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Abstract

In the realm of computer science and information technology, scientific methodologies can be
categorized into two overarching paradigms: analytical approaches and strategies grounded
in machine learning or optimization techniques. In the context of machine learning, the
massive employment of neural networks contrasts with the limited explainability of their
internal processes. The Universal Approximation Theorem formulated as early as the 1990s
also suggests room for improvement in recent trends, particularly in the design of network
architectures. This study delves into fundamental neural principles and presents a new per-
spective on working with them by introducing an original methodology for designing neural
network architectures tailored to address the classification problems at hand. At the core of
the method lies the fusion of a genetic algorithm, attention mechanism, and reinforcement
learning utilized for training agents within a multi-agent system. The developed algorithm
is evaluated on five classification scenarios, ranging from simple, interpretable 2D tasks to
complex multi-dimensional and multi-class problems. A minimal network architecture is
generated for each task. Experimental evaluation indicates promising scalability in handling
larger parameter sets, hints at partial explainability in generated network architectures and
unveils new directions for future research and exploration.

Anotace

Vědecké postupy a metody v oblasti výpočetní techniky a informačních technologií lze
z širšího úhlu pohledu rozdělit na analytické přístupy a strategie založené na strojovém
učení či optimalizačních technikách. V rámci strojového učení hraje klíčovou roli využití
neuronových sítí, jejichž výsostné postavení kontrastuje s omezenými možnostmi vysvětlení
jejich vnitřních procesů. Všeobecná aproximační věta formulovaná již v 90. letech minulého
století také naznačuje prostor pro vylepšení dnešních trendů, především pak postupu při
návrhu architektur sítí. Tato práce nabízí alternativní pohled na využití neurálních principů
představením vlastní metody pro návrh architektury neuronové sítě vedoucí k řešení zadaného
klasifikačního problému. Základním stavebním kamenem práce je kombinace genetického
algoritmu, attention mechanismu a reinforcement learningu pro učení agentů v multiagentním
systému. Navržený algoritmus je vyhodnocen na pěti klasifikačních problémech, které
zahrnují jednoduché úlohy vykreslitelné ve 2D prostoru, ale i komplexní problémy o více
dimenzích a třídách. Pro každou úlohu je vygenerována ukázková minimální struktura sítě.
Zpracované výsledky naznačují další možnosti využití a otevírají širokou škálu nových směrů
pro budoucí výzkum.
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SVM Support Vector Machine



Nomenclature xvi

T5 Text-to-text Transfer Transformer

TDNN Time-Delay Neural Network

TRPO Trust Region Policy Optimization

Symbols - Neural Networks

∆(i) r-by-p matrix of errors on r neurons in ith layer for all samples

τ number of time-steps (context-dependent structures)

A(i) r-by-p matrix of activities of r neurons in ith layer for all samples

a<t> activity of a (recurrent) neuron at time t

a(i)k activity of kth neuron in ith layer

B(i) vector of r biases for r neurons in ith layer

b(i)k bias connected to kth neuron in ith layer

c<t> state of a (recurrent) neuron at time t

f ′(·) derivative of the transfer function f (·)

f (·) transfer function

M number of classes

N problem dimension (sample size; number of features)

o<t> output of a (recurrent) neuron at time t

q number of hidden layers

S number of samples

U m-by-p matrix: desired network output (targets) for all samples

W (i) r-by-s matrix of weights for synapses connecting s neurons in (i−1)th layer to
r neurons in ith layer

w(i)
k,l weight of synapse from lth neuron in (i−1)th layer to kth neuron in ith layer

X n-by-p matrix: network input (samples)



Nomenclature xvii

Y m-by-p matrix: predicted network output for all samples (Y = A(q))

Z(i) r-by-p matrix of activations for r neurons in ith layer for all samples

z(i)k activation of kth neuron in ith layer

Symbols - Reinforcement Learning and Multi-Agent Systems

γ discount factor, γ ∈ [0,1]

π policy

a<t> action at time t

Q(π)(s,a) Q-value of state s under policy π when taking action a

R<t> Return at time t

r<t> reward at time t

s<t> state at time t

v(π)(s) value of state s under policy π

Graphical Symbols

hidden feedforward node

hidden recurrent node

input node

output node

b
addition (signal plus b)

concatenate two signals

copy a signal

f    
function of the signal: f (·)

w
multiplication (signal times w)



Chapter 1

Introduction

The remarkable journey of technological progress, spanning from the invention of the
Turing machine in 1936 to the widespread adoption of personal computers around the 1980s,
and culminating in the rapid advancements in hardware over the past two decades, has
profoundly shaped both our daily lives and society at large. In tandem with the advances in
hardware development, the ongoing exploration of theoretical principles continually pushes
the boundaries of what is achievable with computers. This trend is beautifully characterized
by Captain Jonathan Archer from the Star Trek series, highlighting the inherent human
curiosity and desire to explore the uncharted territories.

"It’s the unknown that defines our existence. We are constantly searching,
not just for answers to our questions, but for new questions."

Driven by both enthusiasm and market demands, technology is gradually integrated to be
more and more in contact with humans. Bound together by their shared dependence on
computational power, technological methods can be divided into two broad categories:

• Deterministic methodologies. These systems handle tasks that can potentially be
resolved analytically or can be represented by limited state spaces, ensuring predictable
and guaranteed results. They encompass all IT systems used in sectors such as banking,
healthcare information, industrial control, or public administration.

• Optimization strategies and machine learning. In contrast, the majority of real-world
problems are so complex that even the most advanced computers cannot exhaustively
explore all possible combinations to find a solution. These encompass combinatorial
NP problems, as well as tasks like weather forecasting or self-driving cars development.
Here we use optimization techniques and machine learning models that are nowadays
almost exclusively grounded in the principle of neural networks.
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Neural networks, aiming to replicate the workings of the most powerful machine ever
invented – human brain, have emerged as the dominant machine learning technique. Their
influence reached a milestone in 2022 with the release of ChatGPT by OpenAI, marking
a pivotal moment in bringing the AI phenomenon to the forefront of public consciousness.
It’s challenging to identify shortcomings in these large language models, as they operate
almost seamlessly, fulfilling the expectations one might have for an AI tool and some in
the community speculate that further advancements are hindered by hardware limitations
only. On the other hand, there are three fundamental aspects inherent to LLMs that cannot be
resolved solely by scaling up:

• Hallucination. This phenomenon in LLMs refers to the model’s ability to generate
plausible but false information. It occurs due to the model’s attempt to generate text
that fits the context, even if the information it generates is not grounded in reality.

• Explainability. Explaining the decisions made by neural networks in general (not only
LLMs) poses significant challenges due to their complex architectures and vast numbers
of parameters. Ensuring trust in a model’s application relies on its transparency. Thus,
the idea of scaling up its size seems like a move in the opposite direction.

• Adaptivity. Fine-tuning neural networks allows for parameter adaptation to new obser-
vations. However, for real-time applications requiring model updates based on new
real-world data, minimizing (not scaling up) the number of parameters becomes essen-
tial. Adaptation is also closely linked to the explainability of the model, as optimal
adaptation requires pinpointing where to make targeted changes within the network.

In this work, the aim is not to challenge the capabilities of LLMs, but rather to explore
the application of fundamental neural principles from a different perspective. Rather than
scaling up the size of models, we focus on designing architectures of very tiny models. The
concept is supported by the Universal Approximation Theorem [26], initially proposed by G.
Cybenko in 1989 and later complemented by subsequent works such as [57]. The theorem
states the following.

A feedforward neural network with a single hidden layer, containing a finite
number of neurons, can approximate any continuous function on a compact
subset of Euclidean space to any desired degree of accuracy, given a sufficiently
large number of neurons.

The ongoing research in this field is evident in recent studies such as [44] from 2018 and
the latest publication [62] in 2023, which demonstrates that a three-layer neural network can
represent any multivariate function. Despite this potential, there are two key challenges.
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1. Training algorithm: Despite advancements, the Backpropagation algorithm from the
1970s remains a cornerstone in training neural networks.

2. Architecture design: Building optimal neural network architectures, due to the enor-
mous number of potential combinations, remains a challenge.

In this work, the second challenge is addressed by introducing a novel approach for designing
neural networks tailored to arbitrary classification problems. In contrast to conventional
neural architecture search methods, which typically involve tuning the meta-parameters
based on Bayesian optimization [12, 32, 38, 67], reinforcement learning [136, 102, 63],
or evolutionary algorithms [81, 108], in this work, the state space is directly formed by
the variants of network architecture, particularly its components. We leverage the analogy
between neural networks and multi-agent systems, integrating a multi-agent reinforcement
learning algorithm enhanced with a specialized attention mechanism. The reinforcement
learning policy is trained to modify the neural network architecture, acting as the mutation
mechanism within a broader loop that integrates genetic algorithm principles. This seemingly
complicated approach is described in detail, illustrating how seamlessly each individual
method and component intertwine and complement one another.

The developed algorithm is evaluated on five classification scenarios, ranging from
simple, interpretable 2D tasks to complex multi-dimensional and multi-class problems. The
evaluation indicates promising scalability in handling larger parameter sets and hints at partial
explainability in generated network architectures. In this sense, this work opens a portion of
research questions and offers multiple directions for future research and exploration.

1.1 Thesis Objectives

The primary aim of this study is to explore fundamental principles and propose an innovative
methodology in the realm of designing neural network architectures for arbitrary classification
problems. Throughout this endeavour, several incremental steps have been identified and
subsequently addressed:

1. Provide an in-depth examination of the evolution of neural network architectures
throughout history. Discuss their underlying principles and assess their suitability
for tackling various ML problems. Additionally, include a overview of widely used
optimization techniques for the learning algorithm.

2. Work out a summary of currently available techniques addressing the problem of neural
architecture search (NAS).
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3. Outline the principles and technologies employed in the proposed methodology.

4. Present the developed methodology for constructing neural network architectures.

• Formulate the problem and state the motivation for addressing it.

• Present the key ideas and the developed algorithm.

• Define research questions and specify the experiments to be evaluated.

5. Select appropriate testing examples and propose an experimental setup. Evaluate the
effectiveness of the proposed algorithm.

6. Discuss the obtained results and elaborate on potential future research directions.

1.2 Thesis Outline

The thesis introduction provides a historical context and outlines the primary motivation
behind the research. It offers a glimpse of the hypotheses proposed and the results obtained,
serving as a trailer for what is to come in the thesis. Finally, it articulates the objectives of
the study, setting the stage for the subsequent chapters.

Chapter 2 offers an in-depth exploration of neural networks, tracing their historical
evolution from the mid-20th century to the present day. It delves into the development of
various network architectures over time, discusses the learning algorithms employed, and
provides insights into the current state-of-the-art in the field of neural architecture search.

Chapter 3 extensively covers the principles supporting the proposed method. It provides
detailed explanations of reinforcement learning algorithms, focusing particularly on their
application. Additionally, the chapter explores multi-agent systems and discusses the appli-
cation of RL within them. Finally, it briefly touches upon the concept of genetic algorithms
and the human-in-the-loop principle.

Chapter 4 introduces the developed method. It begins with a thorough problem formula-
tion and hypothesis establishment. Subsequently, key concepts are presented, followed by
an in-depth explanation of the overarching algorithm. Finally, the chapter concludes with
suggestions for future research directions.

Chapter 5 presents the experimental evaluation of the proposed methodology. It starts
by introducing the experimental setup and metrics used in the evaluation. Next, the chapter
provides several examples demonstrating the deployment of the developed algorithm.

The study is discussed in Chapter 6 and subsequently concluded in Chapter 7. In the
appendices, readers can find a summary of the notation conventions used and the user manual,
including implementation details.
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Neural Networks

The original model of an artificial neuron, trying to imitate key features of a biological
neural cell, dates back to 1943, when W. S. McCulloch and W. Pitts came with a highly
simplified version [85]. A step-by-step elaboration over the years led to teachable systems
nowadays known as artificial neural networks. These systems, the way we have been using
them recently, are capable of learning and performing a human-like behaviour when solving
one particular task. In the realm of specific tasks, particularly those that are not highly
complex, methods based on artificial neural networks consistently yield fascinating results.
Consequently, these methods are rightfully regarded as state-of-the-art classifiers, regressors,
and, more recently, especially effective in the domain of generative models.

The term Artificial Neural Network (ANN) includes various methods that share a neural
basis but differ primarily in their architectures and the types of data structures they can handle.
Many issues across different domains can be formulated as machine learning problems. The
initial step towards creating a successful ML system lies in an accurate problem formulation,
data representation and preprocessing. Subsequently, the optimal artificial neural network
architecture is typically selected based on the task definition and the nature of the data to
be processed. In the following sections, we delve into a description of the most frequently
used network architectures categorizing them into three groups. The first group encompasses
architectures that rely on the static states of their cells. By referencing Eq. 2.1, where z<t>

i

denotes the state of the ith cell (neuron) at time t, we differentiate these from architectures
featuring dynamic cells, where the current state is a function of the previous one.

architecture ∼

static, if z<t+1>
i ̸= f unction(z<t>

i ) ∀ i ∀ t

dynamic, if ∃ i, t : z<t+1>
i = f unction(z<t>

i )
(2.1)
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Static systems (architectures) are commonly known as Feedforward architectures (see
Sec. 2.2). On the other hand, dynamic systems, as determined by Eq. 2.1 and typically de-
picted with loops, fall under the category of Recurrent architectures (Sec. 2.3). Additionally,
despite their potential inclusion in the first static group, we introduce a third distinct category
for Transformer architectures (Sec. 2.4) due to their unique data processing characteristics.

Another approach to categorize ANNs is to explore the most significant breakthroughs
chronologically, which is well documented in [72]. As already said, the first attempts date
back to the middle of the 20th century, while the first real opening came in 1958 with
the idea of a perceptron by Frank Rosenblatt (detailed in Sec. 2.2.1). At that time, the
foundations of the majority of today’s neural networks were established. Architectures
primarily composed of derivatives of these perceptrons have proven effective and continue to
be utilized extensively to this day.

The perceptron’s promising capability of learning the basic OR/AND/NOT functions was
further extended into a multi-category classifier presented as the ADALINE structure [121].
However, the enthusiasm of having a tool to solve complex AI problems was suppressed
shortly thereafter, as it turned out perceptrons are not able to solve linearly inseparable tasks,
such as the XOR problem. Today we know that those tasks are solvable using multiple non-
linear layers (i.e., hidden layers), but at that time the way of making multilayer perceptrons
learn had not been yet invented. This epoch is known as the AI winter, as especially
skeptical conclusions of the Minsky’s work Perceptrons [88] caused a freeze to funding and
publications in AI.

The key Backpropagation learning algorithm (described in Sec. 2.6) based on the chain
rule was firstly derived and implemented to run on computers by Finnish student S. Lin-
nainmaa [79] in 1970 and in 1974 proposed to be used for neural networks after analyzing
it in depth in [129]. This author was, interestingly, loosely inspired by Sigmund Freud’s
psychological theories about modelling the human mind with the concept of a backward
flow of credit assignment. Even though the math had been already derived and the algorithm
discovered, mostly because of the lack of academic interest and the loss of the faith in tackling
problems pointed out in Perceptrons, the approach was popularized more than a decade
later in [113]. Finally, the mathematical proof that multiple layers allow neural networks
to theoretically implement any function, and certainly XOR, was given in [58]. Since then,
ANNs have become popular again and started to be applied to real-world applications, such
as the Handwritten Zip Code Recognition problem [74].

In response to the evolving demands of different tasks, numerous network architectures
and optimization methods have been introduced over the years. Here’s a brief chronological
list of some of the most significant breakthroughs:
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1982 Hopfield network [56]; The architecture is not actually related to the backpropagation
learning and even dates back earlier. The Hopfield network was considered a recurrent
structure, however, not really in the manner we imagine recurrent networks today. It
served as a content-addressable associative memory system and it is described in more
detail in Sec. 2.3.5.

• SOM – Self-organizing maps [70]; Introduced by Finnish professor T. Kohonen, SOMs
produce a low-dimensional (typically a two-dimensional) discretized representation
of the input space and is therefore a method to do dimensionality reduction using
unsupervised learning (more in Sec. 2.5).

1986 Boltzmann machine [52]; This approach can be seen as a stochastic and generative
counterpart of the Hopfield network. The restricted version (RBM) is being used in
deep learning for weights pre-training till today (detailed in Sec. 2.3.5).

