.5 Conclusion . 44

5.5 Common Conclusion . 45
5.5.1 ChatGPT Version 3.5 (GPT-3.5) 45
5.5.2 ChatGPT 4 . 46
5.5.3 TabNine . 46
5.5.4 GitHub Copilot . 47

6 Custom AI Model for Enhanced Knowledge Management 48
6.1 Enhancing Training Data Management with a Graphical User In-

terface (GUI) Application . 48
6.1.1 User Interface Components 49
6.1.2 Hotkeys in the Main Application 51
6.1.3 Hotkeys in Modal Windows 51
6.1.4 Data Validation and Management 52
6.1.5 Handling Unsaved Changes 53
6.1.6 Technical Details . 53

6.2 Training the Model: An Iterative Approach 54
6.2.1 First Iteration: Exploratory Phase 54
6.2.2 Second Iteration: Preparatory Steps for Future Training . . 55
6.2.3 Third Iteration: Technical Implementation 57
6.2.4 Fourth Iteration: Initial Model Training 60
6.2.5 Fifth Iteration: Data Expansion and Model Refinement . . 62

7 Conclusion 64

3

Contents

A List of Abbreviations 65

B Attachments Structure 67
B.1 Application and Libraries . 67
B.2 Input Data . 68
B.3 Results . 69

B.3.1 GPT-3.5 . 69
B.3.2 GPT-4 Results . 70
B.3.3 TabNine . 70
B.3.4 GitHub Copilot . 71

C Supplementary Materials 72
C.1 Code Examples . 72

C.1.1 Example 1: XML Layout 72
C.1.2 Example 2: ProMo Source Code 73
C.1.3 Example 3: ProMoJ Source Code 74
C.1.4 Example 4: Usage of DO DSL 75

C.2 Detailed Model Outputs . 76
C.2.1 Fourth Iteration: Initial Model Training Outputs 76
C.2.2 Fifth Iteration: Expanded Data Model Outputs 77

C.3 User Manual: JSON Editor Application 78
C.3.1 Setting Up Application on Windows 78
C.3.2 Setting Up Application on Linux 78
C.3.3 File Management . 79
C.3.4 Editing Entries . 79
C.3.5 Opening a File . 79
C.3.6 Adding and Editing Entries 79
C.3.7 Saving Files . 79

C.4 User Manual: AI Training and Validation Scripts 79
C.4.1 System Requirements . 79
C.4.2 Setting up the Environment 80
C.4.3 Installing PyTorch . 80
C.4.4 Apex Installation . 80
C.4.5 Transformer Engine and NeMo Toolkit 81
C.4.6 Docker Container Setup 81
C.4.7 Setting Environment Variables 81
C.4.8 Executing Training and Validation Scripts 81
C.4.9 Logging and Monitoring 83

Bibliography 84

4

Contents

List of Figures 86

List of Tables 87

List of Listings 88

5

Introduction 1
AI is at the forefront of today’s rapidly advancing technology landscape, bringing a
new era of innovation and efficiency. Staying abreast of these developments is not
only beneficial for businesses, it is essential to survive and succeed. While it may be
easier for individual developers to adopt and experiment with these cutting-edge
technologies, larger organizations face a maze of challenges. The integration of AI
into the established and often rigid infrastructures of these companies is a com-
plex endeavour, fraught with hurdles but teeming with potential for transformative
change.

The drive to stay current, improve operational efficiency and gain competitive
advantage is driving the need to explore the potential of AI. However, the path
to successful integration is not standardized; it requires a tailored approach that
aligns with an organization’s unique needs and strategic goals. The quest for tai-
lored, impactful solutions stands out among the universal benefits of AI as a tool for
simplifying and improving business processes.

The main objective of this bachelor thesis is to delve into the workings of Eu-
rosoftware, exploring its operational aspects and the tools used for software develop-
ment. The focus is on identifying how AI can simplify and enhance these processes,
making the developers’ work more efficient and effective.

Artificial intelligence-based solutions that meet Eurosoftware’s unique needs
involved in this process must be carefully selected and tested. This involves a de-
tailed testing process within the company’s working environment to see how the
AI performs in real-life scenarios. It’s about seeing if these AI tools can speed up
the development process and simplify developers’ tasks. The end goal is to find and
recommend the best AI practices that will not only work for Eurosoftware but will
advance the company by providing lessons on the practical application of AI in a
corporate environment.

6

Eurosoftware s.r.o. 2
2.1 Company introduction
Eurosoftware is a subsidiary of GK Software SE, a technology company specializ-
ing in software and services for the operation of large retail stores. Headquartered
in Schöneck/Vogtland, Germany, GK Software operates worldwide with approxi-
mately 1,230 employees in sixteen locations. Eurosoftware is located in Pilsen, Czech
Republic, Katowice, Poland and Lviv, Ukraine.

Eurosoftware maintains an internal student lab where trainees, typically stu-
dents, complete paid internships. In this lab, they contribute to the development of
internal products that are used within the company. These projects provide prac-
tical experience as they are integral to the company’s operations. However, they
are not marketed externally. This hands-on approach allows interns to gain valu-
able skills and knowledge through meaningful projects. Alongside this initiative,
Eurosoftware’s primary focus remains on the development of POS software, which
is a key aspect of their business.

Eurosoftware’s approach to POS development is strategically divided into two
core departments: ’Product Development’ and ’Customer Solutions’. The ’Product
Development’ department focuses on basic, non-customized features of the soft-
ware. This includes primary design and standard functionality. The ’Customer So-
lution’ department, on the other hand, focuses on customizing the software for
individual customers. This involves dedicated teams managed by team managers
who allocate resources and personnel to specific projects, each representing a unique
customer.

Eurosoftware distinguishes itself in the POS software industry by offering highly
customizable solutions tailored to meet specific customer needs. Their software fa-
cilitates easy integrationwith various external services and allows for custom design
options that enhance both functionality and convenience. Key features include the

7

2.2 Basic technologies

ability for customers to seamlessly add new items or discounts directly into the
system without additional programming. Overall, Eurosoftware provides a versa-
tile and reliable POS system that demonstrates a strong commitment to delivering
efficient and customer-focused solutions.

2.2 Basic technologies
In the rapidly evolving technology landscape, Eurosoftware uses a range of sophis-
ticated tools to streamline operations, enhance project management and promote
employee well-being. With a focus on the collaborative platforms and internal man-
agement systems that are critical to the company’s success, this section provides an
overview of the foundational technologies that facilitate these functions.

2.2.1 Confluence
The primary mechanism for storing and structuring vast quantities of information
at Eurosoftware is the Confluence wiki system developed by Atlassian. This tool
enables the company to manage its technological documentation within a secure
repository. Access to this information is strictly confined to company employees,
ensuring privacy and security.

Within Confluence, access rights are meticulously assigned to different levels
of employees. Certain pages are designated as read-only, while others are editable.
This stratification is critical for maintaining a proper hierarchy and preventing the
loss of information due to errors by less experienced users. [Iwu24]

In Eurosoftware’s ’Customer Solution’ department, each project has its page
on Confluence, which serves several purposes: to provide developers with critical
information to quickly get started on the project, to archive documentation of ex-
isting code, and to present project concepts written by technical consultants. Each
concept, once approved by the client, serves as a definitive guide for the developers,
describing in detail the intended program logic.

Conversely, the approach to ’Product development’ is different. Concepts are
not client-specific but are designed with a broader scope to contribute to the fun-
damental aspects of the program that are critical to the overall software and will
be used in all future projects. Through the systematic organization of information
within Confluence, Eurosoftware ensures precise placement and secure accessibil-
ity of data, whether for specific customer projects or general product development,

8

2.2.2 Jira

thus protecting intellectual property and increasing collaboration efficiency.

2.2.2 Jira
Similar to Confluence, Jira, another tool developed by Atlassian, plays a key role at
Eurosoftware in maintaining clarity and order. The main function of this tool is to
create and manage tasks.

Jira makes possible not only the simple task creation but also the allocation of
specific timeframes, the detailing of task descriptions and prioritisation of them.
Furthermore, Jira includes a chat feature on each task page. This feature is neces-
sary for communication between different departments of the company within the
context of a particular task.

By tightly integrating with Confluence, Jira increases the efficiency of workflow
management. It simplifies the process of linking a task in Jira to its more comprehen-
sive description on aConfluence page. Beyond this connection, Jira allows automatic
links to be set up between the task and Git. This feature ensures that any commit or
merge request related to a task is automatically recorded in the comment section of
the task. [Bru19]

2.2.3 Anna
Developed by Eurosoftware’s student lab, Anna serves as a strategic addition to
the company’s toolkit, diverging from Jira’s project management focus to focus on
human resource planning and employee welfare. This tool is uniquely designed to
handle the administrative and welfare aspects of employee management, offering a
distinct set of functionalities.

Unlike Jira, which tracks tasks and projects, Anna streamlines employee-related
administrative tasks. It manages work schedules, tracks attendance, facilitates leave
requests, and provides a comprehensive view of human resource allocation. Anna
also allows employees to register for company events, review work logs, and com-
municate health concerns, fostering a supportive work environment.

By delineating the roles of Anna and Jira, Eurosoftware achieves an effective
balance between operational efficiency and employee satisfaction. Anna’s focus on
improving the internal operational aspects related to human resources ensures that

9

2.3 Development Technologies

Eurosoftware not only excels in project management through Jira, but also priori-
tizes the well-being and effective management of its employees.

2.3 Development Technologies
Within Eurosoftware development, the range of technical tools goes beyond the
working tools mentioned above. The company has prepared a set of tools that are
essential for the daily work of every developer. These tools not only make the soft-
ware development process much easier but also improve version control and facili-
tate the use of company-specific programming languages. These carefully selected
tools enable greater efficiency and productivity, resulting in a higher standard of
software products.

2.3.1 Git Lab
Within Eurosoftware, GitLab plays a central role as a robust platform for version
control and collaborative software development. Hosted on Eurosoftware’s own
servers for enhanced security, this web-based tool allows developers to efficiently
manage code changes, collaborate on projects, and maintain a detailed history of
development progress. The functionality of GitLab is integral to ensuring that soft-
ware development processes are both organized and traceable.

GitLab features a sophisticated role-based access control system, similar to the
setup of other Eurosoftware tools such as Confluence and Jira. This system allows
for customized permissions, ensuring that team members have appropriate levels
of access to different projects, thereby promoting a unified and streamlined work-
flow. This setup not only protects sensitive project details but also improves overall
operational efficiency.

For the Product Development department, Eurosoftware uses GitLab to develop
the core software platform, focusing on maintenance, general enhancements and in-
novations. These efforts are supported by multiple non-customer-specific reposito-
ries. Conversely, in the Customer Solution department, each project is given its ded-
icated repository - or often multiple repositories - to reflect the specific needs and
requirements of each customer. This client-centric approach ensures customized
access rights, which increases the security and integrity of custom development.

2.3.2 Eclipse
Eclipse plays a crucial role in Eurosoftware’s development landscape, primarily due
to its versatility and adaptability. Eclipse is an open source Integrated Development

10

2.3.3 JetBrains Products

Environment (IDE). It offers significant advantages, particularly for Java-based de-
velopment projects.

The most important aspect of Eclipse is its ability to seamlessly integrate cus-
tom plugins. These plugins are essential for the correct functioning of custom pro-
gramming languages and for ensuring their compatibility with Java. They play an
important role in the validation of these custom languages and contribute to the
accurate compilation of projects into final software products.[Son23]

Eclipse is not only a preferred IDE at Eurosoftware, it is a mandatory tool for
all developers. This requirement comes from its ability to support specific program-
ming languages that were developed internally at Eurosoftware. By standardizing
Eclipse, the company leverages its comprehensive set of features and capabilities,
making it the ideal environment for developing high-quality software solutions.

2.3.3 JetBrains Products
At Eurosoftware, JetBrains IDEs such as WebStorm and IntelliJ IDEA are utilized
specifically for projects where Eclipse’s capabilities may be insufficient, typically
within web development. These IDEs are not mandatory for all developers; their
use is contingent upon necessity, with the company funding subscriptions only
when required.

The selective adoption of JetBrains products is influenced by several factors.
First, the cost - unlike the free open source Eclipse, JetBrains IDEs require a paid
subscription. Second, Eclipse supports the custom programming languages devel-
oped by Eurosoftware, a feature that JetBrains IDEs do not offer. Over time, as
JetBrains products have become recognized for their sleek design and user-friendly
interface, they have begun to complement the traditional use of Eclipse.

2.3.4 SoapUI and Postman
At Eurosoftware, both SoapUI and Postman play critical roles in Application Pro-
gramming Interface (API) development and testing, although neither is mandatory
for all developers. SoapUI is highly valued for its capability in testing both SOAP and
REST APIs. Beyond its primary testing functions, it offers a mock service feature,
which is essential for simulating web services before their full development. This
allows testers and developers to configure SoapUI to return specific responses to
API requests, a crucial feature for testing scenarios where the actual service is not

11

2.3.5 Dbeaver

yet available or is still under development.

Complementing the capabilities of SoapUI, Postman provides an intuitive, easy-
to-use interface that is widely used for building, testing, and modifying APIs. It
allows developers and testers to send requests to web servers and examine the re-
sponses. Postman supports the creation and storage of both simple and complex
HyperText Transfer Protocol (HTTP) requests and their responses, which are essen-
tial for debugging and developing APIs. It is particularly useful for retrieving data
from servers or sending data during various stages of development. Although not
mandatory, Postman makes interacting with services much easier, and without it,
some of Eurosoftware’s developments would be much more difficult.

2.3.5 Dbeaver
DBeaver emerges as a highly effective tool for managing the complex databases
at Eurosoftware. This database management software is renowned for its intuitive
user interface, which facilitates seamless interaction with a variety of database types.
DBeaver’s versatility is particularly beneficial for Eurosoftware’s diverse database
needs, allowing connections to multiple databases simultaneously. This tool is par-
ticularly helpful for viewing and editing database structures, running SQL queries,
and analyzing data. Users can easily visualize relationships between tables, which is
crucial for understanding complex database schemas.

While DBeaver is a popular choice among the developers at Eurosoftware, its
use is not mandatory. Developers have the flexibility to select from other available
tools that may better suit their specific needs. However, due to its comprehensive
features and intuitive design, DBeaver remains a preferred option for many at Eu-
rosoftware, contributing significantly to the efficient management of their extensive
and complex databases.

2.4 Programming Languages
Programming languages are more than just a means of instructing a computer to
perform tasks. They are the foundation upon which software’s logic, design, and
functionality are built. At Eurosoftware, the chosen languages reflect a blend of
industry standards, practical efficiency, and the capacity to meet the complex de-
mands of custom software development. Each language, with its distinct syntax and
capabilities, plays a critical role in the diverse projects undertaken by the company,
from web development to complex system architectures.

12

2.4.1 Java

2.4.1 Java
Java is the foundation of Eurosoftware’s development, representing the most fun-
damental and essential programming language. Such is the importance of Java that
when developers apply for a development position at the company, they are pri-
marily evaluated as "Java developers" and their knowledge of Java is a key criterion
during the interview process. This underscores the language’s central role in the
company’s technology ecosystem.

Java is known as an Object Oriented Programming (OOP) language. OOP is a
paradigm that organises software design around data, or objects, rather than func-
tions and logic. This approach models real-world entities as objects and emphasises
the principles of encapsulation, inheritance and polymorphism. Encapsulation al-
lows data to be bundled with methods that operate on that data; inheritance facili-
tates the creation of new classes based on existing ones; and polymorphism allows
objects to be treated as instances of their parent class, increasing flexibility and
reusability.[Koç09]

Java Swing (Swing). Swing at Eurosoftware has evolved significantly from its stan-
dard form to a highly customized tool tailored to the company’s unique develop-
ment needs and customer requirements. While retaining the fundamental aspects
of Swing, such as component rendering and core framework logic, Eurosoftware
has extensively modified the technology to simplify development and better serve
its customers.

In Eurosoftware’s implementation, the visual elements of POS systems are de-
fined using specialized formats. The layout of the POS is described in a unique XML
format that specifies the layout and properties of the GUI components. In addition,
a special format known as ’tableau.json’ is used for more detailed design aspects
such as button placement, actions and configuration.

These XML and ’tableau.json’ visual definitions are seamlessly integrated with
the Java and custom programming languages used at Eurosoftware. This integration
allows for a highly flexible and efficient development process, enabling the creation
of customized and user-friendly interfaces.

Java Spring Framework (Spring). Spring’s strength lies in its comprehensive ap-
proach to application development. It makes managing objects and classes efficient,
ensuring that every component of a software project is instantiated, used, and dis-
posed of correctly. This is critical to ensuring the long-term sustainability of a

13

2.4.2 XML

project by maintaining a clean and easily managed codebase.

In addition, Spring offers a wide range of features for various aspects of ap-
plication development, such as security, transaction management and data access.
Its robust security framework helps protect applications against common vulner-
abilities, while its transaction management ensures data consistency and integrity.
Spring also simplifies interactions with databases, making it easier to manage large
data sets and perform complex database operations, thanks to its extensive support
for data access technologies. [Beh23]

At Eurosoftware, Java Spring is more than a framework. It’s a catalyst for creat-
ing robust, efficient and future-proof software solutions that embody the company’s
commitment to delivering high-quality and versatile POS systems.