1987 TDNN – Time Delay Neural Network [127]; Mainly motivated by the speech recogni-
tion task, there was a need to consider context dependencies in data. The time-delay
network is a special version of a multilayer feedforward neural network with the
ability of context modeling and classification of patterns with shift-invariance (more in
Sec. 2.2.2).

• Autoencoders [16]; Based on the neural principles, ANN structures started to be used
for compression and data encoding tasks (see Sec. 2.5).

1990 Backpropagation through time [36]; The key idea for using backpropagation on recur-
rent neural networks lies in unrolling loops into several networks connecting one to
another and limiting the number of time steps (see Sec. 2.3).

• Application in robotics, control engineering and games [93]; At that time, ANNs started
to be used as decision makers in another branch of machine learning - reinforcement
learning (see Sec. 3.1). The research in [78] showed a successful application to tasks
like wall following or door passing as well as to playing logical games. Those programs
soon reached their limits though and were not even close to the well-known Alpha Go
or Chess artificial players we know today.

1993 Siamese (twin) network [19]; The idea of using the same weights for two models
working in tandem was highly popularized in the era of deep learning, especially for
computer vision tasks, however, the original idea is much older (more in Sec. 2.5).
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1995 Wake-sleep algorithm [51]; G. E. Hinton and his team kept working on some extra
tricks for a slightly different belief net setup, which was later on called The Helmholtz
Machine [27]. It basically allowed the training of Boltzmann Machines to be done
much faster.

• Other (not ANN) methods; With the idea of the kernel trick [25], Support Vector
Machines (SVMs) became a mathematically optimal way of training an equivalent to a
two layer neural network and started to be seen as superior to neural nets. Moreover,
also other methods, notable Random Forests [54] proved to be very effective while
having a neat mathematical theory behind them.

1997 LSTM – Long Short-Term Memory [55]; At that time, the key invention for sequential
data modeling, capable of learning the long-term dependences in data, was published
in 1997, however, its full power was also reached later with deep learning. The method
is detailed in Sec. 2.3.1.

• BRNN – Bidirectional Recurent Neural Network [119]; In this approach, two recurrent
layers of opposite directions of the data flow are connected to the same output. Calling
it a generative deep learning, the output layer can get information from past (backwards)
and future (forward) states simultaneously (see Sec. 2.3.3 for details).

1998 CNN – Convolutional Neural Network [75]; One of the most important ideas in the
field of ANNs was published in 1998, when Yan Lecun, inspired by the weight-sharing
mechanism in TDNNs, used a similar principle for positional-dependent features
(especially useful for images) and invented convolutional layers (see Sec. 2.2.3).

2002 Restricted Boltzmann Machines in deep learning; With the failure of backpropagation
in learning of deep structures, the early 2000s were a dark time for neural networks
research again. The restricted version of a Boltzmann machine (see Fig. 2.20b) was
initially invented under the name Harmonium in 1986 [120], however, in 2002, G.
Hinton and his team came with the idea to use RBMs for weights initialization in
networks with many layers [49], which led to a fast learning algorithm and significantly
influenced the birth of deep learning.

2006 A fast learning algorithm for deep belief nets [10]; This algorithm meant a breakthrough
significant enough to rekindle the interest in neural nets again. The movement in deep
learning started with this paper and the idea that neural networks with many layers
could be trained well, if the weights are initialized in a clever way rather than randomly.
Since then the deep learning has been here and no winter is in sight.
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2013 Deep Q-Learning [90]; Using deep ANNs in RL tasks was firstly published in 2013
and subsequently got even more attention in 2017 with so-called DQfD incorporat-
ing demonstrations (expert knowledge) into deep reinforcement learning, enhancing
sample efficiency and accelerating learning (see Sec. 3.1.5).

• Self-supervised learning [87]; While not explicitly using the exact term, the idea of
training models on large amounts of unlabeled data to learn useful representations is a
foundational concept that aligns with the principles of self-supervised learning.

2014 GRU – Gated Recurrent Unit [24]; Alongside the LSTM cell, GRU is the other gating
mechanism that were commonly used in recurrent structures at that time. The GRU
cell has fewer parameters and seems to be more efficient and faster, while LSTMs are
generally more accurate on datasets with longer sequences. Details in Sec. 2.3.2.

• Attention mechanism [8]; This key innovation revolutionized neural networks by
allowing them to selectively focus on specific elements within input sequences. Inspired
by human visual attention, it greatly improved the performance of models in tasks
like machine translation and image captioning. The mechanism was firstly used
in [8] for sequence-to-sequence learning and later massively incorporated into all
Transformer-based applications. The concept is detailed in Sec. 2.4.1.

• GAN – Generative Adversarial Network [42]; GANs are considered one of the most
interesting recent ideas in deep learning. There is a generator part producing fake
samples with respect to the given dataset and trying to fool the second part - a discrimi-
nator, which is trying to learn boundaries between real and fake samples. There are
many real-world applications (more in Sec. 2.5).

2015 Batch normalization [61]; This very basic but still significant optimization gained
widespread adoption after its effectiveness in accelerating training and improving
generalization was demonstrated.

2017 Transformer - Attention is All You Need [126]; This groundbreaking contribution
has arguably been the most impactful advancement in the field of AI, revolutioniz-
ing sequence-to-sequence tasks in NLP. Departing from RNN or CNN structures,
Transformers rely on self-attention mechanisms to process input sequences in paral-
lel, enabling more efficient training on large datasets. This innovation has become
a cornerstone in deep learning, with applications extending beyond NLP to various
domains, such as computer vision or reinforcement learning. The Transformer’s impact
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is evident in subsequent models like BERT, GPT, and T5, highlighting its enduring
significance in the field.

• Capsule networks [115]; Proposed as an alternative to traditional convolutional neural
networks, capsule networks aim to address issues related to viewpoint variation and
hierarchical feature learning.

2018 BERT – Bi-directional Encoder Representations from Transformers [31]; A Transformer-
based encoder-only approach that revolutionized natural language processing by pro-
viding high-quality text embeddings (details in Sec. 2.4.3).

2019 GPT – Generative Pre-trained Transformer [105]; This approach introduced by Ope-
nAI, is a Transformer-based decoder-only model designed for unsupervised pre-training
on vast amounts of text data. GPT has revolutionized natural language processing by
learning contextualized language representations, enabling its adaptation to various
downstream tasks through fine-tuning (see Sec. 2.4.4 for details).

2020 T5 – Text-to-Text Transfer Transformer [106]; This encoder-decoder Transformer-
based approach, introduced by Google, is a versatile NLP model that frames all tasks
in a text-to-text format. The unified approach simplifies various tasks and has proven
effective for tasks like translation and summarization. Pre-trained on large datasets and
fine-tuned, T5 demonstrates the power of a unified architecture for diverse language
understanding tasks (see Sec. 2.4.5).

2021 DALL-E [96] This model from OpenAI revolutionized the world by introducing a
model capable of generating diverse and high-quality images from textual descriptions.

2022 ChatGPT [95] As the release of the Transformer architecture in 2017 marked a signifi-
cant breakthrough for the AI community, the introduction of OpenAI’s public version
of conversational AI chatbot in 2022 became a game changer for the rest of the world.
Based on the GPT (Generative Pre-trained Transformer) architecture, it showcases
the application of extensive unsupervised learning for natural and dynamic dialogue
generation.

2023 Large Language Model Meta AI (LLaMA) [125] This is an open language model
released by Meta (Facebook), free to be fine-tuned on custom datasets. It is a Meta’s
response to OpenAI’s GPT models.

A complete list of important ANN techniques described in more detail is presented in
sections below, sorted out based on the purpose rather than the year of invention.
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2.1 Biological Analogy

The human brain is historically considered the most sophisticated machine ever observed.
Its capability of solving complex tasks, learning new skills and actually being somehow
responsible for the human consciousness and the way we perceive the world around us is
shrouded in mystery. Due to its complicated structure, it is one of the last, if not the only
one, human organ that we cannot accurately describe and explain its functionality. Both, the
enormous computational power as well as the curiosity to reveal the mystery, make us try to
mimic its behaviour artificially.

Let’s sum up the facts related to the purpose of this work. As far as we know, the
human brain consists of approximately 100 bilion neural cells and each of these cells can
have up to 15,000 connections with other neurons via synapses. The neurons are capable
of generating electrical signals called action potentials, which allows them to transmit
information quickly [11]. The work of a single neuron consists of three basic functions that
are being processed in three main parts of a cell (see Fig. 2.1):

1. dendrites - receive signals (or information) from outside;

2. soma - processes the incoming signals and determines whether or not to pass the
information along;

3. axon - communicates the signals to other cells.

Fig. 2.1 A biological neural cell [130]

The single cell itself does not seem that complicated and therefore, what produces the
behaviour solemnly called inteligence, must be the enormous amount of the cells and virtually
an infinite number of combinations of connecting them. Out of the many, there are several
facts about the human brain that are interesting for this work [30]:

• Multitasking is impossible. Should it look like that from the outside, we are actually
super-quickly switching context instead.
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• Brain is a powerful machine. The speed of information flow is about 250 mph. It
is capable of about 1,000 processes per second. The capacity of the memory is
challenging to quantify precisely, but estimates suggest the brain can store around 2.5
petabytes of information.

• High energy consumption: Despite representing only about 2% of the body’s weight,
the brain consumes approximately 20% of the body’s energy. Compared to the human
brain’s average energy consumption of 20 watts, the power usage of LLMs during
inference may vary, possibly ranging from tens to hundreds of watts.

• Asynchronous processing and fault tolerance: Minor failures will not result in memory
loss. The architecture is decentralized.

• Unique fingerprint: Each brain anatomy is unique. The patterns of neural connections
are distinct, contributing to individual differences in cognition and behavior.

• Neuroplasticity - in a lifetime, the brain is shaped partly by genes and largely by
experience. The size is tripled the first year of life, stops developing in our late 40s and
gets smaller as we get older. However, there is no evidence that the brain size matters.
More importantly, neurons as well as synapses can die and new ones can be born and
reorganized during a process called neurogenesis. Once a new neuron is born, it moves
(is guided by chemical signals) to its final location. The final step of neurogenesis is
the differentiation step, when the neuron settles and starts to communicate with its
neighbours.

• Brain areas - there are different circuits in the brain responsible for different tasks. For
example, reading aloud uses different pathways than reading silently.

• Short term memory lasts about 20-30 seconds. Most people hold memory for numbers
or letters around 7 seconds and can store up to 7 digits in the working memory.

• Dreaming mystery: The purpose and mechanisms of dreaming remain a mystery to
scientists. Dreaming occurs during the rapid eye movement (REM) stage of sleep, and
it’s thought to play a role in memory consolidation.

The complexity of a complete structure of the biological brain is incalculable and there-
fore, there is not the only general design of ANNs being used. Instead, several highly
simplified architectures have been developed over the years, each of them designed for a
specific task type in machine learning. Those tasks are defined by the nature of the problem
to be artificially solved.
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2.2 Feedforward Architectures

There are no loops in feedforward architectures and the work of a single cell is defaultly
based on the principle of a perceptron [111]. In Fig. 2.2, with the reference to the biological
template in Fig. 2.1, there are dendrites of kth neuron in ith layer carrying signals a(i)k,1, ...,a

(i)
k, j

that are being adjusted by parameters b(i)k ,w(i)
k,1, ...,w

(i)
k, j. Then the soma modelled as the blue

part and finally the axon holding the output signal a(i)k (see notation conventions in App. A).

                         NEURON
 
 
 
 
 

zk
(i)

:
f   

wk,1
(i)

wk,2
(i)

wk,j
(i)

ak,1
(i-1)

ak,2
(i-1)

ak,j
(i-1)

bk
(i)

ak
(i)

Fig. 2.2 An artificial neuron.

The process of firing the neuron consists of two steps. At first, assuming j being the
number of input synapses (dendrites), the activation of the neuron z(i)k is computed (Eq. 2.2).

z(i)k =
j

∑
l=1

[a(i−1)
l ·w(i)

k,l]+b(i)k (2.2)

with a(0) = x being the network input. Then we apply a chosen transfer function (see
Sec. 2.2.1) to get the neuron activity (Eq. 2.3).

a(i)k = f (z(i)k ) (2.3)

2.2.1 Multi-Layer Perceptron (MLP)

The default (vanilla) neural network consists of multiple nodes arranged into layers. In
Fig. 2.3, there is an example of such a structure with 2 input nodes (green), 1 output node
(red) and one hidden layer of 3 nodes.
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Fig. 2.3 Example of a feedforward (MLP) architecture.

In general, the size of the input layer is given by the problem dimension n and the size
of the output layer, assuming a classification problem, is determined by the number of
classes m. By default, the structure is considered fully-connected, so for each node there is
a synapse to all nodes in the following layer. Arranging neurons into layers is one of the
many deviations of the artificial approach from the biological template, however, it enables
fast matrix computations for inference and learning procedures. Including a hidden layer
makes the classifier capable of solving linearly inseparable tasks and in [58], it was proven
that multiple layers can theoretically implement any function. However, despite the proof
of a theoretical possibility, the optimal way of initialization and training is not known. As
basic as this structure is, it is still widely used under names dense, feedforward, MLP or
fully-connected. The network is trained by tuning its parameters (weights and biases) using
the backpropagation algorithm explained in Sec. 2.6.

Transfer (activation) functions.1 The learning algorithm (Sec. 2.6) needs the activation
function to be (easily) differentiable. The most common activation functions are hyperbolic
tangent, sigmoid, ReLu and recently also swish [107] (Fig. 2.4).

4 2 0 2 4
z

2

1

0

1

2

f(z)
tanh(z)
(z)

ReLu(z)
swish(z)

Fig. 2.4 Common transfer (activation) functions.

1The depicted transfer functions find applications also in other architectures.
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Softmax function The softmax function, also referred to as the Boltzmann or Gibbs
distribution in physics and statistical mechanics, was initially used in 1868 and later adopted
in the field of deep learning [28]. Its purpose is to transform a vector of m real values into
another vector of m real values, ensuring that the resulting values sum up to 1, and thereby
allowing them to be interpreted as probabilities. The Softmax function is defined by Eq. 2.4,
where zi denotes the i-th element of the input vector z with a size of m.

Softmax(zi) =
ezi

∑
m
j=1 ez j

(2.4)

2.2.2 Time Delay Network (TDNN)

This approach is a special version of the MLP with the capability of classification of temporal
patterns with shift invariance, such as speech for example. The shift invariant classification
means that there is no explicit segmentation required prior to classification.

z f     

# 
fe

at
ur

es
 (n

=3
)

 # tim
esteps (τ=

2)

t
t-1

Fig. 2.5 Single TDNN cell connected to the input layer.

The idea was firstly presented in [127]2 on the task of phoneme recognition. In Fig. 2.5,
there is an example of a single TDNN cell and the way it is connected to features in the input
layer.

There is no change in the functionality of the cell body (see the perceptron in Fig. 2.2),
but there is a difference in the arrangement of its inputs. As shown graphically in Fig. 2.5
and mathematically in Eq. 2.5, there are additionally past (time-delayed) features included.
There is a window of τ time-steps shifted over a stream of context-dependent features and the
cell activation z is then computed as a weighted sum of all the features from the contextual
window taken from the input sequence of features.

2The notation in the original paper is different to the one in this work.
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z =
n

∑
i=1

τ−1

∑
j=0

[x<t− j>
i ·wi, j]+b (2.5)

For two-dimensional signals (such as time-frequency patterns or images) there is a 2D
context window. Typically, multiple TDNN units (designated as ψ in Fig. 2.6) are organized
into layers within the architecture. Layers closer to the input generally capture finer details,
while those further from the input tend to model more abstract features, as they aggregate
inputs from wider context windows.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

input layer

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

hidden layer 1

# 
un

its
 (Ψ

)time

# 
fe

at
ur

es
 (N

)

time

Fig. 2.6 A time-shifted window over the input data stream for a TDNN network.

The number of weights for each unit is given by the number of features and the window
size. The key idea is based on sharing the weights, as the contextual window moves along
the input sequence. In the backpropagation training (see Sec. 2.6), the weight update is
then computed as an average of suggested updates for all window positions and thus the
shift-invariance is achieved.

In Fig. 2.7, there are two design choices illustrated: 1) for time t, the contextual window
may include future time-steps as well as past time-steps (here <t-6, t+3>); 2) the number of
time-steps can be subsampled in order to reduce the number of operations [100].
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output
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hidden 1

input

time

-3 +1

t

t+1t-3

-1 -1+1 +1

t-4 t+2

+1+1+1+1 -2-2-2-2

t-6 t+3

Fig. 2.7 The TDNN principle with subsampling (red) and without subsampling (red + gray).