Maven. Maven plays a crucial role at Eurosoftware by optimizing the coupling of
different application modules and managing the build lifecycle of Java applications,
especially those that include custom components. Its ability to effectively handle
multiple interconnected components is critical in Eurosoftware’s complex develop-
ment environments. Maven automates the inclusion and management of external
libraries, streamlining the integration and functioning of all parts of an application.
It also manages dependencies, ensuring that each project is equipped with the most
appropriate tools for efficient development.[Col23]

In particular, Maven’s structured approach is essential for compiling the custom-
generated properties files and Java classes that are an integral part of Eurosoftware’s
proprietary programming languages. This ensures seamless integration with the
main Java application, maintaining a cohesive and functional software architecture.
By managing the build process and resolving dependencies, Maven significantly
enhances the robustness and scalability of Eurosoftware’s POS systems and is a key
component of their development strategy.

2.4.2 XML
XML is a flexible, structured language for storing and transporting data. It plays
a crucial role in Eurosoftware’s development environment, where it is one of the
most widely used formats.

Within the Java ecosystem at Eurosoftware, XML is used in the Spring frame-
work to declare beans - these XML configurations dictate how beans are created,
managed and wired in the context of the Spring application. Similarly, security con-

14

2.4.3 Web Development Languages at Eurosoftware

figurations use XML to define security rules and filters to ensure a secure and robust
application.

In theMaven ecosystem, the pom file, written in XML format, is the cornerstone
of project configuration. It defines exactly how a project is built, its dependencies
and other build parameters. This file is critical because it dictates the entire build
process, ensuring consistency and accuracy in project compilation and dependency
management.

In addition, the flexibility of XML extends to the creation of custom layouts for
Eurosoftware’s POS systems. These XML-defined layouts allow for a high degree
of customisation, enabling developers to specify intricate user interface designs and
interactions tailored to specific business requirementsAn example of this can be
found in the XML layout code example detailed in the Appendix, Section C.1.1.

Through these diverse applications, XML proves to be more than just a data
format at Eurosoftware. It is a crucial element in defining application structures,
security configurations, build processes, and user interface designs.

2.4.3 Web Development Languages at Eurosoftware
JavaScript is a cornerstone of web development at Eurosoftware, enabling the cre-
ation of dynamic and responsive web applications. Its integration with back-end
systems via Representational State Transfer (REST) APIs supports a design archi-
tecture that offloads significant application logic to the Java back-end, allowing the
JavaScript front-end to efficiently manage user interactions. In addition, TypeScript,
a superset of JavaScript that adds static types, is used to improve code quality and
readability, ensuring that applications are not only interactive but also robust and
easy to maintain.

Vue.js is another key player in Eurosoftware’s technology stack, known for its
efficiency and flexibility in developing user interfaces and single-page applications.
While not as widely used as JavaScript, Vue.js is increasingly being used in key
projects such as UTPOS, demonstrating its ability to deliver dynamic and efficient
user experiences. The core library’s focus on the view layer allows for easy inte-
gration with other libraries or existing projects, promoting a modular and scalable
front-end architecture.

This diverse suite of web development technologies - JavaScript, TypeScript,
and Vue.js - underscores Eurosoftware’s strategic approach to using advanced tools

15

2.4.4 ProMo

to meet complex customer needs. By leveraging these technologies, Eurosoftware
ensures that its applications are at the forefront of innovation, delivering power-
ful, user-friendly, cutting-edge solutions that increase overall user engagement and
satisfaction.

2.4.4 ProMo
ProMo, developed by Eurosoftware, is a programming language designed to sim-
plify the development of implementation-independent models, specifically Process
Model Domain Specific Language (ProMoDSL) models, into actionable Java and
other technology implementations. It serves as an essential bridge between high-
level process designs and their practical applications, integrating seamlessly with
Java Swing, Java Spring, and customXML layouts. The language is specialized for Eu-
rosoftware’s internal use and features a unique syntax that is not commonly taught
outside the company.

The language facilitates the creation of complex workflows and process man-
agement, enabling Eurosoftware developers to create sophisticated software appli-
cations. ProMo’s syntax allows the definition of actions, conditions, and state man-
agement, which streamlines process flow and increases modularity within software
projects. This structured approach enhances process customization and flexibility,
supporting dynamic adaptations and the integration of sub-processes for compre-
hensive application logic. An example of ProMo source code can be found in the
Appendix, section C.1.2.

2.4.5 ProMoJ
ProMoJ extends the functionality of ProMo by binding the high-level process defi-
nitions to specific implementations in Java or other underlying technologies. This
stage is critical because it translates abstract ProMoprocesses into executable actions
within the software’s operational environment. ProMoJ focuses on the implemen-
tation of the actions, conditions and transitions defined in ProMo, ensuring that
the designed workflows are effectively implemented and integrated into the appli-
cation’s technical stack.

In addition to implementing actions and conditions, ProMoJ also manages the
integration of user interface elements defined inXML layouts, linkingUser Interface
(UI) components directly to process steps. This capability enables a seamless user
experience where high-level process flows are not only executed in the background
but also visually presented and interacted with through the application’s front end.
By combining complex processes with intuitive interfaces, ProMoJ plays a key role

16

2.4.6 DO DSL

in ensuring that Eurosoftware’s software solutions are both functional and user-
friendly. See the Appendix, section C.1.3 for an example of the ProMoJ code.

2.4.6 DO DSL
In the landscape of Eurosoftware’s proprietary technologies, DO DSL plays a critical
role by providing a unique and customized solution specifically designed to enhance
the configuration flexibility of its POS systems. This specialized framework allows
the creation of configurations that adaptively modify system behavior to meet spe-
cific business requirements. DO DSL is used to generate a variety of configuration
components, including .properties files that provide a textual representation of set-
tings, as well as specialized Java classes and factory classes that integrate seamlessly
with Java code. Detailed examples of configuration files and Java class generation
using DO DSL can be found in Appendix C.1.4.

DO DSL’s capabilities extend to defining how configuration objects should be
structured without dictating their actual content, and it includes mechanisms for
setting default values that are embedded in the Java code during generation. These
defaults can be overridden in specific instances, providing flexibility and control
over system behavior. This framework supports the generation of specific instances
with predefined attribute parameters, facilitating the integration of these configura-
tions into the runtime environment or into other Eurosoftware proprietary frame-
works such as ProMo/J.

The ability to dynamically configure and customize system behavior through
DO DSL increases not only the adaptability but also the efficiency of Eurosoftware’s
POS systems. It simplifies the management and deployment of complex configura-
tions, reduces operational complexity and ensures that systems are both robust
and flexible. This makes DO DSL a cornerstone of Eurosoftware’s strategy to use
advanced technology to meet the evolving needs of its customers.

2.5 Architecture
Eurosoftware stands as a considerable entity in the technology landscape, boasting
an array of POS systems designed to meet a variety of customer needs. These sys-
tems are not only optimized for performance, including speed and reliability but
also tailored to fit various price points, making them accessible to a broad spectrum
of businesses.

17

2.5.1 Core Architectural Solutions

The architecture of Eurosoftware’s offerings is built on a foundation of flexibility
and scalability, ensuring that each POS solution can be customized to the specific re-
quirements of its customers. From small retail outlets to large, multinational chains,
Eurosoftware can provide a POS system that aligns with the customer’s operational
needs, aesthetic preferences, and budget constraints.

2.5.1 Core Architectural Solutions
At the core of Eurosoftware’s architecture lies a fundamental information flow con-
sisting of MasterData and Transactions. MasterData represents all non-transaction
and journal information, such as items, merchandise hierarchy groups, taxes, em-
ployees, store characteristics, etc. Transactions encapsulate all accounting-relevant
operations, serving as the virtual representation of money movement. These are pri-
marily created on POS systems based on MasterData and subsequently processed
on the POS-Server during accounting procedures.

Universal Connector (UCON/ECON): The UCON/ECON is the main in-
terface for external communication within the GK/Retail Business Suite. It facil-
itates the import and export of data, transforming external data formats, such as
Intermediary DOCument (IDOC) or XML from Systems Applications and Products
in Data Processing (SAP), into internal XML format and the other way around. This
conversion process is supported by the use of Java Message Service (JMS) messages
and Camel routes, ensuring efficient data processing and exchange.

Cluster Infrastructure Server (CIS): As a prerequisite for the operation of
central applications, the CIS initializes the system infrastructure. It hosts the Ac-
tiveMQ Broker, responsible for the processing and distribution of JMS messages
throughout the system, thus serving as the backbone for message communication.

Store Device Control (SDC): The SDC functions as the Masterdata manager,
importing and storing essential data in an internal XML format. It also handles the
replication of this data to other systems and manages the transaction pool, acting
as a repository for transactional data. This capability is crucial for ensuring data
consistency across the POS ecosystem.

POS-Server: Serving as the central processing unit, the POS-Server is tasked
with transaction management, report generation, and the execution of export func-
tions. It also facilitates the monitoring and control of financial movements, translat-
ing transaction data into actionable insights through predefined data sources. For

18

2.5.2 OmniPOS Architecture

a detailed view of how these components are organized within the system, refer to
the architecture diagram in Figure 2.1.

Figure 2.1: Central Architecture Scheme

While the previously described components form the backbone of Eurosoft-
ware’s POS solutions, offering a robust and scalable infrastructure, it is often the
OmniPOS systemwhere developers find themselvesmost engaged.OmniPOS stands
as a front-runner in the suite of Eurosoftware’s applications, embodying the con-
vergence of user interface and transactional functionality, essential for the seamless
selling of goods and processing of payments.

2.5.2 OmniPOS Architecture
OmniPOS features a layered architecture, pivotal for its omni-channel capabilities.
This structured approach ensuresmodularity, wherein each layer furnishes a distinct
set of APIs, and interaction across layers adheres to a strict top-down methodol-
ogy. This design philosophy underpins two primary deployment models within
OmniPOS: Thin-POS and Fat-POS, delineating the separation between client and
server sides. Notably, the server side of OmniPOS is designed to be stateless, opti-
mizing for both scalability and stability.

19

2.5.2.1 Service Layer

2.5.2.1 Service Layer

At the heart of OmniPOS’s architecture is the Service Layer, which orchestrates a
variety of services:

• Domain Object (DO) Services: These services encapsulate access to other
APIs and database interactions, functioning as the foundational layer for data
management within OmniPOS.

• Business Logic Services (BLServices): Dedicated to internal operations,
these services encapsulate the core business logic of OmniPOS, ensuring the
business rules and processes are adhered to and efficiently executed.

• Exposed Services: As the name suggests, these services are designed to pro-
vide external access to OmniPOS functionalities, incorporating error han-
dling mechanisms and Java API for RESTful Web Services (JAX-RS) annota-
tions to facilitate communication.

Service Exporters play a crucial role by making Exposed Services available
for external use, predominantly through REST web services with JavaScript Object
Notation (JSON). This mechanism is vital in Thin-POS deployments or for other
clients like the mobile POS or SAP Open User Interface 5 (UI5) Client, allowing for
a pluggable architecture that can be activated via configuration.

Service Locator emerges as a central component in navigating the services on
both the Client and Back-End sides. It enables the inclusion of external or custom
services into the overall infrastructure, masking deployment-specific characteristics
and facilitating the registration of services through API or Spring configurations.

Process Layer introduces a higher level of abstraction, utilizing the company-
wide standard ProMoDSL for modelling business processes. This layer separates
product and project processes tominimizemigration efforts, supported by anEclipse-
Tooling environment for editing, validating, visualizing, and debugging processmod-
els.

HardwareAbstraction Layer (HAL) a critical component ofOmniPOS, which
encapsulates access to POS-related hardware, offering an abstraction layer for var-
ious device categories like printers, scanners, cash drawers, and more. This layer
ensures event-based interaction with the rest of the system, providing a seamless
integration of hardware functionalities into the POS operations.

20

Possible development
facilitations 3
AI is revolutionizing the software industry, driving a transformative shift where
efficiency, scalability, and predictive capabilities are critical. As AI accelerates devel-
opment cycles and improves code quality, it enables products to reach the market
faster and with greater sophistication, giving companies a competitive edge. This
technology not only speeds production, but also acts as a collaborative tool that
refines and optimizes the work of developers, making it an indispensable ally for
staying agile and innovative in a rapidly evolving digital landscape.

3.1 Universal Improvement Opportunities
There are general ways in which AI can make things easier and improve the devel-
opment process. These enhancements could be used by any company

3.1.1 SQL Operations
In data-driven applications, efficient data retrieval and manipulation is crucial. AI
can meticulously analyze database structures and existing SQL queries to offer op-
timized versions, ensuring faster data retrieval and more effective database inter-
actions. Machine learning algorithms can predict query performance and suggest
indexes or changes to query structures. When provided with table content, AI can
generate insert scripts, streamlining the data population process and significantly
reducing the risk of human error.

3.1.2 Lambda Expressions
Lambda expressions, while powerful, can sometimes be complex and difficult to de-
cipher. AI can step in to simplify these expressions without losing their essence, en-
suring that the code remains elegant and is easier for other developers to understand.
By analyzing the functional context and the intended purpose of the lambda expres-

21

3.1.3 Advanced Code Refactoring

sion, AI can recommend more readable and maintainable code patterns, thereby
enhancing the overall development workflow.

3.1.3 Advanced Code Refactoring
Artificial intelligence could significantly improve software development by optimiz-
ing code refactoring and preventing potential failures. AI could analyze code struc-
tures to identify opportunities for improvement, suggesting the modularization of
bloated features and the integration of design patterns to improve scalability and
readability. It could also free developers to focus on more strategic improvements
by automating the boring aspects of refactoring, such as identifying redundant code
and recommending code consolidation. In addition, AI could improve software
durability by preemptively identifying code sections that may be error-prone, sug-
gesting appropriate error handling. This proactive approach by AI could not only
speed up the development process but also significantly improve the overall quality
and reliability of software.

3.1.4 Cross-Language Code Translation
In today’s technological landscape, developers often find themselves working across
multiple programming languages. One of the challenges they sometimes encounter
is the need to translate code from one language to another—either for integration
purposes or to migrate a project. Traditional manual code translation can be error-
prone and time-consuming. Artificial Intelligence, with its pattern recognition and
syntactic analysis capabilities, offers a promising solution to this dilemma. Through
sophisticated algorithms, AI can not only map equivalent constructs between dif-
ferent languages but can also consider idiomatic usage, ensuring that the translated
code retains its original intent and functionality.

3.1.5 Code Explanation and Interpretation:
Legacy code can present a labyrinthine challenge, filled with sections that may seem
cryptic even to seasoned developers. Historically, the approach was to scour docu-
mentation, seek advice from colleagues, or spend extended periods dissecting code
to comprehend its essence. However, the dawn of AI in software development her-
alds a new era. By harnessing its analytical prowess to dissect the code’s structure,
review related comments, and understand inter-module interactions, AI delivers
precise explanations of code objectives. This facilitates a clearer understanding of
its primary functions and potential interdependencies, streamlining the code navi-
gation process.

22

3.2 Facilitation Opportunities for Eurosoftware

3.2 Facilitation Opportunities for
Eurosoftware

The proposed enhancements incorporate the basic principles and architectural
paradigms that are already in place in Eurosoftware s.r.o. These enhancements are
intended to be integrated into the existing architecture of the company and, due to
their specificity, should assist in more enterprise-specific issues.

3.2.1 Confluence
Traditionally, Eurosoftware stores extensive documentation and resources on Con-
fluence, which serves as a critical repository for training materials, codebase in-
formation, and company-specific programming guidelines. This platform is essen-
tial for onboarding new developers, who often need to navigate through a wealth
of information with the help of experienced mentors. This process can be time-
consuming and takes experienced developers away from their primary tasks to
provide the necessary guidance and support.

However, implementing an AI trained on the detailed datasets available in Con-
fluence could revolutionize this training approach. An AI chat assistant, armed with
insights from Eurosoftware’s proprietary architectures and historical code exam-
ples, could act as an on-demand resource for new developers. This AI could answer
questions about software architecture or specific programming nuances based on
the rich information it has learned from Confluence. By providing instant clarifi-
cation and suggestions, the AI assistant would not only streamline the onboarding
process but also free up valuable development time, allowing experienced develop-
ers to focus on their core tasks while ensuring that newcomers integrate efficiently
into the team.

3.2.2 Domain Specific Languages
Domain Specific Languages at Eurosoftware, although powerful, can present a steep
learning curve for new developers unfamiliar with their unique syntax and op-
erational frameworks. Mastering these languages requires poring over extensive
Confluence documentation or consulting colleagues

Integrating AI trained in these specialized DO DSLs could streamline this learn-
ing process. AI could act as a highly effective support tool by accessing large datasets
containing the specifics of these languages and examples of previously written code.
It could assist new developers by automatically completing or suggesting code snip-
pets, offering clarification on complex syntax, and performing code refactoring.

23

3.2.3 Custom XML and CSS

Such an AI system would not only act as a code assistant but also as an educational
resource, simplifying the understanding of domain-specific languages and acceler-
ating the development process at Eurosoftware. This AI-driven approach would
ensure that new developers become proficient quickly, increasing the overall pro-
ductivity and efficiency of the development team.

3.2.3 Custom XML and CSS
Eurosoftware’s development approach involves highly customizedXML layouts and
a unique adaptation of CSS that differs significantly from standard usage. XML lay-
outs are tailored to specific business needs and deviate from conventional structures.
Similarly, CSS has evolved to work in unique harmony with these XML layouts, re-
sulting in certain styles and XML combinations that are not typically supported.
However, this unique relationship between custom CSS and XML layouts can also
inadvertently disrupt the standard functionality expected with typical HyperText
Markup Language (HTML) and CSS, resulting in unexpected behavior in otherwise
standard scenarios. An AI system could be the key to managing this complexity. By
analyzing the interaction between custom XML and modified CSS, AI can identify
incompatible elements and suggest optimal configurations. This ensures that lay-
outs and styles work together, maintaining both aesthetic quality and operational
efficiency.

3.2.4 Integrated Coding Advisor Plugin
Beyond just answering queries, there’s potential for AI to take a more proactive
role in the developer’s workflow. By integrating an AI-driven plugin within the
development environment, it’s feasible to have a system that anticipates the devel-
oper’s needs. As a developer crafts code, this AI advisor, familiar with the nuances
of domain-specific languages, can suggest possible next steps, code completions, or
even highlight potential issues before they manifest. It acts as a co-pilot, understand-
ing the intent and direction of the developer, and offering guidance every step of
the way. Such integration not only speeds up the coding process but also ensures
that the code adheres to the best practices and standards set by the Eurosftware
company.

24

Leveraging Existing
Tools for Enhanced
Development

4

The integration of AI into software development tools is rapidly changing the way
we approach coding, problem-solving, and project management. There is a wide
variety of AI-enabled tools available, each designed to streamline development pro-
cesses, improve code quality, and automate repetitive tasks. These tools range from
those that help complete and optimize code to those that can identify bugs and pre-
dict coding errors.

This chapter serves as an introduction to the diverse world of AI-powered devel-
opment tools. Our goal is to provide an overview of these tools, highlighting their
key benefits and potential drawbacks. By doing so, we hope to provide a glimpse
into how AI is revolutionizing software development and set the stage for deeper
dives into specific tools and their applications in later discussions.

4.1 Exploring ChatGPT: A Comparative
Analysis

OpenAI’s development and deployment of ChatGPT represents a significant mile-
stone in the field of NLP, harnessing the power of Generative Pre-trained Trans-
former (GPT) models. These models are designed to understand and generate text
that closely mimics human conversation, enabling a wide range of applications from
automating customer service to assisting in creative writing and technical problem-
solving. Among the various versions released, GPT-3.5 and GPT-4 have attracted
considerable attention for their advanced capabilities, which will be examined in de-
tail, including their memory capacity for context and subscription-based limitations
[Kel24].

25

4.1.1 ChatGPT 3.5

4.1.1 ChatGPT 3.5
Introduced as an enhancement over its predecessor, GPT-3.5 was launched to bridge
the capabilities gap between GPT-3.5 and GPT-4. As noted by Kelly (2024), "GPT-3.5,
the refined version of ChatGPT Version 3.0 (GPT-3) rolled out in November 2022,
is currently offered both in the free web app version of ChatGPT and via the paid
Turbo API" [Kel24]. This model is designed to improve language processing and
generation, tailored specifically to function efficiently within OpenAI’s structured
API offerings.

• LanguageUnderstanding andGeneration:According toKelly (2024), GPT-3.5
improves upon its predecessor by enhancing text translation, summarization,
and content creation, making it a versatile tool for various digital communi-
cation tasks [Kel24].

• Token Limit and Context Memory: GPT-3.5 supports a context window
of up to 16,385 tokens, allowing for more extended interactions and deeper
conversational contexts compared to earlier models [Kel24].

• AccessWithout Subscription:Users without subscriptions may face access
constraints during peak times, which can affect service availability.

4.1.2 ChatGPT 4
GPT-4 represents a significant leap forward in the model’s evolution, introducing
advanced features that cater to a wider array of complex applications. According to
Kelly (2024), "GPT-4, released in March 2023, offers another GPT choice for work-
place tasks. It powers ChatGPT Team and ChatGPT Enterprise, OpenAI’s first for-
mal commercial enterprise offerings" [Kel24]. The introduction of multimodal capa-
bilities and expanded context windows are pivotal enhancements that define this
iteration.

• AdvancedContextUnderstanding:GPT-4 expands the token limit to 32,768,
allowing for richer and more extended interactions. This capability is partic-
ularly beneficial for applications involving long-form content creation and
detailed dialogue scenarios [Kel24].

• Multimodal Functionality: As Conroy (2024) highlights, GPT-4 introduces
the ability to process image inputs, enabling it to analyze visual data and gen-
erate relevant textual responses, thus broadening the scope of its applications
[Con24].

26

4.1.3 Conclusion

• Comprehensive access: GPT-4 subscribers benefit from comprehensive
access to all new features, including internet browsing capabilities and ad-
vanced image processing, ensuring they leverage the full potential of the
model [Kel24].

4.1.3 Conclusion
As the field of artificial intelligence continues to evolve, the continued development
and refinement of models such as ChatGPT-3.5 and GPT-4 are critical to pushing the
boundaries of what is possible with AI. The exploration of these models, through
theoretical analysis and practical application, will illuminate the path forward for
researchers, developers, and users alike, fostering a deeper integration of AI into
our daily lives and work.

4.2 Exploring Tabnine: AI-Powered Code
Assistance

Tabnine is an AI-assisted coding tool that provides an advanced code completion
service, designed to enhance developer productivity through deep learning algo-
rithms. As an alternative to traditional code completion tools, Tabnine offers both
cloud-based and local processing options, making it a versatile choice for devel-
opers operating in different environments. Tabnine can significantly boost coding
efficiency, which is crucial for developers working on both new and existing projects
[Ros23].

4.2.1 Cloud-Based Model
Tabnine’s cloud-based model provides powerful code completion capabilities, utiliz-
ing cloud computing to handle complex computations and data storage. This model
supports high levels of security and compliance, aligning with the stringent require-
ments of many organizations. According to David Ramel, "Tabnine Enterprise al-
lows isolated environment deployment using Virtual Private Cloud or on-premises
deployment, ensuring total code privacy and security." Additionally, Tabnine Chat,
a feature within the cloud model, is designed to interact with developers directly
within their IDE, providing suggestions and corrections based on context. Impor-
tantly, Tabnine ensures that all models are trained only on open-source code with
permissive licenses, which guarantees that the models are not trained on General
Public License (GPL) or other copyleft code, thus avoiding potential legal and secu-
rity issues [Ram23].

27

4.2.2 Local Processing Model

4.2.2 Local Processing Model
In contrast, the local model of Tabnine ensures all data processing occurs on the
developer’s own machine, thereby not transmitting any code beyond the firewall.
This model addresses significant security concerns, making it ideal for projects with
strict data confidentiality requirements. Weiss highlights that this setup not only
enhances privacy but also allows developers to train the AI model on their specific
codebase directly within their local environment, thus tailoring the AI’s learning
and suggestions more closely to their specific needs [Law22].

4.2.3 Hybrid Model Adaptability
Tabnine also supports a hybrid model, which combines the cloud’s computational
power with the local model’s privacy benefits. This adaptability is crucial for devel-
opers who need the scalability of cloud resources but are constrained by strict data
privacy and security protocols. According to Loraine Lawson, Tabnine can operate
"on a developer’s computer without sending code beyond the firewall, and it can
also run in the cloud or a hybrid environment" [Law22]. This flexibility ensures that
developers can choose the most suitable processing method based on their specific
needs and constraints, offering a tailored coding assistance experience.

4.2.4 Conclusion
Tabnine adapts to different development environments and security requirements
and has established itself as a critical tool for increasing productivity and maintain-
ing high standards of code quality and security in software development with its
comprehensive range of deployment options-cloud, local, and hybrid.

4.3 Exploring GitHub Copilot: AI-Assisted
Coding

GitHub Copilot, developed by GitHub in collaboration with OpenAI, is an innova-
tive tool that assists developers with intelligent code completion. This AI-powered
assistant significantly improves coding efficiency by suggesting complete lines of
code or entire functions based on the context of the existing code [Rar23].

4.3.1 Adaptive Learning
GitHub Copilot personalizes its assistance by learning from the user’s coding style
and preferences. This adaptive learning capability is crucial for providing more

28

4.3.2 Security Considerations

relevant and contextually appropriate code suggestions, thereby improving coding
efficiency over time [Rar23].

4.3.2 Security Considerations
Security and intellectual property are paramount when integrating AI-assisted tools
like GitHub Copilot into organizational workflows. Tuomas Leppilampi highlights
a prevalent concern: "But, there are some concerns about intellectual property
leaks–especially if organizations aren’t using business or enterprise licensing with
AI-assisted tools" [Lep]. This underscores the importance of using appropriate li-
censing to safeguard sensitive data and intellectual property when deploying such
technologies.

4.3.3 Personal Evaluation
Given these concerns, any exploration or testing of GitHub Copilot related to Eu-
rosoftware’s specific needs will be done on a personal computer. This controlled
approach allows for a thorough evaluation of Copilot’s utility and effectiveness
without compromising the security and integrity of Eurosoftware’s codebases. Eval-
uating Copilot in this waywill provide valuable insights into howAI-assisted coding
tools can be leveraged within Eurosoftware’s development practices, while ensuring
compatibility with existing platforms and adherence to strict security protocols.

4.3.4 Conclusion
While GitHub Copilot offers significant benefits in streamlining coding processes
and increasing developer productivity, its integration requires careful consideration
of security, intellectual property, and organizational workflows. By evaluating its
potential and implementing it sensibly, organizations can maximize the benefits
while minimizing the risks associated with it.

4.4 Custom NLP Model: Eurosoftware’s
Approach

At Eurosoftware, the Confluence database is an expansive and continually evolv-
ing repository that forms the backbone of the company’s knowledge management.
A model knowledgeable in the architectural intricacies of Eurosoftware’s applica-
tions could significantly enhance training processes for new employees and assist
seasoned staff when they encounter challenges.

29

4.4.1 Potential of NVIDIA NeMo in Custom AI Development

4.4.1 Potential of NVIDIA NeMo in Custom AI
Development

A promising tool for this purpose is NVIDIA NeMo, an advanced framework de-
signed for the creation and deployment of generative AI models. As described by
NVIDIA:

"NVIDIA NeMo™ is an end-to-end platform for developing custom
generative AI—including Large Language Model (LLM)s, multimodal,
vision, and speechAI—anywhere. Deliver enterprise-readymodelswith
precise data curation, cutting-edge customization, Retrieval Augmented
Generation (RAG), and accelerated performance." [NVI23c]

The NVIDIA NeMo framework is equipped with advanced features that can
be instrumental in developing and scaling AI models for complex applications. As
detailed by NVIDIA:

"Transformer-basedLLMandmultimodalmodels can leverageNVIDIA
Megatron Core for scaling training for models with billions of param-
eters across thousands of Graphics Processing Unit (GPU)s. Megatron
Core includes state-of-the-art parallelization techniques such as tensor,
pipeline and sequence parallelism, and selective activation recomputa-
tion for optimal performance." [NVI23b]

Further enhancing its utility, NeMo provides several customization techniques
to refine pretrained models:

"The NeMo framework offers customization techniques to refine pre-
trained LLMs including p-tuning, LoRA, and Supervised Fine Tuning
(SFT). NeMo LLMs can be aligned with state-of-the-art methods such
as SteerLM, Direct Preference Optimization (DPO) and Reinforcement
Learning FromHumanFeedback (RLHF) throughNVIDIANeMoAligner."
[NVI23b]

These capabilities make NVIDIA NeMo an appealing option for organizations
like Eurosoftware, looking to leverage AI for a wide range of applications, from
language understanding to speech recognition.

4.4.2 Llama 2 7B Model
Llama 2, developed by Meta, is a versatile collection of pretrained and fine-tuned
generative text models, which vary in scale from 7 billion to 70 billion parameters

30

4.4.3 Megatron-GPT 5B Model

[Met23]. Given Eurosoftware’s server capabilities, the 7 billion parameter model
is of particular interest as it balances computational demands with advanced AI
capabilities.

Llama 2 operates as an auto-regressive language model using an op-
timized transformer architecture. Its tuned versions employ SFT and
RLHF to align closely with human preferences for safety and helpful-
ness [Met23].

The 7 billion parameter version is intended primarily for commercial and re-
search applications in English, optimized for assistant-like chat functionalities. Pre-
trained models provide flexibility, adapting to various natural language generation
tasks, which makes Llama 2 highly suitable for enhancing Eurosoftware’s customer
interactions and internal operations [Met23].

4.4.3 Megatron-GPT 5B Model
Megatron-GPT 5B, developed by NVIDIA, is a transformative advancement in the
domain of artificial intelligence, particularly in the construction of language models.
This model falls within the transformer-based GPT class, which are decoder-only
models akin to GPT-2 and GPT-3, celebrated for their proficiency in producing
human-like text. The designation "5B" reflects the model’s capacity, indicating it is
equipped with 5 billion parameters, thereby underscoring its significant computa-
tional power and its ability to manage complex language tasks [Kuc23].

Model Parallelism is a key feature that enhances theMegatron-GPT 5B’s capabil-
ities. According to NVIDIA’s documentation, Megatron-LM is a highly optimized
library for training large language models using model parallelism. This allows the
training ofmodels with billions of parameters. Once trained, thesemodels can be uti-
lized in NeMo for various downstream tasks. NeMo seamlessly handles pretrained
model parallel checkpoints from Megatron-LM, ensuring that model parallel mod-
els in NeMo retain all the features typical of NeMo models [NVI23a].

This integration exemplifies howMegatron-GPT 5B leverages cutting-edge tech-
nology to facilitate the development of AI models that are not only powerful but
also versatile, capable of being applied across different platforms and tasks.

31

Practical Application
of General Tools 5
With a rich landscape of AI tools offering diverse capabilities, the practical appli-
cation of these resources becomes a key focus for developers looking to improve
their workflows. This chapter is dedicated to understanding how popular AI tools
such as ChatGPT, TabNine, and GitHub Copilot can be pragmatically applied to the
software development lifecycle.

5.1 ChatGPT 3.5: Free-to-use
conversational AI

Having previously introduced the capabilities and features of GPT-3.5, we now turn
our attention to its practical applications within the software development sphere.
This section delves into the real-world utility of ChatGPT 3.5 as an integral part
of the developer’s toolkit, examining its role in streamlining the coding process,
facilitating debugging, and providing on-the-fly solutions to complex programming
problems.

5.1.1 Explaining SQL Scripts
In the realm of database maintenance, the ability to elucidate SQL scripts stands
as a critical skill. Presumably, ChatGPT 3.5, with its advanced language processing
capabilities, should proficiently interpret SQL scripts from various sources. Chat-
GPT 3.5 will be tested on scripts actively used by Eurosoftware, not on common
scripts available on the Internet. This will provide us with a spectrum of complexity
and contextual usage to assess the model’s effectiveness in delivering clear, concise
explanations.

Details: Detailed explanations provided by ChatGPT 3.5, the corresponding
scripts, and the evaluation of how ChatGPT managed each example can be found in
the Results\gpt3_5\Explaining SQL directory, specifically in the SQL_expl.txt

32

5.1.2 Optimizing SQL Queries

file.

Outcome: Across a range of tests, ChatGPT 3.5 demonstrated a robust ability
to explain SQL scripts, effectively explaining complex operations and providing
insightful interpretations that facilitate a deeper understanding of database scripts.
The model showed particular strength in breaking down complicated SQL com-
mands into understandable explanations, highlighting its potential as a valuable
tool for database management and maintenance.

5.1.2 Optimizing SQL Queries
Given ChatGPT 3.5’s demonstrated ability to explain SQL scripts, we now focus on
its potential for query improvement. This aspect tests the AI’s ability not only to un-
derstand SQL scripts but also to optimize them for improved performance. Query
optimization is a key part of database management, often requiring a deep under-
standing of both the data structure and the end goals of database queries. ChatGPT
3.5’s performance in this area will be indicative of its utility in refining the speed and
efficiency of data manipulation and retrieval.

Details: Detailed optimizations performed by ChatGPT 3.5, original and opti-
mized scripts, as well as evaluations of the model’s optimization attempts for each
example, can be found in the Results\gpt3_5\Optimizing SQL directory, specifi-
cally in the SQL_opt.txt file.

Outcome: The evaluation of ChatGPT 3.5 in optimizing SQL queries showed
mixed results: it significantly improved the execution time of one script, but slowed
down another, suggesting that it has potential in improving simpler queries. How-
ever, improvements in complex scripts were minimal, primarily improving readabil-
ity rather than performance. This suggests that while ChatGPT 3.5 can make SQL
scripts easier to understand, it can’t provide substantial performance improvements
in complex or specific scenarios such as those at Eurosoftware, suggesting the need
for a more customized model that understands the unique aspects of the database
architecture it is applied to.

5.1.3 Explaining Lambda expression
By their nature, lambda expressions provide a concise way to implement functions
without the need for traditional function declarations. However, their compact syn-
tax can sometimes hide the logic they encapsulate. This makes them less accessible
to developers unfamiliar with their use or the specific patterns within a codebase.
GPT-3.5’s advanced understanding of code semantics provides an opportunity to

33

5.1.4 Optimizing Lambda expression

demystify these expressions, offering explanations that can make the codebase more
accessible and maintainable.

Details: Interpretations of lambda expressions by ChatGPT 3.5, along with
the original expressions, are documented. These interpretations are stored in the
Results\gpt3_5\Interpreting Lambda directory within Lambda_interpr.txt.

Outcome:When analyzing various lambda expressions, ChatGPT 3.5 generally
performedwell, providing clear and concise explanations in several examples.While
it was adept at dealing with simple cases and those involving nested operations or
comparisons against enumerations, themodelwas also able to provide reasonable in-
terpretations ofmore complex lambdas that lacked explicit contextual clues. Despite
some challenges with complex and low-context expressions, the AI demonstrated a
strong ability to maintain accuracy and provide insightful explanations.

5.1.4 Optimizing Lambda expression
Beyond explanation, there is significant scope for GPT-3.5 to assist in the optimiza-
tion of lambda expressions. This optimization can lead to more efficient execution,
improved readability, or both, without compromising the logic the expressions are
meant to implement. With GPT-3.5, developers can identify and implement opti-
mizations that may not be immediately obvious, thereby streamlining code perfor-
mance and maintenance.