2.2.3 Convolutional Network (CNN)

Following the theory of receptive fields in the human visual cortex [59], there was the idea of
so-called neocognitron in [41], which can be considered the origin of the CNN architecture.
However, the standard reference is from [75], when a pioneering 7-level CNN was applied to
classify handwritten digits on bank checks in the USA. The developement was inspired by
the TDNN theory (Sec. 2.2.2) and even the principle is identical with certain settings3.

The most common application is the visual imagery analysis and the motivation for using
CNNs instead of the MLP (Sec. 2.2.1) has two points:

• Parameters reduction - using the MLP, a typical 256x256 image on the input results in
56,000 ·ψ parameters, where ψ is the number of units in the following hidden layer.
In CNN the weights are cleverly shared and thus their quantity is significantly reduced.

• Consideration of contextual dependencies - there is clearly a relationship between
space and pixels in images. Two nearby pixels are much more correlated than two
distant pixels and the CNN approach takes this fact into account.

3The approach is identical to the TDNN (Sec. 2.2.2) in case of stride = 1 (1D data).
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Compared to the MLP approach, many synapses are actually removed and the decision
which synapses remain is based on our understanding of the space-importance property.

Fig. 2.8 explains the principle of the convolution on a 1D input. There are several
hyper-parameters to be set when a CNN is designed:

• Filter size - the set of shared weights is called a filter. In Fig. 2.8a, the filter consists of
w1 and w2 and thus its size equals 2.

• Stride - the step size when moving the filter. In Fig. 2.8a, stride = 2.

• Padding - optionally, the input space can be padded by zeros around its boundaries.
There is no padding in the example in Fig. 2.8a.

• Number of filters - adding more filters is illustrated in Fig. 2.8b. Each filter is then
defined by its own set of weights and is shared by connections to ψ units in the
following layer.

The number of units ψ in the following layer depends on stride and padding.

HIDDEN 
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INPUT 
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w1

w1

w2

w2

(a) CNN (1D data): a single filter.
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INPUT 
LAYER 

 
 
 
 
 
 
 
 
 
 
 
 

. . .

# filters (Φ)

# units (Ψ)

(b) CNN (1D data): multiple filters

Fig. 2.8 The CNN (1D data) principle.

The most common usage of the CNN architecture is for the classification (or generally
the analysis) of images. An image of width W and height H is defined by a 2D matrix and
thus a 2D convolution is applied. The concept is very similar to the 1D case, here we just
have 2D filters (w×h) and as a result there is a 3D shaped hidden layer generated (width ψ1,
height ψ2, number of filters φ ).
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Fig. 2.9 CNN principle (2D data). The yellow-marked w×h filter in the input layer corre-
sponds to the little yellow cube in the hidden layer.

Besides the size, images are often described by several channels (usually R, G, B) as well.
This might seem to be the third dimension on the input, however, as the filter is not slided
along the channels (it is only slided in the width and height dimensions), the convolution is
still considered 2D.

The 3D convolution can be applied to a video for example. Alongside the width and
height dimensions of the frames there is additionally the time dimension. Unlike the channels
case, ordering in time has a meaning for the network to capture, therefore we slide the filter
in three dimensions and the hidden layer is 4-dimensional here (width ψ1, height ψ2, time
ψ3 and number of filters φ ). As in the 1D case, the number of filters is chosen and the rest
depend on the stride and padding parameters.

INPUT 
LAYER 

 
 
 
 
 
 
 
 
 
 
 
 
 

W

H

w

h

T

t

HIDDEN 
LAYER 

 
 
 
 
 
 
 
 
 
 
 
 
 

Ψ2

Ψ1
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Fig. 2.10 CNN (3D data). For example a video (width, height, time).

Convolutional layers are commonly combined with the max-pooling mechanism and
finished by standard feedforward layers (Sec. 2.2.1).
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Pooling [132].
This method is typically applied consequently to convolutional layers (see Sec. 2.2.3)

in CNNs, in order to reduce the dimensions of the feature maps. The most popular type is
called max-pooling and its principle is illustrated in Fig. 2.11.

7 5

4 2

7 1 5 0

3 6 4 1

1 4 0 1

2 0 1 2

Fig. 2.11 Principle of the max-pooling method.

2.2.4 Residual Network

The Residual Network (ResNet) architecture, commonly referred to as skipping connections
[45], was initially introduced to address the vanishing gradient problem. In deep structures
with numerous hidden layers, gradient updates may exponentially decrease, leading to poor
updates in early layers. The ResNet design tackles this issue by incorporating alternative
paths for the backpropagation algorithm through added connections that skip subsequent
layers.

layer layerReLux +
H(x) = F(x) + x

H(x)

F(x)

Fig. 2.12 Residual Network (ResNet) – skipping connection – principle.

Later, this approach demonstrated its effectiveness in the forward pass and is widely
utilized, such as in Transformer architectures combined with Attention layers (refer to Sec.
2.4). The underlying concept is illustrated in Fig. 2.12. The addition operation is a form of
skip connection, also known as a shortcut connection.
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2.3 Recurrent Architectures

Unlike the restricted direction of the information flow in feedforward structures, recurrent
networks have loops - outputs of units with a specific state can generally be used as inputs to
cells in the same or even previous layers.

Regarding the goals of this work, there are several interesting architectures (special kinds
of RNNs) described below, but first, we start with the common and nowadays mostly used
RNN approach based on the idea from 1986 [113]. Since then, the crucial breakthroughs
related to recurrent neural networks and context modeling are:

• the backpropagation-through-time algorithm [36] - capability of learning using the
standard backpropagation algorithm (Sec. 2.6);

• the LSTM cell [55] - capability of learning long-term dependencies (Sec. 2.3.1);

• using RBM for weights initialization [49] - capability of learning for deep RNNs;

• Transformer [126] - This novel approach to sequence processing has outperformed
recurrent neural networks across all domains (further discussed in Section 2.4).

In a form of a directed graph along a (usually temporal) sequence, such a network is
capable of dealing with contextual dependencies in data. In contrast to the TDNN approach
(Sec. 2.2.2), the ability of processing input sequences of a variable length is done in a much
more sophisticated way. The loops allow to work with an internal state (memory) for each
cell. Typical RNN tasks generally differ one from each other as illustrated in Fig. 2.13:

(a) one-to-one - a fixed-sized input to a fixed-sized output, no need of RNN (e.g. image
classification);

(b) one-to-many - sequence output (e.g. image captioning - an image is taken as the input
and the systems outputs a sentence);

(c) many-to-one - sequence input (e.g. sentiment analysis - a sentence is classified to be of
a positive or negative sentiment);

(d) many-to-many - sequence input and output (e.g. machine translation);
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time

(a) (b) (c) (d)

Fig. 2.13 Sequence data - task types. Figure is inspired by [69].

Assuming that the processed sequences are temporal (context-dependent over time) and
so sequential samples are indexed by <t>, the default RNN cell is illustrated in Fig. 2.14a [4].
For each timestep t, the cell activation a<t> and the output o<t> are computed as follows:

a<t> = fa(waa ·a<t−1>+wax · x<t>+ba) (2.6)

o<t> = fo(wya ·a<t>+bo) (2.7)

where waa, wax, wya, ba, bo are parameters that are shared over time and fa, fo are chosen
transfer functions (see Sec. 2.2.1).

za<t>

zo<t>

a<t-1>

wax

waa

ba

fa   
a<t>

bo

fo 

woa

o<t>

x<t>

(a) Default RNN - cell body.

 
y<t>

 
y<t+1>

x<t+1>x<t>

a<t-1> a<t> a<t+1>

(b) Information flow in the default RNN.

Fig. 2.14 Default RNN - cell body and data flow.
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In general, RNN models are mostly used in the fields of natural language processing and
speech recognition. A particular model is designed for different applications like for example
machine translation, phoneme recognition or sentiment analysis. The nature of the RNN
approach allows processing inputs of any length and as the weights are shared over time,
the model size does not increase with the input size. However, several special versions have
been developed over the years (Sec. 2.3.1 - 2.3.3) in order to deal with the main drawbacks
of RNNs in general:

• RNNs suffer from the vanishing and exploding gradient problems, which occur during
the training process. When backpropagating through time, gradients can either become
extremely small (vanish) or extremely large (explode). This makes it difficult for RNNs
to learn long-range dependencies in sequences. This has been addressed by the idea of
gates in the cell body (LSTM - Sec. 2.3.1 and GRU - Sec. 2.3.2).

• Each time step depends on the previous time step, leading to a sequential bottleneck
that can slow down training and inference, especially for long sequences.

• The default RNN version cannot consider any future input for the current state - a
bidirectional version (BRNN - Sec. 2.3.3) can.

• The computation is notably sluggish, posing challenges in training with extensive
datasets, and the computational time scales directly with the length of the sequence.

2.3.1 Long Short-Term Memory (LSTM)

With respect to the number of layers, the multiplicative gradient can be exponentially de-
creasing/increasing. This phenomena is known as the vanishing/exploding gradient problem
(see Sec. 2.6.2) and it makes the default RNN incapable of capturing long term dependencies
in the data sequence.

Originally introduced in [55], there are so-called gates inside the cell body that filter the
information passing through. In the LSTM cell (Fig. 2.15), there is a cell state c<t> working
like a conveyor belt that affects the activation a<t> and is regulated by these gates:

• forget gate g<t>
f - decides what information is thrown away from the cell state using

the sigmoid transfer function (Fig. 2.4), f f (·) = σ(·);

g<t>
f = σ(w f · [a<t−1>,x<t>]+b f ) (2.8)
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• input gate g<t>
i - decides what information is stored in the cell state using the sigmoid

transfer function (Fig. 2.4), fi(·) = σ(·);

g<t>
i = σ(wi · [a<t−1>,x<t>]+bi) (2.9)

• candidate gate g<t>
c - creates new candidate values that could be added to the cell state

and so together with the input gate decides about the update of the cell state using the
hyperbolic tangent as the transfer function (Fig. 2.4), fc(·) = tanh(·);

g<t>
c = tanh(wc · [a<t−1>,x<t>]+bc) (2.10)

• output gate g<t>
o - decides what information is sent to the output using the sigmoid

transfer function (Fig. 2.4, fi(·) = σ(·)) and combined with the cell state generates the
activation of the cell (Eq. 2.13);

g<t>
o = σ(wo · [a<t−1>,x<t>]+bo) (2.11)
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Fig. 2.15 Long Short-Term Memory (LSTM) cell.

Finally, a new cell state c<t> and a new activation value a<t> are expressed as follows:

c<t> = g<t>
f × c<t−1>+g<t>

i ×g<t>
c (2.12)

a<t> = g<t>
o × tanh(c<t>) (2.13)
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2.3.2 Gated Recurrent Unit (GRU)

There have been several experiments over the years slightly adjusting the body of the LSTM
cell - a good comparison of those versions is provided in [43]. The most popular modified
version of the general LSTM template is called GRU [24]. It combines the forget and input
gate into a single update gate and merges the cell state with the hidden activation state. As
illustrated in Fig. 2.16, the gates are:

• reset gate g<t>
r - decides how much of the past information is forgotten using the

sigmoid transfer function (Fig. 2.4), fr(·) = σ(·);

g<t>
r = σ(wr · [a<t−1>,x<t>]+br) (2.14)

• update gate g<t>
u - the update to the activation of the cell is expressed as follows

( fu(·) = σ(·)):

g<t>
u = σ(wu · [a<t−1>,x<t>]+bu) (2.15)

• candidate gate g<t>
c - the new candidate values are given as follows ( fc(·) = tanh(·)):

g<t>
c = tanh(wc · [g<t>

r ×a<t−1>,x<t>]+bu) (2.16)
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Fig. 2.16 Gated Recurrent Unit (GRU) cell.

Finally, the new activation value is expressed as follows:

a<t> = (1−g<t>
u )×a<t−1>+g<t>

u ×g<t>
c (2.17)
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Both, LSTM and GRU versions, have been widely used in parallel. In general, the LSTM
is believed to work better for larger datasets, while the GRU is simpler and so usually faster,
but those conclusions might differ for specific problems. The general learning procedure for
RNNs is described in Sec. 2.6.

Finding a way of learning deep RNN networks (based on RBM pre-training - Sec. 2.3.5)
was the key step to make them the SoTA in sequential learning. The next significant
improvements came with including the attention mechanism (Sec. 2.4.1), using RNNs as a
part of Generative Adversarial Networks (GANs - Sec. 2.5) and also using the bidirectional
architecture.

2.3.3 Bidirectional Network (BRNN)

Even though it is not natural from the human point of view, as it is not possible for us to
learn from future events, artificial systems can take advantage of it as long as they use the
standard learning procedure based on offline datasets (all data collected beforehand).

The theory published in [119] can be applied to all previously described RNN cell types
(default, LSTM, GRU). As shown in Fig. 2.17, there are forward (fed in a normal time order)
and backward (fed in a reverse order) layers combined into a single network. The outputs of
the two layers are concatenated (or summed - depends on the implementation) at each time
step and so the network has both backward and forward information about the sequence.

 
y<1>

 
y<2>

x<2>x<1>

a<0> a<1> a<2>

x<T>

...
a<T>

a<T>
...
a<2> a<1> a<0>

 
y<T>

Fig. 2.17 Bidirectional Recurrent Neural Network (BRNN) - the purple cells can be e.g.
LSTM or GRU.
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2.3.4 Time-Distributed Layers

A time-distributed layer [124] is a type of layer in recurrent neural networks (RNNs) or 1D
convolutional neural networks (CNNs) that applies the same layer configuration to every
temporal slice of the input sequence independently. This means that the layer’s parameters
are shared across different time steps. Time-distributed layers are often used when dealing
with sequential data, such as time series or sequences of text. Basically, the time-distributed
layer serves as a wrapper.
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Fig. 2.18 Illustration of the time-distributed wrapper.

2.3.5 Special Recurrent Structures

Besides the standard RNN architectures based on the default RNN cell and its composition
into a network (Fig. 2.14), there are several special methods that can be considered recurrent.
Regarding the goals of this work, learning their structures and functionalities can be useful.

Hopfield Network [56]
In the Hopfield network, neurons are connected to every other neuron. There are no

layers, as the neurons are considered input before the training, hidden during it and output
afterwards.

Fig. 2.19 A Hopfield network of three units.
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If the connections are symmetric (wi j = w ji), there is so-called global energy function E
(Eq. 2.18) and each configuration of the network is mapped to a certain energy value.

E =−∑
i< j

si · s j ·wi j −∑
i

bi · si (2.18)

where si ∈ {−1,1} is the binary output of ith unit, bi is its bias and wi j is the weight
of its connection to the jth unit. The weight update is performed by the Hebbian rule:
∆w = si · s j [47] and is usually done asynchronously (can be done synchronously in theory).
It is proven that as the network learns a pattern, its energy decreases and always settles in a
local minima of the energy function. This feature makes the Hopfield network capable of
memorizing patterns and even of reconstructing the learned pattern when given just a part of
it. Therefore, it can be used as a content-addressable (associative) memory with the capacity
limited to 0.15N for N being the number of units.

Boltzmann Machine [2]
The structure of the Boltzmann machine (Fig. 2.20a) is identical to the Hopfield network,

however, the units decisions about whether to be on or off are stochastic [50]. This makes the
algorithm possibly capable of escaping from a poor local optima while searching for good
solutions. The energy function of state vector v is defined as in Eq. 2.18 (E(v) = E) and the
probability of the Boltzmann equilibrium (or stationary distribution) is given as the energy
relative to energies of all possible binary state vectors:

P(v) =
eE(v)

∑
u

e−E(u)
(2.19)

Boltzmann machines are used for two different computational problems:

1. a search problem - weights remain fixed and represent the cost function of the opti-
mization problem;

2. a learning problem - weights are adjusted (using ∂E(v)/∂wi j =−sv
i · sv

j) so that a set
of binary data vectors is a good solution to the optimization problem defined by the
weights.
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(a) Boltzmann Machine

hidden 
units  

visible 
units  

(b) Restricted Boltzmann Machine

Fig. 2.20 A (Restricted) Boltzmann Machine example.