Details:The original lambda expressions and their optimized counterparts, pro-
cessed by ChatGPT 3.5 could be found in the .txt file within the provided directory
Results\gpt3_5\Optimizing Lambda\Lambda_opt.txt.

Outcome: ChatGPT 3.5’s lambda expression optimization showed generally
positive results, demonstrating its ability to improve code readability and maintain
functionality across different examples. Although the AI was successful in introduc-
ing several optimizations, its changes were sometimes superficial and limited to
minor formatting changes. In cases where it suggested more substantial improve-
ments, such as method abstractions or streamlined conditions, the AI occasionally
failed to provide fully executable solutions. Overall, while ChatGPT 3.5 offered use-
ful improvements in several areas, it still requires further refinement and developer
oversight for comprehensive code optimization.

34

5.1.5 Lambda expression generation

5.1.5 Lambda expression generation
The potential of GPT-3.5 extends to the generation of lambda expressions where
appropriate. This includes not only the generation of new expressions but also the
transformation of existing code patterns into lambda expressions where such a
change offers clear advantages. This capability could further refine the efficiency
and readability of the codebase, in line with modern development practices.

Details: Detailed information can be found in the file within the specified di-
rectory: Results\gpt3_5\Generating Lambda\Lambda_gen.txt.

Outcome: ChatGPT 3.5’s efforts to generate lambda expressions showed mixed
results, demonstrating its ability to improve code readability and embrace func-
tional programming concepts such as the Stream API. However, the process was
not without flaws, as evidenced by repeated failures to include critical parameters
that are essential to the correctness of the operation. These oversights highlight sig-
nificant limitations in the model’s generation capabilities, requiring careful review
and manual intervention.

5.1.6 Conclusion
Throughout this evaluation, ChatGPT 3.5 successfully handled a variety of tasks from
explaining and enhancing SQL scripts to optimizing lambda expressions, demon-
strating its capabilities as an effective software development tool. Its utility shines
in simpler tasks where minimal contextual interpretation is required, making it a
valuable asset for developers seeking quick solutions and routine automation. This
functionality underscores its role in increasing productivity and simplifying the
coding process.

However, as tasks become more complex, the model’s limitations become ap-
parent. This is especially the case when deep contextual understanding or nuanced
decision-making is required. While ChatGPT 3.5 is adept at addressing a wide range
of programming challenges, its performance diminishes when faced with complex,
context-rich tasks. This highlights the need for more advanced models designed to
handle the intricacies of sophisticated software development scenarios.

5.2 ChatGPT 4: Paid conversational AI
Building upon the established capabilities of GPT-3.5, the advent of ChatGPT 4
marks a significant advancement in the utility of conversational AI for software
development. This section explores how the enhanced features of GPT-4 can be

35

5.2.1 Code Interpretation with GPT-4

leveraged to further streamline development workflows and solve complex pro-
gramming challenges with greater finesse.

5.2.1 Code Interpretation with GPT-4
GPT-4 brings an advanced level of understanding to the interpretation of complex
software constructs, aiming to demystify code segments that range from straight-
forward functions to intricate algorithms. This capability is crucial for making the
codebase more accessible and easier to maintain by providing clear and comprehen-
sive explanations.

Details: The interpretations made by GPT-4, alongside the original code seg-
ments, are recorded in detail. Documentation of these interpretations is available in
the directory Results\gpt4_0\Code Interpretation in the Java_interpr.txt
and DODSL_interpr.txt files.

Outcome: The evaluation of GPT-4 highlighted its robust adaptability and
deep understanding of both familiar and unfamiliar programming languages. Ini-
tially challenged with DO DSL, GPT-4 provided a basic overview that improved
significantly as additional context files were introduced, demonstrating its ability
to quickly learn and adapt its explanations. In Java, the AI excelled at accurately de-
scribing the relationships within a complex architecture and effectively integrating
a new method into the existing codebase while adhering to best practices. Although
it occasionally missed some details, such as class inheritance in a Java Spring con-
text, GPT-4’s overall performance demonstrated its strong potential as a powerful
software development tool capable of handling and extending complex software
architectures.

5.2.2 Advanced Code Refactoring with GPT-4
GPT-4 is expected to redefine the standards for code refactoring, providing strate-
gies for not only optimizing code performance but also improving readability and
maintainability. This includes reorganizing code structures and introducing effi-
cient coding practices without losing sight of the original logic and functionality.

Details: Examples of code refactored using GPT-4 along with a detailed evalua-
tion can be found in the Results\gpt4_0\Advanced Code Refactoring directory
in in the Java_refact.txt and DODSL_refact.txt files.

Outcome: GPT-4 was evaluated on its ability to refactor code in Java and the
less familiar DO DSL, displaying mixed outcomes that underscored its capabilities

36

5.2.3 Groovy to JShell Translation

and limitations. In Java, GPT-4 showcased strong proficiency, enhancing code clar-
ity and robustness through well-implemented JavaDoc comments, error logging,
and null pointer checks, alongside targeted improvements for performance and
maintainability. However, its performance drastically differed when dealing with
DO DSL, where it consistently failed to understand or refactor the code effectively,
demonstrating significant errors and a fundamental gap in handling languages out-
side its training spectrum. This contrast highlights GPT-4’s potential and current
boundaries in AI-assisted programming, excelling in familiar contexts while strug-
gling with untrained languages.

5.2.3 Groovy to JShell Translation
As the majority of Eurosoftware’s projects are developed in Java, integrating and
using modern programming tools and languages represents a strategic approach
to fostering innovation and efficiency in its development practices. The ability of
GPT-4 to translate Groovy code into JShell code is proving to be a valuable ad-
vantage in this context, as it promises to streamline the development processes for
Java-centric projects. This conversion task highlights GPT-4’s potential to facilitate
seamless language transitions, which is particularly beneficial for Eurosoftware’s
Java-focused ecosystem.

Details: This initiative aimed to convert Groovy scripts into JShell commands,
balancing Groovy’s flexibility with Java’s structured approach for exploratory cod-
ing. Details and outcomes are documented in the Groovy_to_JShell.txt, located
in the Results\gpt4_0\Groovy to JShell Translation directory.

Outcome: The task of translating Groovy scripts into JShell with ChatGPT
4 showed mixed results, reflecting the complex nature of code conversion across
different programming environments. The AI performed a commendable initial
translation without full context but struggled with more complex scripts, often leav-
ing significant portions of the code inadequately adapted. Success varied between
examples; some translations showed partial progress, but none achieved complete
accuracy, highlighting ChatGPT 4’s challenges with certain Groovy constructs and
the complex requirement for semantic as well as syntactic understanding when
translating between these languages.

5.2.4 Java to Python Translation
Following the challenges encountered in translating Groovy scripts to JShell, an
intriguing question arises: how would GPT-4 handle the task of translating code
from Java, a statically typed language with a rich ecosystem, to Python, known for

37

5.2.5 XHTML to Vue.js Translation

its dynamic typing and readability? This task extends beyond the specific needs of
Eurosoftware, venturing into a broader exploration of GPT-4’s capabilities in code
translation across significantly different programming paradigms.

Details: The process and outcomes of this translation exercise are detailed
in the Results\gpt4_0\Java To Python Translation directory, within the next
Java_to_Python.txt file.

Outcome:GPT-4’s proficiency in translating Java code into Python was impres-
sively demonstrated in a series of examples, demonstrating its ability to accurately
convert and explain code between these popular programming languages. From
simple tasks to more complex multi-class scenarios, GPT-4 consistently delivered
accurate Python equivalents of Java code, complete with insightful explanations.
This capability not only confirms GPT-4’s adeptness at handling diverse coding
challenges, but also underscores its potential as a valuable tool for developers, es-
pecially those transitioning between Java and Python. The AI’s fluent navigation
through programming constructs and its effectiveness in maintaining the logical
and functional integrity of the original code underscores its advanced translation
capabilities.

5.2.5 XHTML to Vue.js Translation
It is important to examine the transition from XHTML to Vue.js, building upon the
previous examples of Groovy and Java. This transition not only tests GPT-4’s versa-
tility across programming languages but also its effectiveness in modern web devel-
opment frameworks such as Vue.js. Such a transition underscores the importance
of evaluating howwell GPT-4 can handle the dynamic and responsive elements that
are essential in today’s web technologies.

Details: The translation process from XHTML to Vue.js and the resulting out-
puts are documented in the Results\gpt4_0\XHTML to Vue Translation direc-
tory, specifically within the XHTML_to_Vue.txt file.

Outcome: Attempts to translate Eurosoftware’s custom XHTML into Vue.js
using GPT-4 consistently failed, revealing the AI’s limitations in handling highly
customized template conversions. Despite various efforts, GPT-4 was unable to
produce functional Vue.js templates from the provided XHTML structures. This
highlighted the need for a neural network specifically trained on Eurosoftware’s
unique XHTML and Vue.js configurations to achieve accurate translation and effec-
tive adaptation to modern web technologies.

38

5.2.6 Conclusion

5.2.6 Conclusion
ChatGPT 4.0 demonstrated significant improvements in code interpretation and
refactoring, excelling at improving clarity and suggesting optimizations for complex
Java and other popular languages. This underscores its potential as a useful tool for
developers seeking to improve code quality and maintainability. However, its limi-
tations became apparent in tasks such as translating specialized XHTML to Vue.js
and optimizing less common languages such as DO DSL, indicating challenges with
specialized or uncommon frameworks.

On the other hand, ChatGPT 4.0 proved adept at translating between popular
programming languages such as Java and Python, demonstrating its ability to effec-
tively capture and translate basic programming constructs and semantics. However,
its mixed results in translating between different programming paradigms - such
as Groovy to JShell and XHTML to Vue.js - underscore the complexity involved
in preserving the intricacies and specifics of the original code during the transla-
tion process. These findings suggest that while ChatGPT 4.0 is a step forward in
AI-assisted software development, further enhancements and specific training are
essential to fully realize the potential of AI in different development environments.

5.3 TabNine: Enhancing Development with
AI

While ChatGPT 4.0 has introduced significant advances in AI-powered coding, it’s
important to also recognize tools like TabNine. This section explores TabNine’s
practical application in development workflows, highlighting its effectiveness in im-
proving coding speed and simplicity. By leveraging AI to understand coding patterns
and make suggestions across multiple programming languages and IDEs, TabNine
provides a versatile and immediate solution to everyday coding challenges, building
on the fundamental advances of AI in the coding space.

5.3.1 Evaluating TabNine with TypeScript
Given the prominence of TypeScript in modern web development for its ability to
provide static typing for JavaScript projects, it is particularly relevant to evaluate
the impact of AI-enabled coding tools in a TypeScript environment. Such tools have
the potential to significantly reduce development time and improve code quality by
providing accurate coding suggestions and automating routine tasks.

Details: The evaluation of TabNine’s integration into the TypeScript develop-
ment workflow has been captured in three MP4 video files and is available in the

39

5.3.2 Evaluating TabNine with Vue.js Projects

Results\TabNine\TypeScriptdirectory. These videos, named carwashTable.mp4,
getFunctionContextById.mp4, and carwashTable.mp4, provide a dynamic visual
representation of TabNine’s code completion capabilities in various TypeScript sce-
narios. Accompanying these videos, detailed descriptions are also available in con-
sequently named files in the same directory, providing further insight into each
example presented.

Outcome: The evaluation of TabNine in TypeScript projects demonstrates its
effectiveness in improving software development through intelligent code comple-
tion. During various coding tasks, TabNine skillfully suggests relevant code snippets,
facilitating faster and more efficient coding processes. This capability is particularly
useful in complex coding scenarios, where TabNine adapts to developer styles and
project-specific requirements with minimal guidance, significantly accelerating de-
velopment while ensuring code accuracy and contextual relevance.

5.3.2 Evaluating TabNine with Vue.js Projects
As Vue.js gains traction within Eurosoftware’s technology stack due to its reactivity
and component-based architecture, there is a growing interest in evaluating how
AI-enabled tools like TabNine can improve coding practices within Vue.js projects.
The intuitive and adaptive nature of Vue.js provides a fertile ground for such AI-
powered code completion tools that could help accelerate development workflows
and improve code quality.

Details: The evaluation of TabNine’s functionality in Vue.js coding sessions
is thoroughly captured in a series of videos that demonstrate the tool’s real-time
code completion capabilities. These videos, located in the Results\TabNine\Vue
directory and named as giftCertificateButton.mp4, priceParameter.mp4, and
giftCertificateInputField.mp4, provide detailed examples of TabNine’s effec-
tiveness in integrating with Vue.js components. To analyze each scenario more
deeply, an accompanying text files named accordingly are available in the same
directory that provides detailed analysis alongside the respective videos.

Outcome: Throughout the evaluation of TabNine in a Vue.js environment, its
performance showed mixed results. TabNine excelled at simple coding tasks such as
adding new variables and parameters, demonstrating that it can effectively support
basic programming needs. However, it encountered significant challengeswithmore
complex visual layout tasks involving Vue.js, such as accurately predicting unique
element IDs generated by specific Eurosoftware protocols and providing useful
layout suggestions. These struggles underscored a gap in TabNine’s ability to handle

40

5.3.3 Conclusion

tasks that require deep integration with custom Vue.js environments. Overall, while
TabNine proved helpful in some aspects, the evaluation highlighted its limitations
in areas requiring a detailed understanding of complex and visually oriented coding
structures, suggesting a need for further refinement to meet higher expectations.

5.3.3 Conclusion
Exploring TabNine’s integration into software development workflows, particularly
in TypeScript and Vue.js environments, highlights its potential to improve coding
efficiency and accuracy. In TypeScript projects, TabNine excelled at providing so-
phisticated code completions that were well aligned with developer intent, thanks
to its AI-powered engine trained on large datasets. This capability allowed it to pro-
vide logical code snippets that significantly increased productivity, as evidenced by
demonstration videos showing the tool deftly handling API and additional function
implementations.

In Vue.js projects, however, TabNine struggled with the framework’s visual and
layout-specific tasks, struggling with Vue.js’ reactive system and Eurosoftware’s
unique conventions. These limitations illustrate the difficulties AI-powered tools
face with complex web development frameworks and customizations. While Tab-
Nine excels in statically typed languages such as TypeScript, improving the speed
and quality of development, its performance in Vue.js suggests the need for ongoing
enhancements to the AI model to better support the diverse and dynamic aspects
of modern web development. These findings underscore TabNine’s role as a trans-
formative tool in AI-powered coding, promising significant benefits for companies
like Eurosoftware by enabling faster development cycles and improved code quality
as the technology matures.

5.4 GitHub Copilot: A Revolution in
AI-Assisted Coding

This section explores how GitHub Copilot integrates into developers’ workflows,
highlighting its role in transforming code production from amanual and sometimes
tedious process into a more efficient and creative endeavour. Harnessing the power
of AI, GitHub Copilot does more than just complete code; it provides contextual rec-
ommendations and understands comments to generate code snippets, making it an
indispensable tool for developers across programming languages and environments.

41

5.4.1 GitHub Copilot with TypeScript

5.4.1 GitHub Copilot with TypeScript
As mentioned previously, TypeScript is becoming increasingly important in Eu-
rosoftware, reflecting its growing popularity across the technology industry. The in-
creased use of TypeScript highlights the importance of AI-powered coding wizards
such as GitHub Copilot. GitHub Copilot is a valuable tool for developers working
with TypeScript, helping to streamline workflows and increase efficiency by provid-
ing accurate coding suggestions and automating routine tasks.

Details: The investigation into the effectiveness of GitHub Copilot for Type-
Script development was meticulously documented, following the methodology pre-
viously used in the TabNine evaluations. The results are presented in a series of video
recordings available in the Results\GitHub Copilot\TypeScript Completion di-
rectory. These recordings include carwashTable.mp4, clientSecurityApi.mp4,
and const.mp4, which illustrate GitHub Copilot’s ability to provide relevant code
suggestions for various TypeScript coding scenarios. Additionally, each video is ac-
companied by a final text overview files named respectively that provides a detailed
analysis of GitHub Copilot’s performance in each scenario, further enriching the
evaluation context.

Outcome: The evaluation of GitHub Copilot in a TypeScript environment
demonstrated its exceptional ability to streamline the software development pro-
cess by effectively interpreting comments to generate complex code structures. The
tool consistently demonstrated advanced understanding and implementation capa-
bilities, successfully automating repetitive coding tasks and significantly improving
coding efficiency. Despite some initial challenges, Copilot quickly adapted, proving
its usefulness in a variety of programming scenarios and solidifying its role as a
powerful tool for developers.

5.4.2 GitHub Copilot in Java Development
With Java serving as a cornerstone of Eurosoftware’s technology stack, the intro-
duction of GitHub Copilot into the development process represents a leap forward
in using AI to improve coding efficiency. Eurosoftware approved the use of specific
Java code snippets for testing, carefully selected tominimize any potential risk to the
company. These snippets were uploaded to a private GitHub repository, allowing
for a safe and comprehensive evaluation of GitHub Copilot’s capabilities within the
Java development context.

Details:Videos demonstrating howGitHubCopilot improves Java development
can be found in the Results\GitHub Copilot\Java Completion directory. These

42

5.4.3 Vue.js code generation with GitHub Copilot Chat

videos demonstrate its usefulness in various coding scenarios, with corresponding
detailed descriptions available in the same directory to ensure a full understanding
of each demonstration.

Outcome: Throughout the evaluation series, GitHub Copilot demonstrated a
robust capability in the Java development environment, handling a variety of pro-
gramming tasks with finesse - from generating logical methods and refining user
interfaces to advanced code refactoring. Whether adding methods to simplify pro-
cesses, creating logical opposites for existing functions, or integrating user interface
elements, Copilot not only adapted to the task at hand but also excelled at providing
precise, contextually appropriate code suggestions. This performance underscores
its potential as a transformative tool for accelerating development workflows and
improving code quality, solidifying its status as a valuable asset for Eurosoftware’s
developers.

5.4.3 Vue.js code generation with GitHub Copilot Chat
Given the important role Vue.js plays in Eurosoftware’s front-end development, it is
crucial to explore the capabilities of GitHub Copilot Chat for Vue.js code generation.
In particular, this exploration focused on evaluating how well GitHub Copilot Chat
could automate and improve the creation of Vue.js components.

Details: The assessment process and outcomes were documented, reflecting the
interaction with GitHub Copilot Chat for generating Vue.js code. This documenta-
tion, stored under the path Results\GitHub Copilot\Vue Chat in the file named
chatVue.txt.

Outcome: It became clear that the AI tool struggled to accurately interpret and
implement Vue.js development conventions during various tasks to evaluate Copilot
Chat’s ability to handle Vue.js components derived fromXHTML templates. Copilot
Chat oftenmissed critical details and requirements, whether it was simplifying com-
ponentmodifications, adding elements, ormaking universal changes acrossmultiple
variations. These challenges, particularly within the Vue.js framework, highlight the
limitations of current AI tools in handling tasks that require a deep understanding
of the nuances of UI development. Despite the potential to increase productivity,
the evaluation showed that developers must maintain a hands-on approach, thor-
oughly reviewing and refining AI-generated code to ensure alignment with project
specifications and overall quality standards.

43

5.4.4 GitHub Copilot Chat for TypeScript Development

5.4.4 GitHub Copilot Chat for TypeScript Development
This evaluation took place within the context of an existing setup, using a personal,
private GitHub repository previously used for similar explorations. This strategy
allowed for a direct comparison of the effectiveness of GitHub Copilot Chat in the
context of TypeScript, without changing the original test environment, and allowed
for a smooth evaluation process. The goal of this methodical approach was to de-
termine howGitHubCopilot Chat could benefit Eurosoftware’s TypeScript projects.

Details: The evaluation process and its results have been meticulously writ-
ten up, highlighting the use of GitHub Copilot Chat in the context of TypeScript
development. These reports are stored in the Results\GitHub Copilot\TS Chat

directory, specifically in a file called chatTypeScript.txt.

Outcome: GitHub Copilot demonstrated a remarkable ability to manage Type-
Script logic and backend tasks, excelling at generating complex class structures,
accurately calling and implementing API functionality, and analyzing class struc-
tures to fill in necessary code. These tasks, which ranged from creating new classes
that mirrored existing ones to implementingmissing API calls, highlighted Copilot’s
ability to interpret instructions, navigate codebases, and efficiently deliver precise,
functional code. This performance underscores the potential of AI tools like GitHub
Copilot to increase productivity and streamline the development process by pro-
viding robust code solutions that meet specific development criteria.

5.4.5 Conclusion
Exploring GitHub Copilot’s usefulness in software development, specifically in Eu-
rosoftware’s selected Java, TypeScript, and Vue.js contexts, revealed its capabilities
and limitations. In the Java and TypeScript environments, GitHub Copilot excelled,
demonstrating a robust ability to understand complex code structures and generate
logical solutions that closely match developer intent. This performance underscores
its potential as a critical coding assistant, capable of significantly reducing manual
coding effort and allowing developers to focus onmore strategic aspects of software
development. It has proven particularly adept at navigating the back-end logic and
algorithmic complexity of Java and TypeScript projects, assisting with tasks such as
method generation, code refactoring, and API integration.

Conversely, its use in Vue.js development revealed challenges, particularly in UI
development and handling Vue.js’ specific reactive patterns. Although GitHub Copi-
lot was effective at generating code snippets and assisting with JavaScript logic, it
was less adept at handling the declarative nature and component-based architecture

44

5.5 Common Conclusion

of Vue.js. These results highlight the challenges AI-powered tools face in adapting
to the diverse and evolving landscape of web development frameworks. Despite
these hurdles, the overall impact of GitHub Copilot at Eurosoftware is overwhelm-
ingly positive, indicating significant progress toward intelligent coding assistance.
Nonetheless, the limitations observed in Vue.js underscore the complexity of fully
automating the coding process, especially in areas that require deep domain knowl-
edge and a nuanced understanding of modern front-end development.

5.5 Common Conclusion
The exploration of AI-enabled development tools reveals a landscape where capa-
bilities and growth potential coexist, providing a nuanced view of how artificial
intelligence is shaping the field of software development. This section is intended to
provide a concise overview of the research findings, with an emphasis on the practi-
cal applications and efficiencies that various AI tools offer for software development
tasks.

5.5.1 GPT-3.5
The analysis begins with ChatGPT 3.5. Table 5.1 summarizes its performance in
software development tasks, offering a clear perspective on its strengths and areas
for enhancement.

Study Area Rating Description
Explaining SQL Good Demonstrated strong capability in explain-

ing complex SQL scripts with insightful in-
terpretations.

Optimizing SQL Moderate Showed potential in SQL query optimization
with varied performance; excelled in simpler
scripts.

Explaining
Lambda Expres-
sion

Good Excelled in interpreting lambda expressions,
providing clear explanations. Mixed results
in complexity handling.

Optimizing
Lambda Expres-
sion

Moderate Demonstrated beneficial optimizations, espe-
cially in readability; faced challenges in gen-
erating fully buildable code.

Lambda Expres-
sion generation

Good Showed capability in generating lambda
expressions, with successful outcomes in
straightforward scenarios.

Table 5.1: Evaluation of ChatGPT 3.5 in Software Development Tasks

45

5.5.2 ChatGPT 4

5.5.2 ChatGPT 4
The examination progresses to GPT-4, exploring its advancements and distinguish-
ing features. The subsequent Table 5.2 outlines the assessment of GPT-4, underscor-
ing its improved proficiency in handling complex coding tasks.

Study Area Rating Description
Code Interpreta-
tion - DO DSL

Moderate Offered basic yet insightful overview for un-
familiar DO DSL, struggling with detailed in-
terconnectivity and full comprehension.

Code Interpreta-
tion - Java

Excellent Demonstrated commendable precision and
insight in Java, articulating complex relation-
ships and best practices seamlessly. Was able
to generate the pieces of code that were re-
quested.

Advanced Code
Refactoring - Java

Excellent Showed adeptness in navigating and improv-
ing complex Java code, with targeted and
meaningful optimizations.

Advanced Code
Refactoring -
DO DSL

Poor Encountered significant difficulty with
DO DSL syntax and failed to apply useful
refactoring, highlighting limitations with
less common languages.

Groovy to JShell
Translation

Moderate Managed some level of Groovy to JShell
translations, but struggled with complex or
context-heavy scripts.

Java to Python
Translation

Excellent Excellently handled Java to Python conver-
sions, maintaining logic and functionality
with detailed explanations.

XHTML to Vue.js
Translation

Poor Faced significant challenges in translating
customized XHTML to Vue.js.

Table 5.2: Evaluation of GPT-4 in Software Development Tasks

5.5.3 TabNine
The capabilities of TabNine are then examined, focusing on its code completion
and suggestion features. The ensuing Table 5.3 summarises the findings, illustrating
TabNine’s potential as a valuable asset for developers seeking enhanced efficiency
and precision.

46

5.5.4 GitHub Copilot

Study Area Rating Description
TypeScript - API
Integration

Excellent Demonstrated strong code completion capa-
bility. Shown in clientSecurityApi.mp4.

TypeScript - Addi-
tional Functions

Good Provided accurate coding suggestions
after minor adjustments, showcasing
adaptability. Efficiency demonstrated in
getFunctionContextById.mp4.

TypeScript - Com-
plex Implementa-
tion

Excellent Proved to be a robust tool in handling com-
plex TypeScript coding tasks. Demonstrated
in carwashTable.mp4.

Vue.js - Simple
Coding Tasks

Good Handled simple Vue.js coding requirements
adequately. Shown in priceParameter.mp4.

Vue.js - Layout
and Visual Tasks

Poor Struggled significantly with visual layout
tasks in Vue.js. Issues were prominent in
giftCertificateInputField.mp4 and in
giftCertificateButton.mp4.

Table 5.3: Evaluation of TabNine in Software Development Tasks

5.5.4 GitHub Copilot
Table 5.4 summarises GitHub Copilot’s performance in software development tasks,
identifying its strengths and limitations.

Study Area Rating Description
GitHub Copilot
with TypeScript

Excellent Excelled in providing accurate TypeScript
code suggestions, significantly streamlin-
ing workflows.

GitHub Copilot in
Java Development

Excellent Demonstrated robust capabilities in Java,
handling a range of programming tasks
with finesse.

Vue.js code gener-
ation with GitHub
Copilot Chat

Poor Struggled with the nuances of Vue.js UI de-
velopment, often missing critical details.

GitHub Copi-
lot Chat for
TypeScript Devel-
opment

Excellent Managed TypeScript backend tasks pro-
ficiently, showing strong performance in
code generation and API integration.

Table 5.4: Evaluation of GitHub Copilot in Software Development Tasks

47

Custom AI Model for
Enhanced Knowledge
Management

6

As we delve into the practical applications of general AI tools in software devel-
opment, it becomes apparent that while tools like ChatGPT, TabNine, and GitHub
Copilot offer significant advantages, they might not fully cater to the unique needs
of every organization. This realization brings us to Eurosoftware’s innovative ap-
proach to harnessing AI for internal knowledge sharing, especially in light of their
recent expansion and the challenges it posed.

Eurosoftware’s rapid expansion resulted in a large number of new developers,
each faced with the difficult task of navigating the company’s complex application
architecture. This complexity was made worse by the fact that documentation was
spread across Confluence, making it a real challenge for newcomers to quickly get
up to speed and become productive. This situation highlighted a critical deficiency:
the lack of an AI model that understood the nuances of Eurosoftware’s architectural
intricacies, a gap that general AI tools on the market could not fill.

6.1 Enhancing Training Data Management
with a GUI Application

The development of AImodels at Eurosoftware demands sophisticatedmanagement
of training data due to the dynamically updating Confluence base that supports
Eurosoftware’s knowledge management. To maintain the neural network’s effec-
tiveness, the frequently updated training data must adhere to a JavaScript Object
Notation Lines (JSONL) format. This format, structured as individual JSON ob-
jects per line, enhances the efficiency of data processing and is crucial for network
training:

48

6.1.1 User Interface Components

1 {

2 "input ": "User: Question: <question >?\n\nAssistant :",

3 "output ": "<answer >"

4 }

This structure supports scalability by handling large datasets effectively, ensur-
ing compatibility with diverse machine learning tools and frameworks, crucial for
integration with technologies like NVIDIA’s Lamma and Megatron.

6.1.1 User Interface Components
The GUI of the JSONL Editor application is thoughtfully designed to enhance user
experience through its comprehensive and interactive interface components. The
following figure 6.1 shows the key components:

Figure 6.1: General Overview of the JSONL Editor Interface

The application interface is divided into several functional areas, each contribut-
ing to the streamlined management and editing of jsonl files.

49

6.1.1 User Interface Components

File Management Buttons. File Management buttons, shown in figure 6.2, provide
the basic functionality for opening existing jsonl files, saving current work, and
saving the work as a new file, thus facilitating the easy management of jsonl files.

Figure 6.2: File Management Buttons: Open, Save, and Save As

Data Management Buttons. Dedicated buttons illustrated in figure 6.3 for adding
new entries or deleting existing ones enhance dynamic data management within
the application, enabling users to efficiently update the training data.

Figure 6.3: Data Management Buttons: Add and Delete Entries

Adding a New Entry. To add a new entry, users can click on the "Add Entry" button
located in the main interface. This action opens a modal window, shown in figure
6.4, designed specifically for the input of new questions and answers.

Figure 6.4: Modal Window for Adding a New Entry

Editing an Existing Entry. Editing an existing entry is facilitated by a double-click
on the desired entrywithin the interactive treeview. This action triggers the opening

50

6.1.2 Hotkeys in the Main Application

of a modal window similar in design to the "Add Entry" window but with the title
indicating that it is for editing rather than adding a new entry.

Figure 6.5: Modal Window for Editing an Existing Entry

By providing distinct modal windows for adding and editing entries, the appli-
cation ensures a seamless and intuitive user experience, facilitating the accurate and
efficient management of training data.

6.1.2 Hotkeys in the Main Application
The main application interface incorporates several hotkeys to facilitate efficient
navigation and data management. The following Table 6.1 outlines these hotkeys
and their respective actions:

Hotkey Action
Enter Edit the selected entry
Double Click Edit the selected entry
Del Delete the selected entry
Ctrl + S Save the current file

Table 6.1: Hotkeys in the Main Application

6.1.3 Hotkeys in Modal Windows
Modal windows, used for adding or editing entries, support hotkeys to streamline
the data entry and editing process. The following Table 6.2 describes the hotkeys
available within these modal windows:

Hotkey Action
Esc Close the modal window without saving changes
Enter Save the changes and close the modal window

Table 6.2: Hotkeys in Modal Windows

51

6.1.4 Data Validation and Management

These hotkeys are designed to enhance user experience by allowing for quick
and easy navigation andmanipulation of datawithin both themain application inter-
face and the modal windows. Implementing these hotkeys reflects the application’s
commitment to efficiency and ease of use.

6.1.4 Data Validation and Management
The integrity of the jsonl file is paramount for the effective training of AI models.
To this end, the application incorporates a comprehensive validation mechanism
to ensure that each entry not only adheres to the required format, with specific
placeholders for questions and answers, but also verifies the overall file structure
upon opening.

Initial File Format Validation. Upon attempting to open a file, the application first
checks that the selected file has the .jsonl extension, indicating its potential compat-
ibility with the required data format.

This process includes verifying the presence of essential keys (’input’ and ’out-
put’) within each JSON object and ensuring that the structure of these objects aligns
with the format expectations for AI model training.

Figure 6.6: Example of an Error Message During File Validation

Validation During Entry Creation and Editing. The application also enforces vali-
dation checks when creating a new entry or editing an existing one. This ensures
that the ’input’ field is not left blank and that, upon substitution of the question and
answer into the placeholders, the resulting JSON object conforms to the expected
jsonl format. This measure prevents accidental or deliberate disruptions to the data
structure, safeguarding the integrity of the training dataset. This form of validation
is crucial for maintaining a consistent and error-free data format, which in turn,
supports the efficient training of AI models.

52

6.1.5 Handling Unsaved Changes

6.1.5 Handling Unsaved Changes
To prevent data loss, the application continuously monitors for unsaved changes,
providing alerts when attempting to open a new file or exit the application. This
feature is essential for maintaining data integrity and minimizing the risk of acci-
dental data loss.

In addition to monitoring for unsaved changes within the application, a safe-
guard is implemented to address scenarios in which the file being edited has been
modified by another program or by a user outside of the JSONL editor. If an attempt
is made to save changes to a file that has been modified since it was last opened or
saved within the application, the user is immediately notified of the conflict. This
notification highlights the risk of overwriting changes made by others since the file
was last saved in the editor.

Figure 6.7: Warning Message Indicating External Modifications

Under these circumstances, the application prevents direct saving to the existing
file to avoid unintentional data loss. Instead, users are directed to use the "Save File
As" option to consciously decide whether to overwrite the externally modified file
or save their work as a new document. This step requires explicit user action, en-
suring that any decision to overwrite external changes is made deliberately, thereby
safeguarding against accidental loss of important data modifications.

6.1.6 Technical Details
The application is engineered using Python, a versatile programming language
renowned for its simplicity and the vast ecosystem of libraries. Tkinter, Python’s
standard GUI library, is chosen for its ease of use and the ability to rapidly develop
desktop applications. The core structure of the application extends tk.Tk, initiat-
ing a window with a set of features tailored for editing jsonl files, including file
manipulation, data entry, and visualization.

53

6.2 Training the Model: An Iterative Approach

6.2 Training the Model: An Iterative
Approach

The development and refinement of AI models is an integral part of advancing
technological capabilities and solving complex problems in various industries. In
this context, the management and preparation of training data play a critical role
in determining the effectiveness and efficiency of AI models. This paper provides
a comprehensive overview of the iterative process of training an AI model at Eu-
rosoftware, highlighting the importance of data preparation and optimization.

6.2.1 First Iteration: Exploratory Phase
The first iteration of AI model training at Eurosoftware was not intended for direct
model training but as an exploratory phase. This phase was crucial for evaluating the
functionality of the JSONL Editor application, which was designed to simplify the
preparation of training data for neural network training. In addition, this iteration
aimed to establish a basic set of training examples that would provide fundamental
insights into the architecture of the Eurosoftware applications.

Objectives. The primary objectives for this exploratory phase included:

• Verify the operational efficiency of the JSONL Editor to facilitate preparing
training data.

• Prepare a basic set of training samples encapsulating basic data points to
explain the architecture of the Eurosoftware applications.

• Evaluate the complexity involved in the preparation of the training data.

Data Preparation. This iteration selected six small Confluence pages describing
the company’s basic architecture and core coding standards for data preparation.
The process involved creating approximately 2-3 training examples per sentence in
the text, following the principle that each example should be a question and answer
in the correct JSONL format.

Results and Observations. The outcomes of the first iteration are summarized
in the following Table 6.3, indicating the page name and the number of prepared
training samples:

A total of 370 training examples have been created and can be found in the
Input_data\Iteration 1 directory.