The restricted version - RBM [120], shown in Fig. 2.20b, consists of the visible layer
and the hidden layer with no connections between units of the same layer. During the
learning phase [49], visible and hidden units are iteratively (layer by layer) updated until
the reconstruction of the visible units is close enough to the original. Then the output of the
hidden layer can be used as the input to another Boltzmann machine. Learning one hidden
layer at a time is a very effective way of getting suitable weights initialisation for deep neural
networks, as highest level features are typically much more useful for classification than raw
data vectors.

Elman/Jordan Network [36], [65]
These two structures are commonly known as simple recurrent networks (SRN). As

shown in Fig. 2.21, they include a state layer containing context nodes that maintain memory
of the prior values and thus the application to sequential data is allowed [64]. In the case of
the Elman network (Fig. 2.21a) the state layer is fed from the hidden layer and in the case of
the Jordan network (Fig. 2.21b), the output layer is stored into the state layer. Multiple state
layers can possibly be subsequently added and the learning is done by the backpropagation
algorithm (the BPTT version, Sec. 2.6).
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(a) Elman network.
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Fig. 2.21 Simple recurrent networks (SRN).
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2.4 Transformers

The concept of Transformers has become a prominent paradigm in machine learning, par-
ticularly in Natural Language Processing (NLP). Introduced in the groundbreaking paper
Attention is All You Need [126], this architecture relies on the attention mechanism to deliver
remarkable improvements in the performance of deep learning models (not only) for text-
related applications. Attention had been previously employed on top of RNN layers, however,
this paper demonstrated an increase in performance when implemented independently and
directly processing the input sequences. The primary benefits over previous approaches are:

• Parallelization and efficient processing of extensive datasets: By employing the practi-
cal matrix multiplication provided by the attention mechanism, Transformers enable
efficient parallel processing of input sequences. This scalability makes Transformers
highly efficient at handling extensive datasets and training on powerful hardware.

• Long-range dependencies: Unlike traditional sequential models like RNNs, Trans-
formers can capture long-range dependencies in input sequences effectively. The
self-attention mechanism enables each output to depend on all positions in the input
sequence, overcoming the vanishing gradient problem associated with RNNs.

• Transfer learning: Due to the robust embedding capabilities of the attention mecha-
nism, a model trained on one task can effortlessly adapt to a second, related task. This
intelligent weight initialization greatly enhances the learning process for the target
task, particularly when labeled data for the target task is limited.

2.4.1 Attention Mechanism

As outlined in the preceding section listing the advantages of the Transformer architecture,
obviously the key ingredient driving the ground-breaking performance is the self-attention
mechanism. As we show later, it can be expanded to multiple domains, but it is well and
intuitively descriptable on text. So, its functionality can be summarized as follows [35]:

"While processing a word, self-attention enables the model to focus on other
closely related words in the input sentence."

To illustrate this with an example, let’s consider two sentences:

(A) The dog ate the cheese, because it was hungry.

(B) The dog ate the cheese, because it was tasty.
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In the first (A) sentence, the word it refers to the dog, whereas in sentence (B), it refers
to the cheese. When the model processes the word it, self-attention provides the model
with additional information about its meaning, enabling it to correctly associate it with the
relevant context.

The dog ate the cheese because it was hungry

The dog ate the cheese because it was hungry

(A)

(B)
The dog ate the cheese because it was tasty

The dog ate the cheese because it was tasty

Fig. 2.22 Example of Self-Attention. Darker colors represent higher attention scores.

At this point, let’s clarify some related terms while keeping the explanations within the
text domain. First, we distinguish between 1) self-attention, which involves looking at how
words within the same sentence relate to each other, and 2) attention, where we calculate
relations of two different sentences. However, to be honest, term attention is frequently used
as a shorthand, referring to self-attention. Additionally, in the following, we define terms
basic– and trainable– self-attention, along with the concept of multi-head attention.

Basic self-attention. Self-attention operates as a sequence-to-sequence process, where a
sequence of vectors x1,x2, ...,xL is inputted, yielding a corresponding sequence of vectors
y1,y2, ...,yL as output [15]. Each vector in this process has a dimensionality of k. To generate
the output vector yi, the self-attention operation simply takes a weighted average across all
input vectors, as given in Eq. 2.20.

yi = ∑
j

ωi j · x j (2.20)

where j indexes the entire sequence, and the weights sum to one over all j. The weight
matrix ωi j, as defined in Equation 2.22, is not a parameter in the traditional neural network
sense. Instead, it is derived from a function involving xi and x j and is denoted as the attention
score. There are multiple options, but the simplest choice for this function is the dot product:

ω
′
i j = xT

i · x j (2.21)
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The dot product essentially involves multiplying corresponding pairs of numbers and then
summing them up. These numbers can be viewed as individual features within the word
embedding. When the paired features (e.g., xi2 and x j2) share the same polarity (both positive
or both negative), the product is positive, increasing the final summation. Conversely, the
summation is reduced when the two paired features have different polarities and the product
is negative. Moreover, the magnitude of the numbers (i.e., the significance of the features)
directly influences their contribution to the overall summation. This characteristic renders
the dot product a solid score estimator, reflecting the alignment between two vectors.

As illustrated in Fig. 2.23, xi represents the input vector at the same position as the
current output vector yi. When moving to the subsequent output vector, a completely new set
of dot products is computed, resulting in a distinct weighted sum (different attention score).

y2y1 y3

+

·

x2

ω22

x2

x2 f  ·

x1

ω21

x1

x2 f   ·

x3

ω23

x3

x2 f  

Fig. 2.23 Basic self-attention – processing vector x2 and yielding vector y2, where f () stands
for the softmax function as given in Eq. 2.22.

As the dot product yields a value spanning from negative to positive infinity, to confine
these values within the [0, 1] range and guarantee their summation to 1 across the entire
sequence, the softmax function is applied (Eq. 2.22).

ωi j =
expω ′

i j

∑ j expω ′
i j

(2.22)

Remarkably, the mechanism of self-attention is the only operation within the entire Trans-
former architecture that facilitates information exchange between vectors. Every other
operation is applied individually to each vector in the input sequence, with no interactions
with the others.
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Trainable self-attention. The basic version might be effective if we had perfect embedding
vectors that already encapsulate context dependencies and task-based relations. However, in
practise, we treat individual features as parameters in our model and these embeddings are
learned through training. To achieve this, three additional components, denoted as Wκ , Wq,
and Wv, are introduced. Each of them represents a k× k matrix of trainable parameters, and
is responsible for an independent linear transformation of vector xi. As depicted in Fig. 2.24,
these transformations play three distinct roles within the mechanism:

• Query qi =Wq · xi is compared to every other vector to determine the attention scores
for its own output yi;

• Key κi =Wκ · xi is compared to every other vector to establish the attention scores for
output y j;

• Value vi =Wv · xi is used as a component of the weighted sum to compute each output
vector once the attention scores have been determined.

 
 
 
 
 
 
 

attention score

y2y1 y3

+

x2x1

·

x3

ω23

x3

x2 f  ... ...

wq

wk

wv
x4

...

y4

Fig. 2.24 Trainable version of self-attention with query, key and value transformations.

The self-attention operation is then expressed by Eq. 2.23. This gives the mechanism
some controllable parameters, and allows it to modify the incoming vectors to suit the three
roles they must play. Additionally, to address the sensitivity of the softmax function to large
input values, which may impede gradient flow and slow down training, the dot product is
scaled back by

√
k – a factor by which the increase in dimension enhances the length of the

average vectors [15].

yi = ∑
j

so f tmax(
qT

i ·κ j√
k

) · v j (2.23)
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Attention scores. In addition to a well-performing model, as a bonus after training, we
obtain the attention scores. These scores provide valuable insights into how the model arrived
at its decisions and learned relationships among individual input vectors.

the

dog

ate

the

cheese

because

it

was

hungry
the dog

ate the cheese

because

it was
hungry

Fig. 2.25 Fictive example of attention scores. Darker colors indicate higher attention.

Returning to the example sentence from the beginning of this section, a fictive illustration
of such scores is depicted in Figure 2.25. The attention matrix is always of size L×L, where
L is the length of the input sequence (the number of words in the sentence). Thus, the matrix
provides a score for each combination of input vectors (words), with rows representing the
words attending and columns representing the words receiving attention.

Multi-head self-attention. A word can have multiple relations with various meanings
within a sentence. In our previous example, dog represents the entity eating, cheese denotes
the object being consumed, and hungry explains the motivation behind the act of eating.
In a single self-attention operation, all this information just gets summed together. Inputs
corresponding to dog and cheese can influence the output for ate by different amounts,
depending on their dot-product with ate, but they cannot influence it in different ways. And
this is the reason why a little more flexibility is needed here [15].

To enhance the discriminative capability, multiple self-attention mechanisms can be
employed in parallel, each featuring distinct matrices W h

q , W h
k , W h

v , representing so-called
attention heads. As depicted in Fig. 2.26, for input xi, each attention head generates a unique
output vector yh

i . These outputs are concatenated and subsequently subjected to a linear
transformation, using weights Wo, to change the dimensionality back to k. To implement
efficient multi-head self-attention, each head receives low-dimensional keys, queries, and
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values. For instance, with dimensionality k = 256 and number of attention heads H = 4, the
input vectors are projected to 64-dimensional sequences through a 256× 64 matrices for
keys (kh

i ), queries (qh
i ), and values (vh

i ).
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: k

ki1 qi1 vi1

ki2 qi2 vi2

kiH qiH viH

head 1

head 2

head H

Wo

dim: k / H 

. 
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.

yi
1
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2

yi
H

yi. 
. 
.

projection to lower dim 
keys, queries, values 

concatenation back
to dim k 

Fig. 2.26 Multi-head attention - projection to lower dimensionality and back.

This requires (3×H) matrices, each of size k× k
H . In total, this results in (3×H)× k×k

H =

3k2 parameters for computing inputs to the multi-head self-attention, aligning with the
parameter count of the single-head self-attention. The only difference is in using of the
matrix Wo at the output of the multi-head self-attention, contributing k2 additional parameters
compared to the single-head version. Nevertheless, the necessity of employing Wo is a subject
to discussion, especially in scenarios with subsequent feedforward layers.

Expansion beyond textual domain. Despite being initially illustrated using a textual
example, the attention mechanism has proven beneficial across multiple domains. Fig. 2.27
showcases its utilization to embeddings based on image pixels. For an extensive exploration
of attention’s applications, a well-structured survey is available in [22].

(A) A man with a
backpack climbing

(B) A man with a
backpack climbing

Fig. 2.27 Illustration of the attention mechanism applied on image pixels (red circle ∼ focus).
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2.4.2 Original Transformer

The original Transformer architecture, initially presented in [126], can be decomposed
into separate blocks, as depicted in Fig. 2.28. Each of these blocks will be explained
individually in this section. Subsequently, we will delve into an exploration of the most
popular architectures, categorizing them into three groups: 1) Encoder only, exemplified by
BERT or Wav2Vec (Sec. 2.4.3); 2) Decoder only, embodied by the GPT and LLM family
(Sec. 2.4.4); and 3) Encoder-Decoder models, such as T5, SpeechT5, or other multi-modal
structures (Sec. 2.4.5).

Encoder

N times

Embedding

Positional 
Encoding +

inputs <t>

Decoder

N times

outputs<t-1>

Embedding

+ Positional 
Encoding 

Linear 

outputs<t>
Encoder-only

models
Decoder-only

models

Encoder-Decoder
models

Softmax 

Fig. 2.28 Transformer architecture – decomposition into Encoder and Decoder parts.

Encoder. The encoder is represented by a standard Transformer block (Fig. 2.29) that
typically follows this structure: self-attention layer, layer normalization, feedforward layer
(applied independently to each vector), and another layer normalization.

multi-head 
self-attention

layer 
normalization

+

layer 
normalizationMLP

+

input transformer block output

. 

. 

.

. 

. 

.

. 

. 

.

Fig. 2.29 Transformer block - Encoder.
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Residual connections surround both the self-attention and feedforward layers before nor-
malization. These components ensure the integration of self-attention with local feedforward
operations, enhanced by normalization and residual connection. The MLP layer is sometimes
substituted by a Time-Distributed layer (see Sec. 2.3.4).

Decoder. The decoder block closely resembles the default Transformer block, with a
crucial distinction of incorporating an encoder-decoder attention mechanism. In this scenario,
attention is applied to assess the relevance between two distinct inputs: 1) the encoded
input at time t, utilizing keys and values, and 2) the previous model output at time (t −1),
employing its queries. Further details on this mechanism is discussed below.

multi-head 
self-attention

+

layer 
norm.MLP

decoder block

+

input <t>

input <t-1> output <t>

layer 
norm.

layer 
norm.

+

encoder-decoder 
attention

queries

last encoder 
block

keys values

Fig. 2.30 Transformer - Decoder block.

Embedding and positional encoding. Unlike images where numerical values are inherent
in pixel values, for textual inputs, each word (token) is typically represented by a single
vector of fixed dimension k encapsulating its meaning. Alongside this embedding, encoding
the positional information of words is needed, as self-attention views its input as a set rather
than a sequence. If we permute the input sequence, the output sequence will be identical,
except also permuted. This permutation-invariance and the ability to process all data in
parallel is the major advantage of Transformers over RNNs. However, this characteristic also
implies that position information needs to be incorporated back "manually". The authors of
[126] devised a clever method involving trigonometric functions as follows:

PE(pos,2i) = sin(
pos

10000
2i
k
) (2.24)

PE(pos,2i+1) = cos(
pos

10000
2i
k
) (2.25)

Here, pos represents the position of the word in the sentence, k is the embedding dimen-
sionality, and i is the index value in the embedding vector. This way, the encoding vector is
formed and then typically added to the default embedding vector.
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Training phase. Transformers work slightly differently during training and inference.During
the training phase, assuming the utilization of both input and target sequences and still as-
suming the original version, the procedure is as outlined in [35]:

1. The input sequence is converted into embeddings (with position encoding) and fed to
the stack of encoders.

2. The stack of encoders processes it and produces a representation of the input sequence.

3. The target sequence is prepended with a start-of-sentence token, converted into embed-
dings (with position encoding), and fed to the stack of decoders.

4. The stack of decoders processes this along with the encoded representation of the input
(from encoders) to produce an encoded representation of the target sequence.

5. The output layer converts it into word probabilities and the final output sequence.

6. The loss function compares this output sequence with the target sequence from the
training data. This loss is used to generate gradients for backpropagation.

Inference phase. During inference, only the input sequence is available, and there is no
target sequence to pass as input to the decoder. The objective is to generate the target
sequence solely from the input sequence. Therefore, the output is generated iteratively in a
loop, feeding the output sequence from the previous time-step (t −1) to the decoder until an
end-of-sentence token is encountered. The distinction from standard sequence-to-sequence
models lies in re-feeding the entire output sequence generated at each time-step, rather than
just the last generated word.

2.4.3 Encoder-Only Models

Encoder-only models focus on extracting meaningful representations from input sequences
without a dedicated decoding mechanism.

Classification Transformer. The fundamental Transformer for sequence classification
consists of a series of transformer blocks. The key design choices are in handling input
sequences and transforming the final output sequence into a classification. The most common
method for this is to employ global average pooling on the final output sequence, followed
by the softmax function for categorization.
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Fig. 2.31 Encoder-only architecture employed for sentiment classification in movie reviews.

Bidirectional Encoder Representation from Transformers (BERT) [31] This architec-
ture published by Google AI Language team is basically a stack of Transformer encoders.
Unlike traditional language models that process text in a unidirectional manner, BERT em-
ploys bidirectional context understanding, considering both the left and right contexts of
each word. This allows BERT to capture richer contextual information, making it highly
effective for various natural language processing tasks such as sentiment analysis, named
entity recognition, and question answering.

BERT’s pre-training entails predicting missing words in sentences (masked language
model - MLM), allowing the model to acquire deep contextualized representations. Addi-
tionally, the technique of next sentence prediction (NSP) is employed, where the model is
presented with a pair of sentences (A and B) to discern if sentence B succeeds A in the
corpus, aiding in understanding the relationship between sentences. Fine-tuning on specific
tasks further refines its performance and adaptability across diverse applications. Several
variants have emerged from the original BERT, including:

• RoBERTa, short for "Robustly Optimized BERT Approach," represents an enhanced
iteration of the BERT model with notable improvements. Key distinctions include the
incorporation of dynamic masking, an increased volume of data points for enhanced
model information, the omission of the Next Sentence Prediction (NSP) task, utilization
of a larger dataset, and processing with a larger batch size.