54

6.2.2 Second Iteration: Preparatory Steps for Future Training

Page Name Training Samples
Big Pictures 32
Storemanager 36
Cluster Infrastructure Service (CIS) 38
Enterprise Connector (ECON) 76
First Steps With GK Retail 77
Development Rules 111

Table 6.3: Summary of Training Samples Prepared (Iteration 1)

Conclusion. This iteration was considered successful because the JSONL editor
significantly streamlined the data preparation process. It effectively ensured for-
mat correctness and allowed the focus to be on content preparation. Although the
creation of 370 training samples was a significant achievement, it underscored the
relativity of "enough data" in neural network training and highlighted the complexity
of preparing a high-quality dataset. The successful establishment of a foundational
base through these samples confirmed the utility of the JSONL editor and provided
valuable insights into the methods and tools used, setting a clear path for dataset
expansion and refinement in future iterations.

6.2.2 Second Iteration: Preparatory Steps for Future
Training

The second iteration was a foundational phase in Eurosoftware’s AI model develop-
ment trajectory. Unlike the preliminary phase, this phase focused on the necessary
preparations for the upcoming training phase. Eurosoftware dedicated a dedicated
server to this project and received guidance from Pascal Singer, a GK expert in
neural network training. Singer’s expertise was crucial in configuring the training
environment and securing the necessary access rights for the developer, ensuring a
smooth transition to the server infrastructure.

Objectives. The objectives for the second iteration were multi-faceted and aimed
at laying a more solid foundation for the AI model’s training:

• To acquaint with the server provided by Eurosoftware and understand the
steps required to commence training.

• To prepare a new set of training data and accompanying validation data to
prevent model overfitting.

Data Preparation. Following Pascal’s advice, the focus shifted towards preparing
both the training and validation datasets. The first iteration’s data was put aside

55

6.2.2 Second Iteration: Preparatory Steps for Future Training

for future review, and effort was directed towards creating new training samples
that would provide a deeper insight into Eurosoftware’s architecture. The validation
datasetwas specifically designed to prevent overfitting by slightlymodifying training
samples to include synonyms or combinations of different samples. The Table 6.4
below summarizes the prepared data:

Architecture Training Samples Validation Samples
Label & Poster Printing 47 9
Offline Mobile Store 53 11
Self Scanning 64 15
Store Management 85 17
Multitenancy 114 22
Store Device Control 151 43
Omnichannel Point-of-Sale 188 33

Table 6.4: Summary of Training and Validation Samples Prepared (Iteration 2)

A total of 702 training samples and 150 validation samples were prepared, all of
which can be found in the attachments under the: Input_data\Iteration 2 path.

Validation Data Preparation. The creation of the validation dataset was a critical
step designed to preventmodel overfitting. The validation samples were constructed
by slightly altering the training samples to include synonyms or by combining ele-
ments from different training samples, thereby ensuring that the model can gener-
alize well beyond the training data. This approach ensures that the validation data
closely mirrors the training data but differs enough to effectively test the model’s
ability to apply learned knowledge to new situations.

For instance, a training sample might be presented as follows in source code 6.1
example:

Source code 6.1: Training Sample Example
1 {" input": "User: Question: What type of communication is used

2 by central applications ?\n\nAssistant :",

3 "output ": "Central applications communicate over JMS

4 provided by CIS ."}

A corresponding validation sample would be slightly altered to include syn-
onyms, as shown below in source code 6.2 example:

Source code 6.2: Validation Sample Example
1 {" input": "User: Question: What is the primary method of

2 communication for central applications ?\n\nAssistant :",

56

6.2.3 Third Iteration: Technical Implementation

3 "output ": "The primary method of communication for

4 central applications is through JMS provided by CIS."}

Conclusion. The completion of the second iteration significantly advanced the AI
model’s training at Eurosoftware by expanding the dataset with 702 training and 150
validation samples. This phase also marked the initiation of using a Eurosoftware-
provided server under Pascal Singer’s guidance, setting a solid foundation for the ac-
tual training process. The focus on the critical importance of validation data during
this iteration established a clear path forward for the development and refinement
of the model.

6.2.3 Third Iteration: Technical Implementation
This iteration focuses on deeply understanding basic neural network training by
working with specific libraries and tools to build a solid training and evaluation
system.

Objectives. The objectives for this phase were clearly defined to ensure a structured
and efficient approach to model training:

• Familiarize with the libraries and tools necessary for neural network training.

• Prepare scripts for training and evaluating the model.

• Select an appropriate metric for model evaluation.

Tools and Libraries. In addition to the server provided by Eurosoftware, many
Python libraries and tools were used to facilitate the development and execution
of the project. The selection of tools was tailored to effectively support large-scale
neural network training:

• PyTorch Lightning: Used for organizing the training process, making it
more structured and easier tomanage. Its compatibility with distributed train-
ing environments was crucial for training large models efficiently.

• Nvidia’s CUDA 12.2 and CUDNN 8: Enabled GPU acceleration, crucial for
handling computationally intensive tasks involved in training and evaluating
neural networks.

• Nvidia Apex: Provided functionalities for mixed precision training, allowing
for faster computation and reduced memory usage while maintaining model
accuracy.

57

6.2.3 Third Iteration: Technical Implementation

• Nvidia Transformer Engine and NeMo Toolkit: Offered advanced ca-
pabilities for building and deploying transformer models, including model
parallelism and efficient training techniques.

• GCC12-C++: Ensured compatibility and optimal performance for compiling
and executing C++ extensions used by the PyTorch and Nvidia libraries.

These tools and libraries constituted the foundational elements of the project’s
technical framework, enabling the creation, training, and evaluation of complex
neural network models. Inspired by the open-source resources provided by Nvidia,
custom scripts were developed to integrate these advanced technologies seamlessly.

Model Evaluation Metrics. The initial model evaluation strategy was based on
using exact string matching as the primary metric. While straightforward, this ap-
proach quickly proved unsuitable for capturing the nuanced nature of natural lan-
guage processing. For example, consider the question "What does CIS stand for?"
and its possible answers:

1 Answer 1: CIS stands for Cluster Infrastructure Server.

2 Answer 2: Cluster Infrastructure Server.

Both responses are correct, but exact string matching would recognize only one
as valid, ignoring the semantic similarity of the responses. This realization prompted
a shift to a more flexible and comprehensive evaluation metric.

The F1 score, which harmonizes precision and recall into a single metric, was
chosen as an appropriate metric for evaluating model-generated responses, captur-
ing both false positives and false negatives for a comprehensive assessment of model
performance. In addition to this quantitative measure, a manual review process was
in place as a qualitative assessment, providing insight into the model’s interpretive
capabilities and the quality of its responses. This dual approach of using the F1 score
andmanual reviews provided a robust system for accurately determining the results
of the neural network models.

Configuration. The project used a standard configuration that was customized
to optimize the neural network training process. This configuration was critical
to effectively manage hardware resources and ensure efficient execution of train-
ing sessions. Inspired by Nvidia’s open-source examples, some configurations were
adapted and customized to meet the specific needs of our models.

The complete configuration, with detailed comments explaining each setting,
is available in the Aplication_and_libraries\Eursoftware’s Custom AI\conf

directory.

58

6.2.3 Third Iteration: Technical Implementation

Training and Evaluation Scripts. Two primary Python scripts, builder.py and inter-
face.py, were developed to manage the complex processes of training and evaluating
the neural network models. These scripts, inspired by and adapted from Nvidia’s
open-source repositories, form the operational core of the project, facilitating a
streamlined workflow for both model training and performance evaluation.

builder.py. This script encapsulates the functionality needed to configure and initi-
ate the model training and evaluation processes. It uses PyTorch Lightning to set up
the training environment, utilizing plug-ins and strategies for distributed training
and mixed accuracy. Key components of the script include

• Configuration modification functions to adjust model settings based on train-
ing needs, including aspects such as model parallelism, batch sizes, and check-
pointing strategies.

• The prepare_trainer function, which initializes the PyTorch Lightning Trainer
with specific plugins and strategies for efficient training execution.

• Model recovery and adaptation functions for loading pre-trained models and
applying prompt tuning, adapter, and other fine-tuning techniques, taking
advantage of the NeMo collection’s extensive support for language model
training.

interface.py. This script serves as a user interface for performing training and
evaluation tasks, parsing command line arguments to configure the training session
(e.g., selecting between the LLaMA and Megatron models, specifying the training
mode). It provides a straightforward mechanism for users to interact with the train-
ing framework and initiate the training or evaluation process based on the specified
configurations.

Scripts are available in Aplication_and_libraries\Eursoftware’s custom AI

directory. This directory contains not only the scripts themselves but also extensive
readme file on how to use them.

Conclusion. This phase marked significant progress toward the initial goals by inte-
grating specialized tools and libraries that facilitate a structured approach to neural
network training and evaluation. The creation of custom scripts inspired byNvidia’s
open-source contributions significantly streamlined the operational workflow, im-
proving the precision of model training and nuanced performance evaluation. A

59

6.2.4 Fourth Iteration: Initial Model Training

dual evaluation strategy, combining F1 scoring with manual review, was adopted to
effectively address the complexity of evaluating neural network output and ensure
a thorough understanding of model capabilities. Details for replicating this process
and advancing research are documented in the Custom AI\Iteration 3 directory.

6.2.4 Fourth Iteration: Initial Model Training
With the technical foundation established in the previous iterations, the focus of
the fourth iteration shifted to the actual training and evaluation of the neural net-
work models. This phase was critical for evaluating the effectiveness of the prepared
training and validation data sets, as well as the selected models and configurations.

Objectives. The objectives for this phase were designed to advance the project’s
progress through practical application and assessment:

• Train and evaluate the Megatron and LLaMAmodels using the data prepared
in the second iteration.

• Combine the data from the first and second iterations and assess the perfor-
mance of both Megatron and LLaMA models on this aggregated dataset.

Training Process. Leveraging the developments of the third iteration, training
sessions for both models began, with careful monitoring to optimize the use of com-
putational resources. Two models were trained over six sessions, averaging eight
hours per session.

The training involved two models across multiple configurations, with varying
results:

• The first LLaMA model was trained on second iteration data with a valida-
tion step of 1000, utilizing the Lora PEFT scheme. It achieved an F1 score of
0.4427. However, manual evaluation yielded negative feedback, indicating the
expected results were not met.

• The second session involved the Megatron model under identical configura-
tions but showed a decrease in performancewith an F1 score of 0.4285.Manual
evaluations confirmed the unsatisfactory outcomes.

• A third attempt with the LLaMA model, reducing the validation step to 200,
noted an improvement in the F1 score to 0.4619.Manual checks showed better,
yet still not satisfactory, results.

60

6.2.4 Fourth Iteration: Initial Model Training

• The fourth training session applied the same reduced validation step to the
Megatron model, resulting in a slightly improved F1 score of 0.4485, which
still did not meet the desired benchmarks.

• Switching strategies, a Megatron model trained using PTuning with a valida-
tion step of 200 yielded an F1 score of 0.4103. Manual evaluation was nega-
tively received.

• A similar PTuning approach on the LLaMA model produced a marginally
better F1 score of 0.4495, but manual assessments remained negative.

Given these results, it was concluded that the LLaMA model, utilizing the Lora
PEFT scheme with a validation step of 200, performed the best among all configu-
rations. This setup achieved the highest F1 score of 0.4619. Manual evaluation, sup-
ported by a selection of responses generated by the model, provided a nuanced view
of its performance. These model’s outputs can be found in Appendix in ListingC.7.

The first three responses, while closely reflecting the wording of the questions,
can be considered correct, demonstrating the model’s potential for accurate, con-
textually appropriate responses. The fourth response, however, was incorrect, illus-
trating the limitations of the model and the challenges inherent in training neural
networks. These examples represent a fraction of the questions posed, highlighting
both successes and areas for improvement.

Improving the training data. The attempt to improve the training data was made
by combining the first and second iteration data sets without changing the number
of validation questions. Due to the temporary availability of the Eurosoftware server,
and in order not to disturb the availability of the server for others, it was decided
to proceed with the training of a single model. This model, the LLaMA with the
Lora PEFT scheme and a validation step of 200, was chosen because of its superior
performance in previous tests. This approach resulted in a slight improvement in
the F1 score to 0.4693. The model’s responses also showed a minor improvement,
although they still did not fully meet expectations.

Examples of the model’s responses in this phase can be found in the Appendix
in Listing C.8.

While the first and last responses demonstrate an improved understanding and
ability to provide direct answers, the second response highlights a persistent issue
with the model’s ability to generate informative and contextually enriched answers,
as it merely rephrases the query.

61

6.2.5 Fifth Iteration: Data Expansion and Model Refinement

Conclusion. This iteration successfully advanced the project by training and evalu-
ating neural network models, where the LLaMAmodel with the Lora PEFT scheme
and a 200-validation step emerged as the optimal configuration, achieving the high-
est F1 score. Although the model showed potential for contextually appropriate
responses, it also revealed limitations in generating informative content, identi-
fying areas for future enhancement. Efforts to merge datasets from the first and
second iterations led to a marginal performance boost, underscoring the signifi-
cance of dataset quality in model training. This ongoing process of evaluation and
refinement strengthens the groundwork for further development, promising more
sophisticated neural network capabilities in upcoming phases.

6.2.5 Fifth Iteration: Data Expansion and Model
Refinement

After setting a robust technical foundation and achieving initial model training in
previous iterations, the focus of the fifth iteration shifted towards expanding the
training dataset and further testing the model’s performance.

Objectives. The main goals of this iteration were to:

• Expand the training dataset to improve the model’s learning capacity.

• Test the model with the newly expanded training data to assess performance
improvements.

Data Preparation. This phase was characterized by a significant expansion of the
training dataset. Following extensive efforts, a total of 1697 new training samples
were prepared, enhancing themodel’s exposure to varied data points. This expansion
included extended versions of previously used architectures, enriching the dataset’s
diversity and depth. Preparing this enhanced dataset was a labour-intensive task
that spanned approximately two weeks. The summary of the expanded training
samples is presented below in Table 6.5:

62

6.2.5 Fifth Iteration: Data Expansion and Model Refinement

Architecture Training Samples
Label & Poster Printing extended 120
Offline Mobile Store extended 136
Self Scanning extended 163
Store Management extended 203
Multitenancy extended 289
Store Device Control extended 334
Omnichannel Point-of-Sale extended 452

Table 6.5: Summary of Expanded Training Samples

All these training samples can be found in Input_data\Iteration 5 directory.

Model Training and Evaluation. The same model configuration identified as op-
timal in the fourth iteration was used to train on this significantly larger dataset.
Surprisingly, the F1 score post-trainingwas 0.52387943827323, onlymarginally higher
than previous iterations despite the substantial increase in training data. This out-
come was unexpected, considering the scale of data expansion. However, manual
evaluations of the model’s outputs that can be found in the Appendix in Listing C.9
revealed significant improvements.

Conclusion. The fifth iteration demonstrated that expanding the training dataset
could incrementally improve the model’s performance, as evidenced by a slight in-
crease in the F1 score and notablymore accuratemanual evaluation responses. These
results, while promising, suggest that further dataset enhancement and validation
data refinement could yield even better outcomes. However, at this stage, Eurosoft-
ware deemed the progress and results satisfactory, marking a potential pause in the
development cycle with an open door for future enhancements. This iteration’s suc-
cesses reflect the cumulative efforts of the project, showcasing the iterative nature
of AI model training and the ongoing quest for perfection.

63

Conclusion 7
This bachelor’s thesis has undertaken an in-depth investigation of artificial intel-
ligence tools and their role in the facilitation of software development within Eu-
rosoftware. The first step in this comprehensive analysis was an evaluation of pub-
licly available AI tools to assess their potential for streamlining software develop-
ment processes, particularly for Eurosoftware and similar organizations. This eval-
uation showed that while many tools are effective in various aspects of software
development, they often fall short in tasks related to User Interface development,
identifying a critical area for future improvements.

The thesis then transitioned into a more focused investigation, specifically tai-
lored to the needs of Eurosoftware. The development and implementation of a
custom JSONL editor was a major milestone. This tool proved critical in prepar-
ing and managing the large amounts of data required to train a specialized neural
network model. By processing extensive data from Eurosoftware’s enterprise appli-
cations, a solid training and validation database was successfully created.

After several iterations of testing and refinement, the results were promising,
demonstrating its potential to significantly assist in the process of retrieving in-
formation within the company. These positive results validate the effectiveness of
current AI tools and strategies and highlight the model’s ability to meet and poten-
tially exceed its intended goals. However, despite these successes, there remains a
significant opportunity to further enhance the AI model to improve its accuracy
and efficiency.

The journey of integrating AI into software development at Eurosoftware has
laid the foundation for significant operational improvements. The lessons learned
and technologies developed through this work not only enhance Eurosoftware’s ca-
pabilities but also contribute to the broader field of AI in software development. This
opens the way for future innovations and continuous advancements in AI technol-
ogy, ensuring that Eurosoftware remains at the forefront of software development.

64

List of Abbreviations A
AI Artificial Intelligence

POS Point Of Sale

IDE Integrated Development Environment

OOP Object Oriented Programming

API Application Programming Interface

XML Extensible Markup Language

Swing Java Swing

Spring Java Spring Framework

UCON/ECON Universal Connector

CIS Cluster Infrastructure Server

SDC Store Device Control

HAL Hardware Abstraction Layer

BLServices Business Logic Services

ProMoDSL Process Model Domain Specific Language

ML Machine Learning

GPT Generative Pre-trained Transformer

NLP Natural Language Processing

HTTP HyperText Transfer Protocol

SQL Structured Query Language

65

A List of Abbreviations

GUI Graphical User Interface

REST Representational State Transfer

UI User Interface

DO Domain Object

DODSL Domain Specific Language

SAP Systems Applications and Products in Data Processing

JMS Java Message Service

IDOC Intermediary DOCument

JAX-RS Java API for RESTful Web Services

JSON JavaScript Object Notation

UI5 SAP Open User Interface 5

CSS Cascading Style Sheets

HTML HyperText Markup Language

GPT-3 ChatGPT Version 3.0

GPT-3.5 ChatGPT Version 3.5

GPT-4 ChatGPT Version 4.0

GPL General Public License

LLM Large Language Model

RAG Retrieval Augmented Generation

GPU Graphics Processing Unit

SFT Supervised Fine Tuning

DPO Direct Preference Optimization

RLHF Reinforcement Learning From Human Feedback

XHTML Extensible Hypertext Markup Language

JSONL JavaScript Object Notation Lines

66

Attachments
Structure B
B.1 Application and Libraries
This section outlines the organization and content of the ‘Application_and_libraries‘
directory, which consists of various subdirectories and files.

JSONL Editor.

• application – Contains core application scripts that define the main func-
tionality of the JSONL Editor. These scripts are written in Python (‘.py‘ files),
handling data processing and editing operations.

• application_ui – Includes Python scripts responsible for creating and man-
aging the graphical user interface of the JSONL Editor. These files define
windows, dialogs, and other UI elements that interact with the user.

• main – This is the main entry script for the JSONL Editor application. It
initializes the application, setting up the environment and starting the user
interface.

• Readme – A markdown file (‘Readme.md‘) providing documentation, setup
instructions, and usage guidelines for the JSONL Editor.

• utility_functions – Consists of Python scripts that provide additional func-
tionality such as file handling, data validation, and other utility operations
which support the main application processes.

Eurosoftware’s Custom AI.

– conf – Contains YAML configuration files that specify settings for dif-
ferent operational modes of the AI model, including:

67

B.2 Input Data

∗ llama_7B.yaml and llama_7B_inference.yaml – Configuration files
for the Llama 7B model for both training and inference phases.

∗ megatron_gpt5B.yaml and megatron_gpt5B_inference.yaml – Config-
uration files for the Megatron GPT-5B model tailored for training
and inference setups.

– builder – Python scripts that construct and manage the AI model, in-
cluding its setup, execution, and training procedures.

– interface – Scripts that define the interfaces between the AI models and
other application components, facilitating data exchanges and model
interaction.

– Readme –Amarkdowndocument, providing usage guidelines for builder
and interface scripts.

B.2 Input Data
The input data is organized into several iterations.

• Iteration 1

– Contains files such as Cluster Infrastructure Service (CIS), Development
Rules, Enterprise Connector (ECON), FirstStepsWithGKRetail, and Store-
manager.

– These JSONL formatted files serve as configuration or operational data,
used as training data for developing AI NLP models.

• Iteration 2

– Includes files detailing specific architectural components such as Archi-
tecture Label & Poster Printing, Architecture Multitenancy, Architecture
Offline Mobile Store, Architecture Omnichannel Point-of-Sale, Architecture
Self Scanning, Architecture Store Device Control, and Architecture Store
Management.

– Additionally, each architectural component file is paired with a corre-
sponding validation file (- validation), used to validate the AI NLPmodel.

• Iteration 5

– Extends the architectural descriptions from previous iterations with
files named Architecture Label & Poster Printing extended, Architecture

68

B.3 Results

Multitenancy extended, Architecture Offline Mobile Store extended, Archi-
tecture Omnichannel PointofSale extended, Architecture Self Scanning ex-
tended, Architecture Store Device Control extended, and Architecture Store
Management extended.

– These files include additional, extended information about each system
component, serving as supplementary training data to enhance the AI
model’s capabilities.

B.3 Results
This section details the outcomes of several AI-assisted programming tasks. These
tasks involve generating, optimizing, interpreting, and translating code usingmodels
such as ChatGPT 3.5 and GPT-4, as well as tools like TabNine and GitHub Copi-
lot. Each sub-section below corresponds to a specific directory within the ‘Results‘
folder, where the detailed results are stored.

B.3.1 GPT-3.5
• Explaining SQL:

– SQL_expl file, contains detailed explanations of SQL queries by Chat-
GPT 3.5 with review.

• Optimizing SQL:

– Optimizing SQL file, includes optimizations of SQL queries performed
by ChatGPT 3.5 with review.

• Interpreting Lambda:

– Lambda_interpr file provides interpretations of lambda expressions,
demonstrating ChatGPT 3.5’s understanding of functional program-
ming constructs with review.

• Optimizing Lambda:

– Lambda_opt file contains optimized versions of lambda expressions by
by ChatGPT 3.5 with review.

• Generating Lambda:

– Lambda_gen file showcases lambda expressions generated by ChatGPT
3.5 with review.

69

B.3.2 GPT-4 Results

B.3.2 GPT-4 Results
• Code Interpretation:

– Java_interpr.txt and DODSL_interpr.txt files contain detailed in-
terpretations of Java andDODSL code segments byGPT-4, with reviews
of the AI’s understanding and analysis.

• Advanced Code Refactoring:

– Java_refact.txt and DODSL_refact.txtfiles include examples of code
refactoring performed by GPT-4 on Java and DODSL scripts, along with
detailed evaluations of these refactorings.

• Groovy to JShell Translation:

– Groovy_to_JShell.txt file documents the process and outcomes of
converting Groovy scripts into JShell commands by GPT-4 with review.

• Java To Python Translation:

– Java_to_Python.txt file details the translation of Java code to Python
by GPT-4, showing the AI’s capability to adapt code across different
programming languages.

• XHTML to Vue Translation:

– XHTML_to_Vue.txt file captures the translation of XHTML to Vue.js by
GPT-4, documenting the process and the results.

B.3.3 TabNine
• TypeScript:

– Files carwashTable, clientSecurityApi, getFunctionContextById
in .txt and .mp4 formats contain the outputs from TabNine’s code com-
pletions in TypeScript, illustrating its efficiency in various development
contexts.

• Vue:

– Files like giftCertificateButton, giftCertificateInputField, and
priceParameter in .txt and .mp4 formats demonstrates TabNine’s real-
time code completion capabilities in Vue.js development scenarios.

70

B.3.4 GitHub Copilot

B.3.4 GitHub Copilot
• Java Completion

– Files such as AccountingUtils, ClientFactory, DiscountSearch as
well as InvoicePrintingUtils and TenderUtils in .txt and .mp4 for-
mats demonstrates GitHub Copilot’s assistance in Java code generation,
showing its potential to enhance productivity and code quality.

• TypeScript Completion

– Evaluation results fromfiles like carwashTable and clientSecurityApi
indicateGitHubCopilot’s capabilities inTypeScript, providing contextu-
ally relevant code suggestions that improve the development workflow.

• TypeScript Chat

– The chatTypeScript file contains a detailed analysis of conversations
and interactions with GitHub Copilot, focusing on its responsiveness
and utility in TypeScript.

• Vue Chat

– The chatVue file reviews GitHub Copilot’s performance in generating
Vue.js code through interactive chat sessions, highlighting its ability to
understand and translate developer intents into functional code snip-
pets.

71

Supplementary
Materials C
C.1 Code Examples
C.1.1 Example 1: XML Layout

Source code C.1: Example of an XML layout
1 <?xml version=’1.0’ encoding=’UTF −8’?>

2 <html>

3 <head>

4 <link rel="stylesheet" href="css/common/common.css" />

5 <link rel="stylesheet" href="css/common/inputs.css" />

6 <link rel="stylesheet" href="css/custom/custom.css" />

7 </head>

8 <body id="rootPanel">

9

10 <!−− PAGE TITLE −−>
11 <div id="leftContentTopArea" slot="true" class="topArea"

layout="wrapLayout">

12 <label id="accountInfoTitle" class="pageTitle" valueKey

="registration.accountInfo.input.title"/>

13 </div>

14

15 <form name="promptAccountInfo">

16 <!−− INPUTS −−>
17 <div id="leftContentCenterArea" slot="true" class="

centerArea␣inputArea" layout="wrapLayout">

18 <div id="fieldLabel1" class="fieldLabel">

19 <input id="mainTextInput" type="text" required="

true" />

20 </div>

21 </div>

22

23 <!−− BUTTONS −−>
24 <div id="rightContentCenterArea" slot="true" class="

centerArea␣buttonsPanel␣main" layout="wrapLayout">

72

C.1.2 Example 2: ProMo Source Code

25 <input id="cancelButton" class="large␣ca" type="

button" valueKey="button.cancel" />

26 <input id="okButton" class="large␣cno" type="submit"

valueKey="button.ok" />

27 </div>

28

29 </form>

30 <!−− KEYBOARD AREA −−>
31 <iframe id="keyboardArea" slot="true" class="keyboardArea

" constraints="Last" src="/layouts/tpos/simple/keyboard/

alphaNumericKeyboardComponent.xml" bean="

alphaNumericKeyboardComponent" />

32 </body>

33 </html>

C.1.2 Example 2: ProMo Source Code

Source code C.2: AccountInfo_CST.promo example
1 dslLevel 2.13

2 Package com.gk_software.cst.pos.account_info

3 Import processModels.tpos.common.dialog.ShowMessageWithArg

4 Import processModels.tpos.common.dialog.ShowSimpleMessage

5

6 Process AccountInfo_CST

7 −> StartProcess

8

9 State

10 accountName : string

11 accountBalance : number

12 formattedBalance : string

13

14 Label StartProcess −> sub PromptUserAccount_CST(empty) /

15 take(accountName as accountName) −>

16 {

17 sub.SUCCESS / getAccountBalance −> IsZeroBalance

18 sub.CANCEL −> ReturnCancel

19 }

20

21 Switch IsZeroBalance on isZeroBalance

22 true −> ShowZeroBalanceDialog

23 false −> ShowAccountBalanceDialog

24

25 Label ShowAccountBalanceDialog −>

26 sub ShowMessageWithArg(Info ,

27 "registration.accountInfo.infoDialog",

73

C.1.3 Example 3: ProMoJ Source Code

28 process.formattedBalance) −>

ReturnSuccess

29 Label ShowZeroBalanceDialog −>

30 sub ShowSimpleMessage(Info ,

31 "registration.accountInfo.zeroBalance",

32 empty) −> ReturnSuccess

33

34 Label ReturnSuccess −> return as SUCCESS

35 Label ReturnCancel −> return as CANCEL

36

37 Action getAccountBalance

38 reads process.accountName

39 writes process.accountBalance

40 writes process.formattedBalance

41

42 Condition isZeroBalance

43 reads process.accountBalance

C.1.3 Example 3: ProMoJ Source Code

Source code C.3: AccountInfo_CST.promoj example
1 dslLevel 2.13

2 Package com.gk_software.cst.pos.account_info

3

4 // import of promo file

5 Import com.gk_software.cst.pos.client.function.registration.

account_info.AccountInfo_CST

6

7 Process AccountInfo_CST

8 references com.gk_software.pos.api.model.config.

DialogConfig_DO

9

10 Action getAccountBalance = java:com.gk_software.cst.pos.

client.registration.action.account_info.

AccountInfoActionLib_CST::getAccountBalance

11

12 Condition isZeroBalance = pojo:com.gk_software.cst.pos.client

.registration.action.account_info.

AccountInfoActionLib_CST::isZeroBalance

74

C.1.4 Example 4: Usage of DO DSL

C.1.4 Example 4: Usage of DO DSL

Source code C.4: AccountInfoRequest_CST_DO.do - java class definition
1 dslLevel 2

2

3 Package com.gk_software.cst.api.service.registration.model.

account_info

4

5 domain object AccountInfoRequest_CST_DO {

6

7 version "1.0"

8

9 master entity AccountInfoRequest_CST {

10 attribute accountName : String

11 attribute accountBalance : double

12 }

13 }

Source code C.5: AccountInfoRequestConfigs.doin - .properties file definition
1 dslLevel 2

2 Package com.gk_software.cst.api.service.registration.model.

account_info

3

4 Import com.gk_software.cst.api.service.registration.model.

account_info.AccountInfoRequest_CST_DO.

AccountInfoRequest_CST

5

6 collection AccountInfoRequestConfigs [

7

8 instance Default {

9 accountName = "testName"

10 accountInfoEnabled = 12.0

11 }

12

13]

Source code C.6: Example of .doj file - generation definition
1 dslLevel 2

2

3 Package com.gk_software.cst.api.service.registration.model

4

5 Import com.gk_software.cst.api.service.registration.model.

account_info.AccountInfoRequest_CST_DO

6

7 target m5 extends mach5j_10 {

75

C.2 Detailed Model Outputs

8 dbschemaPackage = "com.gk_software.pos.api.model.config.

dbschema"

9 mappingsPackage = "com.gk_software.pos.api.model.config.

utils"

10 utilsPackage = "com.gk_software.pos.api.model.config.

utils"

11 noReferences = "true"

12 noTuplizers = "true"

13 publicConstructor = "true"

14 }

15 target m5 , dojbin

16

17 domain object AccountInfoRequest_CST_DO {

18 package "com.gk_software.cst.gen.api.service.registration.

model.account_info"

19 factory AccountInfoRequestFactory_CST

20

21 entity AccountInfoRequest_CST {}

22 }

C.2 Detailed Model Outputs
C.2.1 Fourth Iteration: Initial Model Training Outputs

Listing C.7: Outputs of LLaMA model (Lora PEFT scheme, validation step of 200,
data from second iteration)

1 User: Question: Could POS Mobile Client be connected via the

2 Flow Service interface?

3 Assistant: Yes , POS Mobile Client could be connected via the

4 Flow Service interface.

5

6 User: Question: Are POS transactions retained in the Central

7 Transaction Pool?

8 Assistant: Yes , POS transactions are retained in the Central

9 Transaction Pool.

10

11 User: Question: The Self Checkout POS client variant sends

12 something to the SCO Assistant?

13 Assistant: The Self Checkout POS client variant sends

14 something to the SCO Assistant.

15

16 User: Question: What does CIS stand for?

17 Assistant: CIS stands for Central Inventory Service.

76

C.2.2 Fifth Iteration: Expanded Data Model Outputs

Listing C.8: Outputs of LLaMA model (Lora PEFT scheme, validation step of 200,
data from first and second iteration)

1 User: Question: Is automatic print function in Label Print

2 Service done on master data change?

3 Assistant: Yes , automatic print function in Label Print

4 Service is done on master data change.

5

6 User: Question: The Self Checkout POS client variant

7 sends something to the SCO Assistant?

8 Assistant: The Self Checkout POS client variant sends

9 something to the SCO Assistant.

10

11 User: Question: How to access the Mobile Workbench web

12 client from mobile devices?

13 Assistant: Mobile devices can access the Mobile Workbench

14 web client via a mobile browser.

15

16 User: Question: What does CIS stand for?

17 Assistant: CIS stands for Cluster Infrastructure Server.

C.2.2 Fifth Iteration: Expanded Data Model Outputs

Listing C.9: Outputs of LLaMA model (Lora PEFT scheme, validation step of 200,
expanded data from all iterations)

1 User: Question: What role does SDC play in master data

management?

2 Assistant: SDC plays a crucial role in master data

management by providing a central repository for master

data , facilitating the creation , maintenance , and sharing

of master data across the system.

3

4 User: Question: How to access the Mobile Workbench web

client from mobile devices?

5 Assistant: Access the Mobile Workbench web client from

mobile devices via a web browser.

6

7 User: Question: What does CIS stand for?

8 Assistant: CIS stands for Cluster Infrastructure Server.

9

10 User: Question: The Self Checkout POS client variant sends

something to the SCO Assistant?

11 Assistant: Yes , the Self Checkout POS client variant sends a

request to the SCO Assistant for processing.

12

13 User: Question: What does ECON stand for?

14 Assistant: ECON stands for Enterprise Connector.

77

C.3 User Manual: JSON Editor Application

15

16 User: Question: Are POS transactions retained in the Central

Transaction Pool?

17 Assistant: Yes , POS transactions are retained in the Central

Transaction Pool.

C.3 User Manual: JSON Editor Application
This manual provides guidance on using the JSON Editor, a tool designed to create,
edit, and manage JSONL files effectively.

C.3.1 Setting Up Application on Windows
1. Check if Python is installed by typing in Command Prompt:

python --version

If Python is not installed, download and install it from https://www.python.

org/downloads/ ensuring that you check “Add Python to PATH” during the
installation.

2. Download and extract the JSON Editor’s source code.

3. Navigate to the application’s directory in Command Prompt and run:

python main.py

C.3.2 Setting Up Application on Linux
1. Check if Python is installed by typing in Terminal: python3 --version If
not, install Python and pip using your distribution’s package manager, for
example:

sudo apt-get install python3 python3-pip

2. Download and extract the JSON Editor’s source code.

3. Navigate to the application’s directory and start it by running:

python3 main.py

78

https://www.python.org/downloads/
https://www.python.org/downloads/

C.3.3 File Management

C.3.3 File Management
• Open File: Load JSONL files for editing.

• Save File: Save current changes to the open file.

• Save File As: Save the current file under a new name.

C.3.4 Editing Entries
• Add Entry: Add new entries to the JSONL file.

• Edit Entry: Modify existing entries. Double-click an entry or select it and
press Enter to edit.

• Delete Entry: Remove selected entries from the file.

C.3.5 Opening a File
To open a file, use theOpen File button on the main interface. Navigate to the file’s
location, select it, and click Open.

C.3.6 Adding and Editing Entries
To add a new entry, click the Add Entry button. To edit an existing entry, either
double-click on the entry or select it and press Enter. This will open amodal window
where you can edit the Question and Answer fields.