• AlBERT is larger in terms of the number of parameters. Next, it uses sentence order
prediction instead of next sentence prediction. Also, it utilizies parameter sharing
between the layers to increase performance.

Wav2Vec 2.0 [7] This ASR framework was developed by Facebook AI. It introduces a
self-supervised pre-training approach for learning representations from unlabeled speech
data. The model leverages a contrastive learning objective, where it predicts masked speech
representations and learns to differentiate between positive and negative samples.
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Fig. 2.32 Wav2Vec 2.0 - original figure from [7]. Illustration of learning representations.

Wav2Vec 2.0 achieves state-of-the-art results in ASR by pre-training on a vast amount of
data, followed by fine-tuning on smaller, task-specific datasets. The architecture effectively
captures contextual information in speech signals, making it robust and adaptable for various
speech-related applications, like for example in [138].

2.4.4 Decoder-Only Models

Decoder-only Transformers, including the GPT family, are tailored for sequence generation
tasks and are also termed as auto-regressive models. Unlike traditional transformers, they
exclusively focus on decoding, generating sequences element by element.

Generative Pre-trained Transformer (GPT) [105] GPT is a series of auto-regressive
language models developed by OpenAI. The evolution of GPT includes multiple versions:

GPT 2 Model introduced in 2019 with 1.5 billion parameters, solid generation capabilities.

GPT 3 A giant model with 175 billion parameters, showcasing remarkable natural language
understanding and generation.

GPT 3.5 : ChatGPT –a variant of GPT-3, is fine-tuned for conversational purposes, enabling
users to engage in natural language interactions with the model. This, when publicly
released in December 2022 has been the most significant breakthrough in AI so far.

GPT 4 A large multimodal model (accepting image and text inputs, emitting text outputs) that,
while less capable than humans in many real-world scenarios, exhibits human-level
performance on various professional and academic benchmarks [97].
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The GPT series has significantly advanced the field of AI. The models boast an expansive
range of applications, offering versatility in tasks from language translation to code generation.
However, a notable limitation, shared with other auto-regressive models, is the potential for
so-called hallucinations. These instances involve the model generating outputs that may lack
accuracy or contextually appropriate information, presenting a key challenge for refining the
reliability of such models.

Large Language Model Meta AI (LLaMA) [125] This model has been provided in
multiple version of various model sizes, ranging from 7 billion to 65 billion parameters.
Unlike other large language models that are typically only available via restricted APIs, Meta
AI has chosen to make LLaMA’s model weights accessible under a noncommercial license.

2.4.5 Encoder-Decoder Models

This section introduces a typical encoder-decoder Transformer architecture – T5. Addi-
tionally, newer instances within this category, such as SpeechT5 [5], Whisper [104], and
SeamlessM4T [3], are only listed with references for further details.

Text-to-Text Transfer Transformer (T5) [106] This popular approach adopts a Transformer-
based architecture, featuring both an encoder and a decoder, encompassing 12 Transformer
blocks with a cumulative parameter count of 220 million. Pre-training occurred on a sub-
stantial C4 dataset (Colossal Clean Crawled Corpus), comprising 750 GB of English text.
Similar to BERT, T5 employs the Masked Language Model (MLM) approach, where it learns
to predict target words for enhanced language understanding.

The dog ate the cheese, because it was hungry.

Original text

The dog         the cheese, because it was        .

Inputs

<X> <Y>  ate         hungry<X> <Y> <Z>

Targets

Fig. 2.33 T5: Example of a training sample.

The primary distinction between Bert and T5, apart the presence of the decoder, lies in
the size of tokens (words) involved in prediction. While BERT predicts a target consisting
of a single word (single token masking), T5, as illustrated in the figure above, can predict
multiple words.
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2.5 Special Architectures

The following methods do not belong to any of the three categories in terms of the architecture
type, purpose or learning mechanism. Their backgrounds are related to this work though.

Generative Adversarial Network (GAN) [42]
As shown in Fig. 2.34, there are two neural networks contesting one with each other in

terms of data distributions. The generator tries to fool the discriminator by creating fake
samples of the same distribution as the real samples are. Its goal is to maximise the final
classification error. The discriminator is trained to minimise the final classification error and
its goal is to distinguish the real samples from the fake ones. This approach enables the
model to learn in an unsupervised manner.

real samples

generator fake samples

discriminator evaluator
REAL

FAKE

discriminator loss

generator loss

random input

Fig. 2.34 The Generative Adversarial Network concept.

Autoencoder (AE) [16], [71]
The encoder-decoder architecture is already known from Sec. 2.4.2, however, the idea

is much older then Transformers are and the range of applications is wide. The first appli-
cations date back to 1980s and since then the idea has been popularized especially for its
dimensionality reduction and feature learning capabilities. The structure typically consists of
two parts:

• an encoder that maps the input into a coded representation;

• a decoder that reconstructs the coded representation.

The dimensionality of the (coded) hidden layer (also called a bottleneck; blue in Fig. 2.35a)
is reduced compared to the original input layer. The goal is to make the hidden layer keep
as much information as possible. Based on the nature of neural networks and apart from
the standard Principal Component Analysis (PCA), even nonlinear relations are handled
(Fig. 2.35b).
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Fig. 2.35 Autoencoders (handling nonlinear relations).

Self-Organizing Map (SOM) [70]
Another unsupervised dimensionality reduction method is based on competitive learning

(as opposed to loss-based methods) and its output is typically two-dimensional (called a map
of size ψ1 ×ψ2 - Fig. 2.36). Partly motivated by the human cerebral cortex, the goal is to
cause different parts of the output map to respond similarly to certain input patterns. The
algorithm is well described in [11].
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Fig. 2.36 Kohonen’s Self-Organizing Map example.

Siamese network [19]
The original idea from 1993 has been popularized again with the rise of deep learning.

There are two models (also called twin networks) sharing the same weights. They work
in tandem on two different input vectors and their outputs are then compared using either
the triplet or the contrastive loss. The approach is known for its application to the face
recognition task. A detailed explanation is available in [11].
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2.6 Learning Algorithm

As stated above, regarding the goals of this work, we assume a classification problem on
supervised (labeled) data to demonstrate the presented methods. Therefore, the learning
phase is mostly based on the well-known backpropagation algorithm [79] using the Gradient
Descent iterative optimization. The following math complies with the notation listed at the
beginning of this work supplied by the additions in App. A.

By default, the algorithm was derived for feedforward architectures (Sec. 2.2) and the
overall procedure follows these steps:

1. forward propagation of a batch of samples;

A(1) = f (W (1) ·X +B(1)) (2.26)

A(i) = f (W (i) ·A(i−1)+B(i)) (2.27)

A(q) = Y = f (W (q) ·A(q−1)+B(q)) (2.28)

2. error calculation based on the chosen loss function L f f ;

L f f =
(U −Y )× (U −Y )

2
(2.29)

3. backpropagation of the prediction error;

∆
(q+1) = (U −Y )× f ′[Z(q+1)] (2.30)

∆
(i) =

[[
W (i+1)

]T
·∆(i+1)

]
× f ′[Z(i)] (2.31)

4. finding the optimal updates - taken over from [20]; Every sample ξ has a vote dW (i)
(ξ )

(resp. dB(i)
(ξ )

) on how the parameters W (i) (resp. B(i)) should change to get the minimal
error and then the result is obtained as a compromise of those votes. Index (i) indicates
the layer. Consider ∆

(i)
(ξ )

be the ξ th column of the ∆(i) matrix, which corresponds to the

ξ th sample. Analogically, A(i−1)
(ξ )

is the ξ th column of the activation matrix A(i−1) in

the (i−1)th layer. Then we get the votes as:

dW (i)
(ξ )

= A(i−1)
(ξ )

·
[
∆
(i)
(ξ )

]T
(2.32)

dB(i)
(ξ )

= ∆
(i)
(ξ )

(2.33)
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5. parameters update; The batch_size value states how many votes are processed
together to make one update of the parameters (the learning is called sequential for
batch_size = 1). For batch learning ( batch_size > 1):

dW (i) =
batch_size

∑
ξ

dW (i)
(ξ )

(2.34)

The same is analogically applied to biases. The learning_rate value (µ), usually
set 0 < µ << 1, is included in order to deal with GDA problems (shown below). The
update of the parameters is then done as follows (<t> refers to a moment in time):

W (i)<t+1> =W (i)<t>+µ ·dW (i)<t> (2.35)

B(i)<t+1> = B(i)<t>+µ ·dB(i)<t> (2.36)

The procedure is commonly repeated over a specified number of epochs or until a
required value of the error is reached. In case of recurrent architectures (Sec. 2.3), thanks to
the method known as backpropagation-through-time (BPTT) from [36], the same procedure
can be analogically applied. As shown in Fig. 2.37, the RNN layer can be unrolled over a
limited number of time steps T and considered as subsequent feedforward layers.

x<t>

a<t> a<t+1>  
y<t+1>   

 

x<t>

a<t> a<t+1>  
y<t+1>   

 

x<t-1>

a<t-1>

x<t-T>

a0

(A)

(B)

a<t-T+1>

. . .

Fig. 2.37 BPTT unfolding an RNN through time.
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Then the loss function and the parameters update are expressed as:

Lrnn =
T

∑
t=1

L <t>
f f (2.37)

∂Lrnn

∂W
=

T

∑
t=1

∂L <t>
rnn

∂W

∣∣∣∣
t

(2.38)

2.6.1 Loss Functions

The learning process is significantly impacted by the thoughtful selection of evaluation
metrics and loss functions. Broadly, loss functions can be categorized for tasks involving
either regression or classification. For a more comprehensive list and detailed explanations,
refer to [23].

Regression Loss Functions

• Mean Squared Error (MSE): Measures the average squared difference between pre-
dicted and actual values.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.39)

• Mean Absolute Error (MAE): Computes the average absolute difference between
predicted and actual values.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2.40)

• Huber Loss: A combination of MSE for small errors and MAE for large errors,
introducing a parameter δ .

Huber Loss =
1
n

n

∑
i=1

{
1
2(yi − ŷi)

2, if |yi − ŷi| ≤ δ

δ (|yi − ŷi|− 1
2δ ), otherwise

(2.41)
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Classification Loss Functions

• Binary Cross-Entropy Loss: Suitable for binary classification tasks, penalizing devia-
tions from true class probabilities.

Binary Cross-Entropy Loss =−1
n

n

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)] (2.42)

• Categorical Cross-Entropy Loss: Extends binary cross-entropy to multi-class classifi-
cation scenarios.

Categorical Cross-Entropy Loss =−1
n

n

∑
i=1

C

∑
j=1

yi j log(ŷi j) (2.43)

• Sparse Categorical Cross-Entropy Loss: Similar to categorical cross-entropy, but uses
integer class labels instead of one-hot encoded vectors.

Sparse Categorical Cross-Entropy Loss =−1
n

n

∑
i=1

log(ŷi) (2.44)

2.6.2 Limitations of Backpropagation

The backpropagation learning has not been overcome for more than 50 years, however, the
procedure has three main shortcomings:

• Stucking at a local minima; Especially in case of deep structures, the number of
parameters is enormous and finding the optimal solution (such parameters settings
that makes the cost function minimal) is challenging. In most cases, the algorithm
gets stuck in a local (not global) minima (addressed by momentum and ADA-based
optimizers).

• Exploding/vanishing gradient; In case of many hidden layers, there are many deriva-
tives multiplied together. If these derivatives are large, the gradient will increase
exponentially until it eventually explode. Analogically, it eventually vanishes if many
small derivatives are multiplied together.

• Computational limits due to the enormous number of operations in deep structures. In
case of Transformers, current performance bottleneck resides primarily in hardware
limitations. Unlike convolutions or LSTMs, the capabilities of these models are solely
constrained by the size of the model that can fit into GPU memory and the volume of
data that can be efficiently processed within a reasonable timeframe.
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2.6.3 Design Choices and Optimization Tools

Network architectures described in the previous sections together with the learning algorithm
are the baseline in the field of ANNs. Section 2.5 is then devoted to special methods that do
not belong to any of the previous categories, but still are interesting in relation to this work.
This section goes more into detail and focuses on related methods that support the baseline
and help to overcome the learning limitations.

As stated above, the pure backpropagation algorithm suffers mainly from stucking in a
local minima. Therefore, several methods adjusting the default learning equation have been
proposed, in order to help the algorithm converge.

Optimizers. There are several optimization techniques for the Gradient Descent Algorithm
(GDA), to name some of them: RMSProp, Adam, Nesterov, Adagrad, Adadelta. A detailed
explanation is provided in [112].

Learning rate. The learning rate (µ) is a common learning hyper-parameter. It helps to
converge to the solution by little steps (Fig. 2.38). The value is usually being tuned during
the training.

ℒ(θ)

θ

ℒ(θ)

θ
(A) (B)

ℒ(θ)

θ
(C)

Fig. 2.38 Learning rate: (A) too low; (B) optimal; (C) too high (red) / way too high (orange).

Momentum. The momentum mechanism can be added to the step of parameters update
(Eq. 2.35). The purpose is to prevent oscillations and to keep traveling in the same direction
along the gradient. Assuming α to be the momentum rate, the change of Eq. 2.35 is shown
in Eq. 2.45:

W (i)<t+1> =W (i)<t>+µ · [(1−α) ·dW (i)<t>+α ·dW (i)<t−1>] (2.45)
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Regularization techniques

• L1 Regularization: Adds the absolute values of weights as a penalty term in the loss
function, promoting sparsity in the model.

• L2 Regularization (Weight Decay): Sometimes the weights become too specialized
to the training data and cause so-called over-fitting. To prevent it, this method makes
weights decay in proportion to their sizes. By adding the squared values of weights as
a penalty term, it prevents the model from becoming too reliant on individual features.
The default update formula (Eq. 2.35), λ being a decay factor, is adjusted as follows:

W (i)<t+1> =W (i)<t>+µ · (dW (i)<t>−λW (i)<t>) (2.46)

• Dropout: Apart from other regularization methods (L1 - Laplacian, L2 - Gaussian), the
dropout mechanism [53] is another method addressing the overfitting problem.

Fig. 2.39 Example of a dropped-out network.

As illustrated on the example in Fig. 2.39, selected nodes and the corresponding
connections are ignored during individual iteratioins of the training phase. There is the
probability hyper-parameter p deciding, for each node individually, about its omission.
During the inference phase then, all nodes are considered as usual.

• Drop-connect: Extends dropout to connections rather than neurons, randomly dropping
weights during training.

• Gradient Clipping: Limits the magnitude of gradients during backpropagation to
prevent exploding gradients, often used in recurrent neural networks.

Initialization techniques Weights initialization can generally determine model’s conver-
gence and overall performance. The list below outlines some of the widely used initialization
methods, each designed to address specific issues.

• Random Initialization (Gaussian): Initializes weights using random values drawn from
a Gaussian distribution with mean 0 and small variance.
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• Xavier/Glorot Initialization: Designed to address vanishing/exploding gradient issues,
setting weights from a Gaussian distribution with mean 0 and variance 1

input size .

• He Initialization: Similar to Xavier, but uses 2
input size for the variance, recommended

for ReLU activation functions.

Some of the other methods include: Orthogonal, Sparse, Identity or Zero initialization.

Normalization techniques These methods maintain consistent input scales, preventing
issues such as vanishing or exploding gradients. This helps more efficient optimization and
supports the training especially of deeper models with many layers.

• Batch Normalization: Normalizes the input of a layer by adjusting and scaling activa-
tions within mini-batches, mitigating internal covariate shift.

• Layer Normalization: Similar to batch normalization, but normalizes across the en-
tire layer’s input rather than mini-batches, making it applicable in recurrent neural
networks.

• Group Normalization: Divides channels into groups and normalizes each group inde-
pendently, striking a balance between batch and layer normalization.

• Instance Normalization: Normalizes each channel independently for each instance in
the batch, frequently used in style transfer and image-to-image translation.

• Switchable Normalization: Combines batch normalization, layer normalization, and
instance normalization, allowing the model to learn the most suitable normalization
method.

Weight constraints techniques Weight constraints are another technique for regulating
the model’s learning behaviour and preventing overfitting. By imposing constraints on
weight vectors, these methods helps the stability during training, facilitate convergence, and
contribute to making the model generalize better.

• MaxNorm Constraint: Constrains the maximum norm of weight vectors, limiting their
magnitude during training.

• UnitNorm Constraint: Constrains the L2 norm of weight vectors to be 1, preserving
the direction of the vectors.