C.3.7 Saving Files
To save changes to the currently open file, click the Save File button. If you wish to
save the file with a new name, click the Save File As button.

C.4 User Manual: AI Training and Validation
Scripts

This manual provides guidance on using the Training and Validation Scripts on
Linux

C.4.1 System Requirements
To ensure proper functionality of Training and Validation Scripts, the following
dependencies must be installed:

79

C.4.2 Setting up the Environment

• PyTorch (compatible with CUDA 12.2)

• Nvidia GPU with CUDA 12.2 support

• CUDA 12.2

• CUDNN 8

• GCC12-C++

• Nvidia Transformer Engine

• Nvidia NeMo Toolkit Version 1.21

• Nvidia Apex

C.4.2 Setting up the Environment
Begin by creating and activating a new Conda environment:

conda create --name confluence python==3.11

conda activate confluence

C.4.3 Installing PyTorch
Install PyTorch by using the PyTorch configurator:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c py-
torch -c nvidia

Please refer to the PyTorch configurator to select the correct installation command
for your system.

C.4.4 Apex Installation
Install Nvidia Apex by first setting up your CUDA environment:

conda install -c nvidia cuda-nvprof=12.1

pip install packaging

git clone https://github.com/NVIDIA/apex

cd apex

vim setup.py

pip install -v --disable-pip-version-check --no-cache-dir --

no-build-isolation --config-settings "--build-option=--cpp_ext" -

-config-settings "--build-option=--cuda_ext" ./

80

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/apex
https://pytorch.org/get-started/locally/

C.4.5 Transformer Engine and NeMo Toolkit

C.4.5 Transformer Engine and NeMo Toolkit
For the Transformer Engine, ensure C++17 and compatible compiler are in use:

export CXX=/usr/bin/g++-12

export CC=/usr/bin/gcc-12

export NVTE_FRAMEWORK=pytorch

git clone --branch stable --recursive

https://github.com/NVIDIA/TransformerEngine.git

cd TransformerEngine

pip install .

Finally, install the NeMo Toolkit:

pip install nemo-toolkit==1.21.0

C.4.6 Docker Container Setup
docker login nvcr.io

docker pull nvcr.io/nvidia/nemo:23.08

docker image ls

docker run --env CUDA_VISIBLE_DEVICES=0,1 --gpus all --ipc=host -

-ulimit memlock=-1 --ulimit stack=67108864 -it -P -

v ./confluence:/workspace/confluence -v ./pretrained-

models:/workspace/pretrained-models <YOUR_IMAGE_ID> /bin/bash

C.4.7 Setting Environment Variables
export NVTE_FLASH_ATTN=1

export NVTE_FUSED_ATTN=0

export NVTE_FUSED_ATTN_BACKEND=0

C.4.8 Executing Training and Validation Scripts
This section describes how to use the torchrun command to operate training and
validation scripts. The command provided is configured for either training or infer-
ence processes based on the model and configuration file specified.

torchrun --nproc_per_node=4 interface.py -c llama -tr true

81

C.4.8 Executing Training and Validation Scripts

Parameters Description.

• -c (Model Configuration): This parameter can accept either llama or mega-
tron as values. It determines whichmodel to initiate and which configuration
file to use. For example:

– llama will utilize llama_7B.yaml

– megatron will utilize megatron_gpt5B.yaml

If the -tr parameter is set to false, the corresponding inference configura-
tion files (llama_7B_inference.yaml or megatron_gpt5B_inference.yaml)
will be used instead.

• -tr (Training or Inference): This boolean parameter defines whether to run
the process as a training session (true) or as inference (false).

• -a (Accuracy Evaluation): This optional parameter indicates whether to
evaluate the model’s accuracy. It is set to false by default, but can be set to
true to perform accuracy assessment.

Configuration Adjustments. Once you have decided on the operation mode and
understood the parameters, you may need to adjust the configuration accordingly:

If you are setting up for a training configuration file will require adjustments
such as:

• name: This affects the naming of your model instance, e.g., llama_7B.

• model.tokenizer.model: Enter the path to the tokenizer ../pretrained-
models/language-models/llama2-7b-hf/tokenizer.model for example.

• model.peft.peft_scheme: Select a PEFT scheme, e.g., lora.

• model.data.train_ds.file_names: This is an array of strings containing the
file names for training, e.g., ["./data/iteration5_1.jsonl"].

• model.data.validation_ds.file_names: For training, you also need to spec-
ify validation data files, e.g., ["./data/validation5.jsonl"] - only in train-
ing configuration files.

For inference operations, additional adjustments include:

82

C.4.9 Logging and Monitoring

• model.peft.restore_from_path: Path to restore the model from, e.g.,

./training/llama-7B-it5/checkpoints/llama-7B-it5.nemo.

• inference.outfile_path: Output path formodel responses, e.g., /workspace/-
confluence/output.txt.

Adjustments should reflect your specific data paths and model requirements.
Additional comments on what a particular position in the .yaml file does can be
found in the configuration file itself

C.4.9 Logging and Monitoring
Tomonitor training progress, use TensorBoard. This utility logs all events and check-
points:

tensorboard --log-dir ./training_info --port 6006 --bind_all

83

Bibliography

[Beh23] BEHLER, Marco.What is Spring Framework? An Unorthodox Guide. mar-
cobehler, 2023-06-23. Available also from: https://www.marcobehler.
com/guides/spring-framework.

[Bru19] BRUSH, Kate. Definition Jira. TechTarget, 2019-12. Available also from:
https://www.techtarget.com/searchsoftwarequality/definition/

Jira.

[Col23] COLLINS, Tom.What is Maven in Java? (Framework and Uses). Browser-
Stack, 2023-07-26. Available also from: https://www.browserstack.
com/guide/what-is-maven-in-java.

[Con24] CONROY, Shaun. GPT 4 Image Input: How to use ChatGPT Image Input
feature. TechTarget, 2024-04-09. Available also from: https://silentpcreview.
com/gpt-4-image-input-chatgpt/.

[Iwu24] IWUOZOR, John.Confluence Review 2024: Features, Pros AndCons. Forbes,
2024-01-04. Available also from: https://www.forbes.com/advisor/
business/software/confluence-review/.

[Kel24] KELLY, Will. GPT-3.5 vs. GPT-4: Biggest differences to consider. TechTar-
get, 2024-02-27. Available also from: https://www.techtarget.com/
searchenterpriseai/tip/GPT-35-vs-GPT-4-Biggest-differences-

to-consider.

[Koç09] KOÇYIĞIT, Altan. Object Oriented Programming with Java I. 2009. Avail-
able also from: https://ocw.metu.edu.tr/course/view.php?id=23.

[Kuc23] KUCHAIEV, Oleksii.NeMoMegatron-GPT 5B. 2023. Available also from:
https://huggingface.co/nvidia/nemo-megatron-gpt-5B. Accessed:
2024-04-16.

[Law22] LAWSON, Loraine. Code Stays Behind Firewall with Copilot Alternative
Tabnine. The New Stack, 2022-06-29. Available also from: https ://
thenewstack.io/code- stays- behind- firewall- with- copilot-

alternative-tabnine/.

84

https://www.marcobehler.com/guides/spring-framework
https://www.marcobehler.com/guides/spring-framework
https://www.techtarget.com/searchsoftwarequality/definition/Jira
https://www.techtarget.com/searchsoftwarequality/definition/Jira
https://www.browserstack.com/guide/what-is-maven-in-java
https://www.browserstack.com/guide/what-is-maven-in-java
https://silentpcreview.com/gpt-4-image-input-chatgpt/
https://silentpcreview.com/gpt-4-image-input-chatgpt/
https://www.forbes.com/advisor/business/software/confluence-review/
https://www.forbes.com/advisor/business/software/confluence-review/
https://www.techtarget.com/searchenterpriseai/tip/GPT-35-vs-GPT-4-Biggest-differences-to-consider
https://www.techtarget.com/searchenterpriseai/tip/GPT-35-vs-GPT-4-Biggest-differences-to-consider
https://www.techtarget.com/searchenterpriseai/tip/GPT-35-vs-GPT-4-Biggest-differences-to-consider
https://ocw.metu.edu.tr/course/view.php?id=23
https://huggingface.co/nvidia/nemo-megatron-gpt-5B
https://thenewstack.io/code-stays-behind-firewall-with-copilot-alternative-tabnine/
https://thenewstack.io/code-stays-behind-firewall-with-copilot-alternative-tabnine/
https://thenewstack.io/code-stays-behind-firewall-with-copilot-alternative-tabnine/

Bibliography

[Lep] LEPPILAMPI, Tuomas. THE BENEFITS (AND PITFALLS) OF GITHUB
COPILOT. Eficode. Available also from: https://www.eficode.com/
blog/the-benefits-and-pitfalls-of-github-copilot.

[Met23] META. Llama-2-7b. 2023. Available also from: https://huggingface.
co/meta-llama/Llama-2-7b. Accessed: 2024-04-16.

[NVI23a] NVIDIA. NeMo Megatron. 2023. Available also from: https ://docs .
nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/nlp/

megatron.html. Accessed: 2024-04-16.

[NVI23b] NVIDIA. NVIDIA NeMo Framework. 2023. Available also from: https:
//nvidia.github.io/NeMo/. Accessed: 2024-04-16.

[NVI23c] NVIDIA. What Is NVIDIA NeMo? 2023. Available also from: https :
//www.nvidia.com/en- us/ai- data- science/products/nemo/. Ac-
cessed: 2024-04-16.

[Ram23] RAMEL, David. Tabnine Unveils AI Assistant for Visual Studio 2022, Chat
Beta. Visual Studio Magazine, 2023-08-18. Available also from: https://
visualstudiomagazine.com/articles/2023/08/18/tabnine.aspx.

[Rar23] RAROQUE, Chris.How To Use GitHub Copilot. Aloa, 2023. Available also
from: https://aloa.co/blog/how-to-use-github-copilot.

[Ros23] ROSHELOVA,Albena.RevolutionizingDevelopment: Exploring AI-Powered
Code Tools — Copilot and Tabnine. Medium, 2023-03-27. Available also
from: https://medium.com/@aroshelova.tech/revolutionizing-
development-exploring-ai-powered-code-tools-copilot-and-

tabnine-6e1a88f1a2d7.

[Son23] SONI, Mitesh. Eclipse IDE: An Overview. Open Source ForU, 2023-05-
08. Available also from: https://www.opensourceforu.com/2023/05/
eclipse-ide-an-overview/.

85

https://www.eficode.com/blog/the-benefits-and-pitfalls-of-github-copilot
https://www.eficode.com/blog/the-benefits-and-pitfalls-of-github-copilot
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/nlp/megatron.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/nlp/megatron.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/nlp/megatron.html
https://nvidia.github.io/NeMo/
https://nvidia.github.io/NeMo/
https://www.nvidia.com/en-us/ai-data-science/products/nemo/
https://www.nvidia.com/en-us/ai-data-science/products/nemo/
https://visualstudiomagazine.com/articles/2023/08/18/tabnine.aspx
https://visualstudiomagazine.com/articles/2023/08/18/tabnine.aspx
https://aloa.co/blog/how-to-use-github-copilot
https://medium.com/@aroshelova.tech/revolutionizing-development-exploring-ai-powered-code-tools-copilot-and-tabnine-6e1a88f1a2d7
https://medium.com/@aroshelova.tech/revolutionizing-development-exploring-ai-powered-code-tools-copilot-and-tabnine-6e1a88f1a2d7
https://medium.com/@aroshelova.tech/revolutionizing-development-exploring-ai-powered-code-tools-copilot-and-tabnine-6e1a88f1a2d7
https://www.opensourceforu.com/2023/05/eclipse-ide-an-overview/
https://www.opensourceforu.com/2023/05/eclipse-ide-an-overview/

List of Figures

2.1 Central Architecture Scheme . 19

6.1 General Overview of the JSONL Editor Interface 49
6.2 File Management Buttons: Open, Save, and Save As 50
6.3 Data Management Buttons: Add and Delete Entries 50
6.4 Modal Window for Adding a New Entry 50
6.5 Modal Window for Editing an Existing Entry 51
6.6 Example of an Error Message During File Validation 52
6.7 Warning Message Indicating External Modifications 53

86

List of Tables

5.1 Evaluation of ChatGPT 3.5 in Software Development Tasks 45
5.2 Evaluation of GPT-4 in Software Development Tasks 46
5.3 Evaluation of TabNine in Software Development Tasks 47
5.4 Evaluation of GitHub Copilot in Software Development Tasks 47

6.1 Hotkeys in the Main Application . 51
6.2 Hotkeys in Modal Windows . 51
6.3 Summary of Training Samples Prepared (Iteration 1) 55
6.4 Summary of Training and Validation Samples Prepared (Iteration 2) . . 56
6.5 Summary of Expanded Training Samples 63

87

List of Listings

6.1 Training Sample Example . 56
6.2 Validation Sample Example . 56
C.1 Example of an XML layout . 72
C.2 AccountInfo_CST.promo example 73
C.3 AccountInfo_CST.promoj example 74
C.4 AccountInfoRequest_CST_DO.do - java class definition 75
C.5 AccountInfoRequestConfigs.doin - .properties file definition 75
C.6 Example of .doj file - generation definition 75
C.7 Outputs of LLaMA model (Lora PEFT scheme, validation step of

200, data from second iteration) 76
C.8 Outputs of LLaMA model (Lora PEFT scheme, validation step of

200, data from first and second iteration) 77
C.9 Outputs of LLaMA model (Lora PEFT scheme, validation step of

200, expanded data from all iterations) 77

88

	Introduction
	Eurosoftware s.r.o.
	Company introduction
	Basic technologies
	Confluence
	Jira
	Anna

	Development Technologies
	Git Lab
	Eclipse
	JetBrains Products
	SoapUI and Postman
	Dbeaver

	Programming Languages
	Java
	XML
	Web Development Languages at Eurosoftware
	ProMo
	ProMoJ
	DO DSL

	Architecture
	Core Architectural Solutions
	OmniPOS Architecture

	Possible development facilitations
	Universal Improvement Opportunities
	SQL Operations
	Lambda Expressions
	Advanced Code Refactoring
	Cross-Language Code Translation
	Code Explanation and Interpretation:

	Facilitation Opportunities for Eurosoftware
	Confluence
	Domain Specific Languages
	Custom XML and CSS
	Integrated Coding Advisor Plugin

	Leveraging Existing Tools for Enhanced Development
	Exploring ChatGPT: A Comparative Analysis
	ChatGPT 3.5
	ChatGPT 4
	Conclusion

	Exploring Tabnine: AI-Powered Code Assistance
	Cloud-Based Model
	Local Processing Model
	Hybrid Model Adaptability
	Conclusion

	Exploring GitHub Copilot: AI-Assisted Coding
	Adaptive Learning
	Security Considerations
	Personal Evaluation
	Conclusion

	Custom NLP Model: Eurosoftware's Approach
	Potential of NVIDIA NeMo in Custom AI Development
	Llama 2 7B Model
	Megatron-GPT 5B Model

	Practical Application of General Tools
	ChatGPT 3.5: Free-to-use conversational AI
	Explaining SQL Scripts
	Optimizing SQL Queries
	Explaining Lambda expression
	Optimizing Lambda expression
	Lambda expression generation
	Conclusion

	ChatGPT 4: Paid conversational AI
	Code Interpretation with GPT-4
	Advanced Code Refactoring with GPT-4
	Groovy to JShell Translation
	Java to Python Translation
	XHTML to Vue.js Translation
	Conclusion

	TabNine: Enhancing Development with AI
	Evaluating TabNine with TypeScript
	Evaluating TabNine with Vue.js Projects
	Conclusion

	GitHub Copilot: A Revolution in AI-Assisted Coding
	GitHub Copilot with TypeScript
	GitHub Copilot in Java Development
	Vue.js code generation with GitHub Copilot Chat
	GitHub Copilot Chat for TypeScript Development
	Conclusion

	Common Conclusion
	GPT-3.5
	ChatGPT 4
	TabNine
	GitHub Copilot

	Custom AI Model for Enhanced Knowledge Management
	Enhancing Training Data Management with a GUI Application
	User Interface Components
	Hotkeys in the Main Application
	Hotkeys in Modal Windows
	Data Validation and Management
	Handling Unsaved Changes
	Technical Details

	Training the Model: An Iterative Approach
	First Iteration: Exploratory Phase
	Second Iteration: Preparatory Steps for Future Training
	Third Iteration: Technical Implementation
	Fourth Iteration: Initial Model Training
	Fifth Iteration: Data Expansion and Model Refinement

	Conclusion
	List of Abbreviations
	Attachments Structure
	Application and Libraries
	Input Data
	Results
	GPT-3.5
	GPT-4 Results
	TabNine
	GitHub Copilot

	Supplementary Materials
	Code Examples
	Example 1: XML Layout
	Example 2: ProMo Source Code
	Example 3: ProMoJ Source Code
	Example 4: Usage of DO DSL

	Detailed Model Outputs
	Fourth Iteration: Initial Model Training Outputs
	Fifth Iteration: Expanded Data Model Outputs

	User Manual: JSON Editor Application
	Setting Up Application on Windows
	Setting Up Application on Linux
	File Management
	Editing Entries
	Opening a File
	Adding and Editing Entries
	Saving Files

	User Manual: AI Training and Validation Scripts
	System Requirements
	Setting up the Environment
	Installing PyTorch
	Apex Installation
	Transformer Engine and NeMo Toolkit
	Docker Container Setup
	Setting Environment Variables
	Executing Training and Validation Scripts
	Logging and Monitoring

	Bibliography
	List of Figures
	List of Tables
	List of Listings