• Orthogonal Constraint: Constrains weight matrices to be orthogonal, preserving angles
between vectors and aiding in preventing overfitting.



2.7 Neural Architecture Search 51

2.7 Neural Architecture Search

Previous sections provide a comprehensive summary of various ANN architectures, together
with methods mostly addressing the shortcomings of the general learning algorithm (Sec. 2.6).
In most of these cases, the network structure is fixed. This section, with respect to the
objectives of this work (see Sec. 1.1), is devoted to algorithms for searching the network
architecture in terms of neurons, synapses and their mutual interconnections.

In [37] Neural Architecture Search (NAS) methods are classified into three dimensions:
search space, search strategy, and performance estimation strategy. This approach has
resulted in the development of various search algorithms catering to different aspects of
NAS. Hyper-parameter tuning initially adopted Bayesian Optimization [12], [32], [38], [67],
while Reinforcement Learning ([136], [102], [63]) was utilized to train agents interacting
with the search space. Evolutionary algorithms ([81], [108]) encode model architectures into
DNA and evolved candidate pools. Notably, ProgressiveNAS [80] employed heuristic search,
gradually constructing models from simple to complex architectures. Conversely, LayerNAS
[39] focused on making changes to the layers of a full complex model. A comprehensive
survey of Automated Machine Learning (AutoML) methods is provided in [46]. In general,
these algorithms are divided into three categories: 1) hyper-parameter tuning; 2) top-down
methods (pruning and shrinking); and 3) bottom-up methods (building a network from
scratch).

2.7.1 Hyper-parameter Tuning

This methodology utilizes diverse optimization tools to navigate the state space search,
aiming to find optimal network hyper-parameters such as the number of layers, neurons per
layer, learning rate, batch size, and other relevant factors.

Evolving neural networks (NEAT) [122]
This approach uses evolutionary optimization to construct deep learning architectures

that are, based on the published results, more complex than the hand-made ones. It is based
on searching the enormous space of hyper-parameters, components and network topologies.
The researchers claim that the full potential of their approach is constrained by computational
resources and the results are based more on fast-learners instead of top-performers.

The generated network architecture is initialized by a graph of chromosomes. In case
of the original (NEAT) approach, each node represents a neuron. Later then, the approach
was applied to deep networks, where each node represents a layer. The latest version called
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Coevolution DeepNEAT [86] implements two parallel graphs of chromosomes that are
combined during the fitness evaluation. Related observations:

• An arbitrary connectivity is allowed (layers not stricly fully-connected).

• Depending on the network size, elementary units are neurons or layers.

• The fitness (evaluation function) is based on how well the evolved networks can be
trained (using the GDA) to perform in the given task.

Neural architecture search with reinforcement learning [136], [137]
This approach is a representative example of the architecture search algorithm. In this

case, reinforcement learning is used to train an RNN, which composes the target network
architecture (see Fig. 2.40) for a given task automatically. The (RNN) controller is capable
of designing a CNN architecture that rivals the SotA methods on the CIFAR-10 dataset and
an RNN architecture dealing with a language modeling task.

RL Controller
Train a child network 
with architecture A 
to get accuracy R 

Sample architecture A
with probability p

Reward controller with R

Fig. 2.40 The Neural Architecture Search with RL principle [137].

An adjusted version of the algorithm determined to generate models for mobile devices is
called MnasNet [123]. This version is mainly focused on the trade-off between accuracy and
inference latency. The generated network is being described by hyper-parameters, such as
the filter size, stride and the number of filters (in case of CNN). Also, the controller is trained
to modify the architecture of the network, for example using the skip-connections approach
(see Sec. 2.2.4). Accuracy of the generated network is used as a reward for the RL algorithm.

LayerNAS: NAS in polynomial complexity [39]
This novel approach streamlines the multi-objective NAS problem using combinatorial

optimization, significantly reducing complexity. This leads to a substantial decrease in the
number of model candidates, requiring less computation for multi-trial searches and enabling
the discovery of superior-performing architectures. A potential limitation of this approach
lies in its reliance on the layer-wise pattern of the final network when searching for arbitrary
network architectures.
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MetaQNN: designing neural network architectures using RL [9]
MetaQNN, a reinforcement learning algorithm, autonomously generates high-performing

Convolutional Neural Network (CNN) architectures for specific learning tasks. The agent-
designed networks, utilizing standard layers, surpass existing networks and rival state-of-
the-art methods with more complex layer types in image classification benchmarks. This
approach strictly adheres to the layer-wise pattern and also is designed for CNNs.

NSGA-NET: NAS using multi-objective genetic algorithm [83]
NSGA-Net is introduced as an evolutionary Neural Architecture Search (NAS) approach,

achieving competitive results by optimizing dual objectives of minimizing error and compu-
tational complexity. The algorithm efficiently explores potential neural network architectures
through population-based search, incorporating a Bayesian Network for exploitation. NSGA-
Net attains CIFAR-10 error rates similar to state-of-the-art NAS methods while utilizing
significantly fewer computational resources, showcasing its promise in the realm of deep
learning.

Progressive neural architecture search [80]
This method utilizes sequential model-based optimization (SMBO) to systematically

explore structures in ascending complexity, while learning the structure of CNNs. Compared
within the same search space, this approach is up to 5 times more efficient than the RL
method from [136] in terms of evaluated models and 8 times faster in total compute.

2.7.2 Pruning Methods

These algorithms remove synapses from fully-connected networks, however, in contrast to
the dropout optimization technique (Sec. 2.6.3), the dropped-out synapses are not turned back
on for the inference phase and instead, the resulting pruned network is used for prediction.
The general pruning procedure consists of these steps (corresponding to Fig. 2.41):

1. design an oversized network structure for given classification data;

2. train the network until the maximal possible accuracy is reached;

3. remove selected synapses (depending on chosen pruning measure);

4. repeat step (3) as long as the original maximal accuracy is kept.
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Fig. 2.41 The principle of network pruning.

A detailed study on this topic is provided in [20], where a new pruning measure is
introduced. It was shown that generally more than 90% of the synapses are commonly
redundant in fully-connected networks. Moreover, several experiments proved the ability of
the presented algorithm to select features and to find the minimal network structure for given
data. As a result, pruned networks are faster in the prediction phase and, as all remaining
synapses are guaranteed to be important, the information flow can be tracked and thus parts
of such a network can be demystified. In[20]), the derived algorithm is compared to these
related studies:

• Skeletonization [92];

• Optimal brain damage [76];

• Sensitivity measure [68].

The main drawback of the top-down approach is the need of (in practise random) choice
of the initial network. As long as the algorithm can only remove parts (and not add new
ones), the result is restricted by the initial structure. Moreover, even though the resulting
network is more efficient and the accuracy is kept, the accuracy never improves compared to
the original.

2.7.3 Building Methods

These algorithms take elementary units (or blocks of units in some cases) and connect them
into a structure for a specific purpose. This methodology is closely related to this work.

Badger Architecture [110]
The long-term goal of the Prague-based GoodAI company is to build general artificial

intelligence and the Badger architecture - their latest project, among other related studies, is
probably the closest one to this work.

As stated in the paper, they introduce a way how to adapt to new environments by
"learning to learn learning algorithms". The learning procedure is illustrated in Fig. 2.42.
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There is an agent made up of many so-called experts sharing a universal expert policy. The
overall goal is to make the experts quickly adaptable, when a new environment is shown to
the system.

First of all, the expert policy is trained over generations of agents on diverse environments
(outer loop) and then it is fixed. Then an agent is run in a new environment and its adaptation
emerges as a result of inter-expert communication (inner loop). If needed, more experts
are added by cloning the old ones. At inference time, the roles of experts are assigned
dynamically.

Fig. 2.42 The inner and outer learning loops in the Badger architecture [110].

As the current state of the project, there is an evidence that: 1) the fixed shared policy
can lead to adaptation during the inner loop; 2) adding experts can help find better solutions
(and faster); A few related observations:

• the goal is the adaptation - the experts are not taught to deal with a specific problem,
but rather they are taught to adapt to any general environment with a variable number
of inputs;

• a stochastic universal policy - by default, one fixed policy is shared by all experts and
the policy is represented by a trained neural network;

• toy-tasks tested - by now, the approach needs more effort to be scaled up to a real
world setting.
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2.8 Frameworks for Neural Networks

There are several popular and widely used neural network frameworks available. Among the
most popular ones are:

• PyTorch [99] Developed by Facebook’s AI Research lab (FAIR), PyTorch is known
for its dynamic computational graph and is widely used in academia and industry for
research and development of neural network models.

• TensorFlow [1] Developed by Google Brain, TensorFlow is a widely used open-
source deep learning framework offering a comprehensive ecosystem for building and
deploying machine learning models.

• Keras [23] Integrated with TensorFlow, Keras provides a user-friendly interface for
building neural networks and is preferred by beginners and researchers for its simplicity
and ease of use.

• scikit-learn [101] Scikit-learn is a popular machine learning library in Python, offering
simple and efficient tools for data mining and data analysis, built on NumPy, SciPy,
and matplotlib.

• JAX [17] Developed by Google Research, JAX is a composable and extensible library
for machine learning and numerical computing, gaining popularity for its functional
programming style and compatibility with NumPy.



Chapter 3

Related Principles and Technologies

Building upon the comprehensive exploration of neural networks in the previous chapter,
we now delve into a detailed examination of additional machine learning principles and
technologies. These foundational elements play a pivotal role in the approach developed
within this work. Our focus extends to Reinforcement Learning (RL), Multi-Agent Systems
(MAS), Genetic Algorithms (GA), and the Human-in-the-Loop approach.

3.1 Reinforcement Learning

Reinforcement learning (RL) stands as one of the three fundamental paradigms in machine
learning (see Fig. 3.1). Unsupervised learning identifies hidden data patterns from features,
particularly excelling in self-supervised learning and producing high-performance pre-trained
models. Supervised learning relies on a supervisor to furnish a labeled dataset, a process that
could be both costly and impractical. Unlike both, reinforcement learning operates without a
supervisor or a pre-collected dataset. The system learns from making decisions by interacting
with its environment over (usually many) episodes of time.

 

self-supervised

supervised 
learning 

unsupervised 
learning reinforcement 

learning 

env               
 
 
state

action

reward

sampleslabels

predictions

loss

samples

data patterns pre-trained
models

Fig. 3.1 Placement of reinforcement learning within the machine learning family.
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The main principle is that we don’t explicitly instruct the system on what it should
do (provide correct labels), but instead, we evaluate its behaviour with positive or negative
feedbacks. The approach is rooted in Pavlov’s theory of classical conditioning, where learning
occurs through association. The familiar experiment demonstrates a widely acknowledged
fact - through the use of positive or negative stimuli, a dog eventually learns to respond
appropriately to specific situations.

The inherent nature of RL makes it especially suitable for tasks where collecting labeled
data is challenging or tasks aiming to develop effective strategies for achieving positive
future outcomes through decision-making over time, e.g. making trading decisions on a stock
market. Reinforcement learning is also suitable for tasks aiming to model optimal behaviour
in specific environments, such as operating drones, autonomous vehicles, or manufacturing
devices. Next, it has demonstrated success in playing games such as Go, Chess, and various
video games [135]. Finally, and importantly for this work, it fits very well for learning in
multi-agent systems.

3.1.1 Formulation of a RL problem

Many different approaches to RL exist, sharing the same foundational principles while
differing in their optimization algorithms. Despite their differences, they all rely on these
fundamental terms that have to be defined to formulate a RL problem:

• Environment. This is the world of operation that illustrates the problem to be solved.
We can encounter either real-world or simulated environments. The environment
informs the agent about its current state and rewards it for its taken actions.

• Agent. A single entity interacting with the environment by making decisions about
its next action based on the current state. As a feedback, it receives a reward for its
choice and information about the new state.

agent

environment
r<t>

s<t+1>

reward 
r<t-1>

state 
s<t>

action 
a<t>

Fig. 3.2 A single step of the reinforcement learning procedure (single agent).
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• State. The state s<t> characterizes the situation of the environment or, depending on
the problem settings, the agent within it at time t. The state must be self-contained,
meaning it should encompass all the information the agent requires to decide on its
action. States can be discrete or continuous.

• Action. Each agent has a set of (usually discrete) actions representing the moves we
want the agent to learn. Action a<t> is the selected agent’s move at time t based on
state s<t>.

• Reward. A positive or negative feedback from the environment at time t based on
agent’s move a<t−1> at state s<t−1>. It reflects the behaviour the agent is supposed to
learn.

The agent interacts with the environment over a sequence of time-steps t ∈ [0,T ] if the
environment has a terminal state s<T>, or t ∈ [0,∞) otherwise. Tasks with no terminal
state are referred to as continuous, and these can theoretically last indefinitely, as seen in
the example of a robot managing warehouse operations. On the other hand, tasks with
pre-defined terminal state(s) are called episodic; for instance, a game of Chess concludes
when the game is over. Each time-step of an episode can be defined by a state, taken action,
and obtained reward. Then we can describe each episode by concatenating these triples
into the so-called trajectory: (s<0>,a<0>,r<0>,s<1>,a<1>,r<1>,s<2>, . . .). Trajectories
(episodes) are completely independent of each other, and their distinctiveness and variety are
closely tied to the effectiveness of the RL algorithm, as we will explore further later on.

trajectory 1

trajectory 2

trajectory 3

non-terminal 
state

terminal 
state

action
reward

Fig. 3.3 Example of three independent trajectories of episodic RL tasks.

Markov property [84]
Each potential transition from state s j to state si can be characterized by a transition

probability p<t>
i j = IP[s<t+1> = si|s<t> = s j], which may also vary over time. A system has
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the Markov property if its transition probabilities follow the rule expressed by Eq. 3.1, which
can be paraphrased as:

"Future is independent of the past given the present."

IP[s<t+1>|s<t>] = IP[s<t+1>|s<0>,s<1>, ...,s<t>] (3.1)

This implies that the current state already captures information about past states and is
independent of them. This property is crucial for most reinforcement learning algorithms. A
sequence of states with the Markov property is termed a Markov process (or Markov chain).
The dynamics of such a system (illustrated in the example on Fig. 3.4) are entirely defined
by its states (sleep, run) and corresponding transition probabilities.

sleep run
0.9

0.5

0.5 0.1

Fig. 3.4 Example of a Markov chain (process) of two states.

Next, we can enhance the chain by incorporating a set of actions available from each
state and an immediate reward received for each transition. This leads to a Markov Decision
Process (MDP), formally defined as a 4-tuple (S,A,P,ρ), where:

• S is a set of states (a state space);

• A is a set of possible actions, αs a set of actions available from state s;

• P is a transition probability matrix, e.g. p<t>
(i, j,a) = IP[s<t+1> = si|s<t> = s j,a<t> = a]

is the transition probability for moving from state s j to si by taking action a.

• ρ is a matrix of immediate rewards for transitioning among states, e.g. r<t>
(i,a) =

IE[r<t+1>|s<t> = si,a<t> = a] is the immediate reward for moving from state s j to si

by taking action a.

Reinforcement learning problems are typically structured as Markov Decision Processes.
If the agent cannot directly observe the underlying state, it must maintain a probability
distribution over the set of possible states, and it is then called a Partially Observable MDP.
The Markov property is particularly useful for environments with longer episodes, as storing
complete past information and using it for decision-making becomes infeasible.



3.1 Reinforcement Learning 61

state

action
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a large transition
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?

(a)

(b)

state

Fig. 3.5 Environment model: (a) observable (rare), (b) hidden (typical case).

As the agent is responsible for generating actions, environments control the transition
of states. In environments strictly governed by the laws of physics, one could theoretically
define an environment model and a corresponding (very large) transition probability matrix
(see Fig. 3.5a). In this case, we can apply so-called model-based RL algorithm, which is more
discussed later. However, in most cases, environments exhibit complex internal dynamics,
filled with unseen factors, making them appear like black boxes to us (see Fig. 3.5a). In
RL, we employ an agent, as shown in Fig 3.2, to iteratively interact with the environment,
studying its behaviour. This process is grounded in three fundamental concepts: return,
policy, and value.

Return. Instead of prioritizing only the next highest immediate reward on its trajectory,
the agent is focused on accumulating rewards to achieve the maximum sum at the end of
each episode. Return R<t> is the total reward calculated as a cumulative (and discounted)
sum of all rewards obtained from the current state s<t> until the end of the episode, formally
defined as given in Eq. 3.2.

R<t> = r<t>+ γr<t+1>+ γ
2r<t+2>+ ...+ γ

<T−t>r<T> =
<T>

∑
τ=t

γ
<τ−t>r<τ> (3.2)

Here, γ ∈ [0,1] is a discount factor that prevents the Return from growing infinitely for a
large number of time-steps. Additionally, it encourages the agent to prioritize immediate
rewards, which are more valuable (see Fig. 3.6a). Simultaneously, the formula compels the
agent to favor higher total returns over appealing immediate ones (see Fig. 3.6b).
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Fig. 3.6 Influence of the discount factor γ ∈ [0,1] in Eq. 3.2.

Policy π Policy represents the strategy followed by the agent when deciding which action
to take. For example, the strategy could be to always choose a random action or to avoid
obtaining low immediate rewards. Theoretically, a policy can be envisioned as a vast look-up
table providing best available actions based on the current state. In practice, due to the
enormous number of state-action pairs, policies are represented as functions rather than
tables. Policies can be deterministic, always selecting the same action for a given state, or
stochastic, more common and also practical in situations where unpredictability is desired,
such as in gaming.

A reinforcement learning algorithm makes agents learn their policies. The primary
objective of RL methods is to find the optimal policy π∗ (the best one). In the quest for the
best solution, a comparison metric is needed, and in comparing policies, it is the value.

Value v(π)(s) The value of state s under policy π is computed as the expected Return when
following the policy π (Eq. 3.3):

v(π)(s) = IE[Rt |st = s] (3.3)

In terms of earlier definitions, we can view reward as immediate pleasure, while value would
represent long-lasting happiness [34]. The value can also be interpreted as experience and
stored in memory, for example, in the form of a table (see Fig. 3.7a). Alongside value, we
analogically define the so-called Q-valueπ(s,a), representing the expected Return by taking
action a in state s and then following policy π (see Fig. 3.7b).
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s1 Q11 Q12

s2 Q21 Q22

value

s1 v1

s2 v2

(a) (b)

Fig. 3.7 Difference between value (a) and Q-value (b).

Once we have a metric to evaluate each policy for every state, we can compare policies
and assert that the one with a higher value is better. The optimal policy is then the one yielding
the highest Return, and finding the optimal policy solves a RL problem. To summarize, we
have formulated the RL problem as follows:

1. Structure the problem as a Markov Decision Process.

2. Define environment, agent, state, action, reward.

3. Apply RL algorithm.

4. Get a trained agent with optimal policy.

3.1.2 Introduction to Optimization Techniques

As previously indicated in Fig. 3.5, environments of certain optimization problems can
be explicitly modeled. In such instances, solutions can be derived analytically without the
requirement for the agent to interact with the environment. In these cases, rewards and
transition probabilities are deterministic and known in advance. These methodologies are
classified as model-based algorithms.

prediction control

model-based 
(planning)

Dynamic Programming
Policy Evaluation

DP Value iteration 
DP Policy iteration

model-free
(RL)

Monte-Carlo prediction 
Temporal Difference (TD)

TD (λ) backward

Monte-Carlo Control 
SARSA, SARSA Backward 

Q-Learning 
Deep Q-Network 
Policy Gradient 

Actor-Critic

This
is

RL!

Fig. 3.8 Categories of optimization algorithms. Green: RL algorithms [34].
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However, a significant portion of real-world problems exhibits complexities that hinder the
construction of an accurate environment model. Consequently, these problems are addressed
using model-free techniques. Additionally, as illustrated in Fig 3.8, we can categorize the
algorithms into prediction and control techniques. In prediction, the policy serves as the
input, and the objective is to output a value function. On the other hand, control algorithms
do not have input, and their task is to explore the policy space to identify the optimal policy.
This category is traditionally referred to when discussing RL algorithms,and as such, they
are the primary focus in the subsequent text.

As the environment is generally too complex to be modeled, and its internal operations
remain invisible to us, model-free algorithms employ an agent to observe the environment’s
behavior through interaction. This process mirrors human learning and usually starts in a
trial-and-error manner. In the context of an episodic task, the agent undergoes numerous
episodes with diverse trajectories (see Fig. 3.3), essentially constituting its training data or,
more precisely, acquiring experience.

Bellman equation. Having the value computed as the expected Return R (Eq. 3.2) of a
state by following specific policy, the selection of the optimal policy is possible. However,
obtaining the Return involves tracing all possible trajectories down to the terminal state,
which is costly and practically infeasible for large state spaces.

s<4> s<5>
r<4> R<5>

?

R<4> = r<4> + γ R<5> no need to know steps
taken beyond s5

s<T>s<T-1>

R<T-1> = r<T>

r<T>
ReturnImmediate reward

(a) (b)

Fig. 3.9 Illustration of the power of Bellman equation (Eq. 3.4).

The Bellman equation (Eq. 3.4) can be expressed in various forms, but what is crucial
for RL is the decomposition of the Return R<t> of the current state into a sum of two
components:

• immediate reward r<t> from an action to reach next state

• discounted value of the next state Return R<t+1> by following the same policy onwards,
where γ ∈ [0,1] is the discount factor

R<t> = r<t>+ γR<t+1> (3.4)
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The same relation can analogically be applied for value (Eq. 3.5) and Q-value (Q in
Eq. 3.6), forming the foundation for most RL algorithms.

v(π)(s<t>) = IE[r<t>+ γv(π)(s<t+1>)] (3.5)

Q(π)(s<t>,a<t>) = IE[r<t>+ γQ(π)(s<t+1>,a<t+1>)] (3.6)

Crucial observations about the Bellman Equation are:

• The Return can be computed recursively, without reaching the end of the episode, by
leveraging the Return from the next step. When reaching a terminal state, the Return
equals the immediate reward (Fig. 3.9b).

• We can work with estimates, rather than exact values. As it is expensive to measure
the actual Return, we work with value or Q-value.

• There are two ways to compute the same thing:

1. Return from the current state

2. Reward from the selected action + Return from the next state.

As we can use estimates here, we can observe the difference between these two
estimates and compute the estimation error. By reducing this error, the estimates can
be improved.

Temporal Difference Error. Returning to Eq. 3.6, if the estimations were perfectly
accurate, the left and right sides of the equation would be equal. However, since this is
typically not the case, we can assess the accuracy of the estimations by comparing them.
Then, we can calculate the estimation error T De (Eq. 3.7).

T De = [r<t>+ γQ(s<t+1>,a<t+1>)]−Q(s<t>,a<t>) (3.7)

where T De is known as the Temporal Difference (TD) error, and the algorithm is formu-
lated to iteratively update the Q-value estimates in a way to minimize the T De error. Eq. 3.9
outlines the update rule for the fundamental RL algorithm known as TD(0). Here, α serves
as a constant step-size parameter, determining the pace of the learning process.

Q(s<t>,a<t>) = Q(s<t>,a<t>)+α T De (3.8)
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Q(s<t>,a<t>) = Q(s<t>,a<t>)+α [(r<t>+ γQ(s<t+1>,a<t+1>))−Q(s<t>,a<t>)] (3.9)

There are multiple parameters of how to improve the estimation process and by combining
them we can distinguish among several model-free algorithms as shown in Tab. 3.1. The
most common differences are in:

• frequency - number of forward steps before value update;

• depth - number of backward steps to propagate the update;

• formula used to compute the update - multiple variants of the Bellman equation.

algorithm output frequency depth formula
Monte-Carlo prediction value episode episode Return Error
TD (0) value one one TD Error
TD (λ ) value one N TD Error (weighted Returns)
Monte-Carlo control Q-value episode episode Return Error
SARSA (TD control) Q-value one one TD Error
SARSA (λ ) Q-value one N TD Error (weighted Returns)
Q-Learning Q-value one one TD-max Error
Deep Q-Network Q-value one one TD-max Error
Policy Gradient Policy episode episode Return-based Loss
Actor-Critic Policy N one Advantage-based Loss

Table 3.1 Parametrization of model-free RL algorithms.

Policy-based vs. Value-based model-free algorithms. We continue to concentrate on
model-free algorithms, specifically designed for problems where algebraic solutions are
not feasible - the ones that are commonly considered when discussing RL. Among the
shared principles across different approaches, they all begin with arbitrary estimates of the
searched quantity and incrementally improve these estimates through interactions with the
environment, more or less based on Eq. 3.9. The overarching goal for all of them is to
find the optimal policy. They can be categorized into two groups: those that find the policy
directly (referred to as Policy-based) and those that compute the policy indirectly, referred to
as Value-based. As the optimal policy is closely linked with the optimal value, finding one
allows us to derive the other.
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Fig. 3.10 Deriving optimal policy from optimal value with Q1 and Q2 being the Q-values of
corresponding actions (a1 and a2).

As illustrated in Fig. 3.10, the optimal policy can be derived from the optimal value by
selecting the action with the highest value. It’s worth noting that this renders the resulting
policy deterministic and predictable, except in cases of ties. Another key feature distin-
guishing RL algorithms is whether they utilize a look-up table or a function, leading to the
classification of model-free RL algorithms depicted in Fig. 3.11.

look-up table function

policy-based X Policy Gradient 
Actor-Critic

Q-value-based
Monte-Carlo Control 

SARSA, SARSA Backward
Q-Learning

Deep Q-Networks

Value-based
Monte-Carlo Prediction 

TD (0) 
TD (λ) backward

X

Fig. 3.11 Deriving optimal policy from optimal value [34].

Exploration vs. Exploitation. The exploration-exploitation dilemma is a fundamental
challenge in reinforcement learning and decision-making problems. It refers to the trade-
off between exploring new actions to discover potentially better outcomes and exploiting
known actions to maximize immediate rewards. Striking the right balance is crucial for
achieving optimal long-term performance. Here are some of the best techniques to address
the exploration-exploitation dilemma:

• Epsilon-Greedy Strategy: A simple yet effective approach where the agent explores
randomly with probability ε and exploits the best-known action with probability (1−ε).
The evolving value of ε can be expressed as stated in Eq. 3.10, ensuring that the agent
becomes more inclined to exploit over time (see Fig. 3.12).
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ε(τ) = εF +(ε0 − εF)∗ e−τ/εd (3.10)

Here, τ is the current episode number, ε0 = 0.9 (starting value at episode 0),
εF = 0.05 (final value at the last episode F) and value decay εd = 1000, being
an example of many possible settings [103].
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Fig. 3.12 The ε-greedy strategy using a decay based on Eq. 3.10.

• Upper Confidence Bound (UCB): Allocates exploration based on uncertainty around
estimated action values, giving more emphasis to actions with higher uncertainty.

• Softmax Exploration: Assigns probabilities to actions based on their estimated val-
ues using a softmax function, allowing for a smooth transition from exploration to
exploitation.

• Thompson Sampling: A Bayesian approach that samples from a posterior distribution
over model parameters, influencing exploration based on uncertainty about the true
underlying model.

• Bootstrapping: Techniques that involve bootstrapping, such as Temporal Difference
learning or Q-learning, balance exploration and exploitation by updating value esti-
mates based on both current rewards and estimated future rewards.
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3.1.3 Q-Learning

Q-Learning, firstly introduced in [128], is arguably the most popular RL algorithm relying
on a look-up table. This model-free and Value-based approach utilizes a table where each
row corresponds to a state, and each column represents an action. The cells in the table store
the estimated Q-value for each state-action pair. The update rule follows Eq. 3.11, which
slightly differs from the version in Eq. 3.9 by introducing the concept of the target action.

Q(s<t>,a<t>) = Q(s<t>,a<t>)+α [(r<t>+ γ max
a

Q(s<t+1>,a<t+1>))−Q(s<t>,a<t>)]

(3.11)

As illustrated in Fig. 3.13, the target action is the one with the maximal Q-value out of
the available actions in the next step. Importantly, this action serves as the target for updating
the Q-value of the current state only, but it may not necessarily be the action executed later.
In the subsequent step, the ε-greedy procedure may decide to explore a different trajectory.
This characteristic makes the algorithm off-policy, as the actions executed can differ from
those used for learning.

t = 2                                          
 
 
 
 
 
 
 
 
 

t = 1 
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a32
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(max Q-value) 

current
action

Fig. 3.13 Q-Learning: Example of the target action selection.

The Q-Learning algorithm converges to the optimal policy. From Eq. 3.11, it is evident
that updates of the Q-value are based on two estimates and the Return. As the Return of
the last (pre-terminal) state equals the reward, which is grounded in actual data, and the
updates propagate back to earlier stages, the estimates become more accurate with more
episodes. Ultimately, with sufficient iterations and evaluation of all possible options, the
optimal Q-values are found.



3.1 Reinforcement Learning 70

3.1.4 SARSA

The name SARSA [114] is derived as the acronym for the quintuple State-Action-Reward-
State-Action. It is an on-policy algorithm, implying that it learns the action-value function
for the policy it is currently following. This is a key distinction from Q-Learning. The update
rule for SARSA is given by Eq 3.12:

Q(s<t>,a<t>) = Q(s<t>,a<t>)+α [(r<t+1>+ γ Q(s<t+1>,a<t+1>))−Q(s<t>,a<t>)]

(3.12)

Compared to the update rule of Q-Learning (Eq. 3.11), in SARSA, the target involves the
Q-value of the actual action taken Q(s<t+1>,a<t+1>). This makes it more conservative and
may be preferred in situations where exploration needs to be carefully controlled.

3.1.5 Deep Q-Networks

The Q-Learning algorithm (Sec. 3.1.3) faces limitations due to the restricted capacity of
its table. Dealing with an extensive number of states, and potentially actions, makes it
impractical to construct a table for such complex problems. Additionally, there is a need to
handle continuous state spaces, which might pose challenges in encoding them into discrete
states to fit the table format. In such instances, a function can replace the look-up table, and,
as we know, neural networks are excellent function approximators.

Q-Table 
 
 
 

Deep Q-Network 
 

ƒ(a,s)

state s

Q-value (s, a1)
Q-Learning

Deep 
Q-Networks

Q-value (s, a2)

Q-value (s, an)

. 

. 

Fig. 3.14 Q-Learning vs. Deep Q-Networks.

In Deep Q-Networks (DQNs, [90]), there is the same dual-action logic as in the case of Q-
Learning, so we are also talking about an off-policy algorithm. The data flow in the algorithm
is illustrated in Fig. 3.15. There are two neural networks of an identical architecture: 1)
Policy Network trained to predict the Q-value of the action taken based on the current state,
resulting in the predicted Q-value, and 2) Target Network responsible for predicting the
Q-value of the best possible action from the next state, resulting in the target Q-value.
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Fig. 3.15 Deep Q-Network reinforcement learning data flow.

The predicted Q-value, target Q-value, and the reward are used to compute the error (Eq.
3.13), and subsequently, Huber Loss L (Eq. 3.14) is typically used, as its nature makes it
robust to outliers when the estimates are noisy.

δ = Q(s<t>,a<t>)− (r<t>+ γ max
a

Q(s<t+1>,a<t+1>)) (3.13)

L(δ ) =

1
2δ 2 for |δ | ≤ 1

|δ |− 1
2 otherwise

(3.14)

In Deep Q-Networks, two crucial concepts enhance the learning process:

• Two Identical Networks: Only the Policy Network is trained, not the Target Network.
Instead it is softly updated, achieved by copying parameters from the Policy Network
every k time-steps or using Eq. 3.15 with parameter τ (e.g., τ = 0.005).

target_net_params = τ ·policy_net_params+(1− τ) · target_net_params (3.15)

If there were no secondary (Target) network and both the predicted and target Q-values
were computed exclusively from the Policy Network, it would be akin to pursuing a
moving target. Employing it ensures that target Q-values remain stable, at least for a
short period of time, which was showed to result in a more stable training.

• Experience Replay: Data accumulation in Experience Replay involves shuffling and
random batch sampling during policy optimization. Mixing older and recent samples
in the batch prevents issues like catastrophic forgetting, ensuring the network learns
more robustly. The Experience Replay has a limited capacity.
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3.1.6 Policy Gradient Algorithms

Model-free RL algorithms, as mentioned earlier, can be categorized into Value-based and
Policy-based. Q-Learning (Sec. 3.1.3) and Deep Q-Networks (Sec. 3.1.5) derive their
optimal policy indirectly from Q-values and utilize the ε-greedy approach during training.
On the other hand, Policy Gradient algorithms learn their optimal policies directly, as it goes,
implying that their outputs include a probability distribution of actions, not just Q-values.

Policy Gradient 
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Fig. 3.16 Policy Gradient methods have a probability distribution on their output.

The training data for the network is collected from the interactions of an agent with the
environment, and the gained experience (a batch of samples) is acquired once after every
episode. A single sample comprises a triple (state s<t>, action a<t>, reward r<t>).
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Fig. 3.17 The data flow of the policy gradient method.
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A vanilla version of the loss function for network training is computed as given in Eq.
3.16, where R<t> (see Eq. 3.2) is the discounted Return for action a<t> at time-step t. The
objective is to assign higher weightage to actions that resulted in higher rewards. Additionally,
we aim for the probability to increase only slightly if the action taken was positively rewarded
(and vice versa), which is why the log function is used. The negative sign is included because
we typically consider Gradient Descent by default.

L(s<t>) =−log[p(a<t>|s<t>)] ·R<t> (3.16)

Initially, the action space is uniformly initialized, making each action equally likely,
and thus, the algorithm tends to explore. In later stages, it automatically learns to exploit.
However, the action is always taken by sampling from the predicted distribution. This allows
actions with lower probability to be selected even in later stages, automatically addressing the
explore-exploit trade-off. When employing Monte-Carlo sampling to estimate the weights of
the optimal policy (through Gradient Ascent this time), the formula for gradient computation
can be generalized, as shown in Eq. 3.17. The method is then commonly referred to as the
Reinforce algorithm or the Vanilla Policy Gradient algorithm.

∇θ J(θ) = ∑
t=0

∇θ log pθ (a<t>|s<t>) ·R<t> (3.17)

The advantage of this method is its unbiased nature, as we utilize the true Return instead
of estimating it. This approach proves particularly beneficial when dealing with continuous
or a large number of actions, where DQN often faces challenges. Next, policy-based methods,
in general, are usually faster in training as they find their policies directly. On the other hand,
the standard Reinforce algorithm may encounter challenges associated with considerable
variance in policy gradient estimation. As a result, various methods are employed to enhance
its default version.

Proximal-Policy Optimization (PPO) [118]
This method improves upon vanilla policy gradient methods by introducing a clipped

surrogate objective function:

LCLIP(θ) = Ê<t>
[

min
(

ρ
<t>(θ)Â<t>,clip

(
ρ
<t>(θ),1− ε,1+ ε

)
Â<t>

)]
(3.18)

Here, LCLIP(θ) represents the clipped surrogate objective function, where ρ<t>(θ) is
the Advantage function at time t, Â<t> is the normalized Advantage at time t, clip is the
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Clipping function to limit updates and ε is the clipping parameter helping the stability. PPO
strikes a balance between exploration and exploitation, using multiple epochs of mini-batch
updates for improved convergence. This algorithm has demonstrated effectiveness in handling
complex reinforcement learning tasks, offering enhanced stability over vanilla policy gradient
methods.

Trust Region Policy Optimization (TRPO) [116]
This method enhances vanilla policy gradient methods, incorporating a trust region

constraint to regulate policy updates. The TRPO objective function is given by:

LT RPO(θ) = Ê<t>
[

πθ (a<t>|s<t>)

πold(a<t>|s<t>)
Â<t>−βKL

(
πold(·|s<t>),πθ (·|s<t>)

)]
(3.19)

Here, LT RPO(θ) represents the TRPO objective, and β is a Lagrange multiplier. TRPO
ensures stable policy updates by constraining policy divergence using the KL divergence
term. Despite its effectiveness, TRPO has faced criticism for its computational complexity.

3.1.7 Actor-Critic

In the case of the Reinforce approach, employing Monte-Carlo sampling and entire episodes
to estimate the Return introduces substantial variance in policy gradient estimation [60].
Given the stochasticity of the environment (random events during an episode) and the
stochasticity of the policy, trajectories can result in different Returns. As a result, the Return
starting at the same state can vary significantly across episodes. To address this, the solution
is to mitigate the variance by using a large number of trajectories, with the hope that the
variance introduced in any one trajectory will be reduced in aggregate, providing a more
accurate estimation of the return. However, it’s important to note that increasing the batch
size significantly reduces sample efficiency. Therefore, additional mechanisms are needed to
further reduce variance.

The Actor-Critic algorithm combines policy-based (Actor) and value-based (Critic)
methods in RL. The actor decided which action should be taken and critic inform the actor
how good was the action and how it should adjust. A similar type of architecture can also
been seen in Generative Adversarial Network (GAN, Sec. 2.5), where both discriminator and
generator participate in a game. Similarly, Actor and Critic are participating in a game, but
unlike GAN, both of them are improving over time. In this approach, we learn two function
approximations, both represented by neural networks:

• A policy that dictates the actions of our agent (Actor): π0(s)
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• A value function, q̂w(s,a), evaluates the quality of the taken action, providing assistance
in updating the policy. This corresponds to the Q-value.

Actor

Critic

a<t>Environments<t>

Q-value
(s<t>, a<t>) =  q^w(s<t>, a<t>)

Fig. 3.18 Actor-Critic principle.

The Actor updates its policy parameters using the Q-value. In the default version, this
is done with Eq. 3.20, where ∇θ represents the change in policy parameters (weights) and
q̂w(s,a) stands for the action value estimate, i.e., the Q-value.

∇θ = α∇θ (logπθ (s,a)) · q̂w(s,a) (3.20)

In the next time-step (t+1), the Actor, based on its updated parameters, produces the next
action to take (a<t+1>) given the new state s<t+1>. Simultaneously, the Critic updates its
value parameters using Eq. 3.21. Different learning rates for policy and value are considered,
using β in this case. On closer inspection, the first part of the equation corresponds to the
TDe error (Eq. 3.7).

∇w = β [r<t>+ γ q̂w(s<t+1>,a<t+1>)− q̂w(s<t>,a<t>)] ·∇w q̂w(s<t>,a<t>) (3.21)

Advantage Actor-Critic (A2C) [89]
To further stabilize learning, we can use the Advantage function A(s,a) for the Critic

instead of the action value function. The Advantage function (3.22) calculates the relative
advantage of an action compared to the others possible at a state. It determines how taking a
specific action at a state is better compared to the average value of the state (V (s)), where
Q(s,a) is the Q-value.

A(s,a) = Q(s,a)−V (s) (3.22)

The extra reward is what goes beyond the expected value of that state. If A(s,a)> 0, our
gradient is pushed in that direction. If A(s,a) < 0 (our action performs worse than the
average value of that state), our gradient is pushed in the opposite direction. The challenge
in implementing this advantage function lies in the need for two value functions — Q(s,a)
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and V (s). Fortunately, as long as Q(s<t>,a<t>) = r<t>+ γV (s<t+1>), we can utilize the TD
error as a reliable estimator of the Advantage function (Eq. 3.23).

A(s,a) = r<t>+ γV (s<t+1>)−V (s<t>) (3.23)

The A2C method streamlines the learning process by using the Advantage function directly
for policy updates, eliminating the need for a separate value function. This simplification
not only speeds up learning but also enables efficient parallelization, making better use
of computational resources. In essence, A2C is a synchronous, deterministic variant of
Asynchronous Advantage Actor-Critic (A3C).

Asynchronous Advantage Actor-Critic (A3C) This upgrade extends the A2C algorithm
by introducing an asynchronous training scheme for improved efficiency. In A3C, multiple
agents operate concurrently, each maintaining its own actor and critic networks. These
agents explore the environment independently and periodically update a global network with
their experiences, facilitating shared parameter updates. The advantage function (A(s,a))
remains crucial for policy guidance. A3C’s key contribution lies in its parallelized training
approach, enabling multiple agents to explore the state space simultaneously, leading to faster
convergence and enhanced sample efficiency compared to A2C.

3.1.8 Reinforcement Learning Frameworks

Some of the best libraries for working with reinforcement learning include:

• OpenAI Gym [18] is an open source Python library for developing and comparing
reinforcement learning algorithms by providing a standard API to communicate be-
tween learning algorithms and environments, as well as a standard set of environments
compliant with that API.

• Stable Baselines [48] is a set of improved implementations of Reinforcement Learning
(RL) algorithms based on OpenAI Baselines.

• Torch-RL [103] is an open-source RL library for PyTorch.

• Dopamine [21] is a research framework for fast prototyping of reinforcement learning
algorithms, developed by Google Research.

• Ray RLlib [77] is an open-source library for reinforcement learning (RL), offering
support for production-level, highly distributed RL workloads, while maintaining
unified and simple APIs for a large variety of industry applications.
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3.2 Multi-Agent Systems

Each independent unit capable of decision making is generally rated or judged by the way
it chooses its moves (actions) over time. That unit can be a human, a single cell or even an
artificial system of any complexity, where the complexity can be given by the set of available
actions. Every time the selected action is taken, the state of the unit is updated and moreover,
other nearby units as well as the entire environment the units operate in can be affected.
This is related to the known decision-making theorem popularized in [94] that highlights the
importance of taking strategies of your rivals into account, when building own strategy. The
overall score (with respect to the common goal of a group of units) is maximized in case of
the Nash equilibrium, which happens when none of the units wishes to adjust its strategy
even if each knows strategies of all other units.

The term Multi-Agent System (MAS) refers to any environment containing multiple
independent units (agents) that interact with each other and with the environment (Fig. 3.19).
The theory is general and applicable to many domains, for example human teams (companies),
distributed software systems or communication networks.

 
 
 
 
 

                              
                                 environment

agent 
A1 agent 

A2 

agent 
A3 

agent 
AN 

Fig. 3.19 Multi-agent system - N agents interacting with each other and with the environment.

The key feature of such systems is the emergence principle, a phenomenon that occurs
when a system is observed to have properties its parts (agents) do not have on their own and
this unexpected behaviour emerges only when the parts interact in a wider whole. This way
the agents together are capable of solving problems of complexity beyond the knowledge
and abilities of their own separately. The common behaviour of the system can even show
signs of intelligence despite the primitive nature of single units. The primary characteristics
of a multi-agent system include:

• Local view: Agents have a local view only, the whole system and the addressed problem
are too complex for them.

• Emergent behaviour: Interactions among agents lead to emergent behavior—patterns
arising collectively but not explicitly programmed.
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• Autonomy: Agents are independent, self-aware and (to some extend) autonomous
entities with their own decision-making processes and actions.

• Distributed Nature: Multi-agent systems are inherently distributed, with decentralized
decision-making. None of the agents is designated as the one in charge.

• Interaction: Agents interact with each other and their environment, involving commu-
nication, coordination, cooperation, or competition.

• Perception: Agents have the ability to perceive and gather information about their
environment.

• Adaptivity: Multi-agent systems are designed to be adaptable and flexible, allowing
agents to respond to changes.

• Concurrency: Agents operate concurrently, enabling parallelism and efficient resource
utilization. By default, operations are executed asynchronously.

• Heterogeneity: Agents may (or may not) exhibit heterogeneity in capabilities, knowl-
edge, or roles.

• Decomposition - complex tasks are decomposed to elementary tasks addressed by
elementary components.

A solid overview of multi-agent technologies is presented in [33]. In general, the interest
in multi-agent systems has been increasing lately. Typically, they are useful for projects,
where more entities have to cooperate, projects based on distributed systems or projects,
where conventional methods become inconvenient (for instance, caused by limits of a single
unit). They are predicted to be widely used in the future.

3.2.1 Multi-Agent Reinforcement Learning

The standard reinforcement learning principle (see Fig. 3.2) is defaultly derived for training
a single agent in the environment. Analogically, it can be applied to multiple agents in
the same environment, which turns the process into a Multi-Agent Reinforcement Learning
(MARL) problem. A solid review of MARL systems is provided in [134]. Regarding this
work, MARL has several design choices to be considered.
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Shared vs. individual policy. In the context of MAS, there is a choice between shared
and individual policies for the agents. As illustrated in Fig. 3.20a, all the agents can share a
single decision making system (policy π), which is implemented for example in [110] - see
Sec. 2.7.3, or each agent can follow its own individual strategy (depicted in Fig. 3.20b).
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Fig. 3.20 MARL: (a) shared policy vs. (b) individual policies.

Joint vs. individual actions, states and rewards. Figure 3.21 provides an overview of
possible design choices related to the definition of actions, states, and rewards in Multi-
Agent Systems (MAS). In both illustrations ((a) and (b) in Fig. 3.21), actions ai can be
considered and applied either individually (depicted in red) or compiled into a single joint
action a (depicted in purple). Additionally, a global state s of the environment is commonly
defined (depicted in picture (a) in the figure), but the task can also be designed with multiple
independent states si for each agent individually (depicted in picture (b)). Similarly, there are
various possibilities for defining the reward.
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Fig. 3.21 MARL: Joint vs. individual actions, states and rewards.



3.2 Multi-Agent Systems 80

Synchronization. Finally, when agents cooperate or compete within the same environ-
ment, their interactions with each other become crucial. The synchronization and order in
which they take potentially individual actions and update states significantly impact global
performance. Three possible synchronization methods are illustrated in Fig. 3.22:

(a) Actions are executed at the same time (t-1) as well as the consecutive states are
generated together at the next time step t. In this case, the agents are synchronized and
the process is independent of their order.

(b) The agents are processed one by one. Each takes its action and receives a new state
immediately before the following agent makes its action. This mode is dependent of
agents order, but the new state of each agent depends on his last action only.

(c) On the contrary, the last approach generates new states after the action cycle of all
agents and therefore, the states are influenced by actions of the others as well.
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Fig. 3.22 MARL: Multiple variants of agents synchronization.

3.2.2 MARL Frameworks

• NetLogo [131] is a multi-agent programmable modeling environment. It is used by
many hundreds of thousands of students, teachers, and researchers worldwide.

• Vectorized Multi-Agent Simulator (VMAS) [13] is a vectorized framework designed for
efficient MARL benchmarking.

• BenchMARL [14] is a MARL training library created to enable reproducibility and
benchmarking across different MARL algorithms and environments.

• ML-Agents Toolkit [66] is an open-source project that enables games and simulations
to serve as environments for training intelligent agents, developed by Unity.
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3.3 Genetic Algorithms

Genetic algorithm (GA) is a powerful optimization and search method inspired by the
process of natural selection. Developed by John Holland in the 1960s, GAs are widely
used in solving complex problems across various domains, from engineering and biology to
finance and also AI. The fundamental idea behind GA is to simulate the process of evolution
to find optimal solutions to a problem. The terminology includes:

• Chromosome: In the context of GA, a chromosome represents a potential solution
to the problem at hand. It is often (but not necesarilly) encoded as a string of binary
digits, with each bit representing a specific aspect or parameter of the solution.

• Population: A population consists of a group of potential solutions – chromosomes.
The diversity within the population allows genetic algorithms to explore a broader
solution space, increasing the likelihood of finding an optimal solution.

• Genes: Genes are the components of a chromosome that encode specific features or
parameters. These can represent different characteristics of a potential solution, such
as numerical values, binary strings, or discrete options.

• Fitness Function: The fitness function evaluates how well a particular chromosome
solves the problem at hand. It assigns a numerical value to each chromosome, indicating
its performance. The goal is to maximize or minimize this value based on the nature of
the optimization problem.

• Crossover (Recombination): Crossover is the genetic operation that combines the
genetic material of two parent chromosomes to produce one or more offspring. This
process mimics the crossover of genetic material during reproduction in nature.

• Mutation: Mutation involves making small random changes to a chromosome. This
operation introduces diversity into the population and helps prevent premature conver-
gence to suboptimal solutions.

• Selection: Selection determines which chromosomes will be chosen as parents for the
next generation. Fit chromosomes, as determined by the fitness function, are more
likely to be selected, mirroring the principle of natural selection.

The algorithm is illustrated in Fig. 3.23. In practice, there are several design choices, such
as appropriately setting the Fitness function or determining the structure of the chromosome
(the numerical representation of an entity) meant to represent the final solution of the problem.
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Additionally, there is a dilemma concerning which entities should be selected for crossover
as well as for mutation. Relying solely on the Fitness function throughout may result in
overlooking crucial parts of the search space. Finally, numerous options exist for designing
the crossover and mutation operations themselves.

Init 
population

Evaluation 
(fitness) 

Parents 
selection Crossover Mutation New 

generation solution?
no

yes

Done.

Fig. 3.23 Diagram of the Genetic Algorithm workflow.

In summary, the capability of genetic algorithms to explore complex solution spaces and
discover near-optimal solutions becomes valuable in scenarios where traditional optimization
techniques may fail. With their ability to adapt to multiple diverse tasks, genetic algorithms
remain a valuable tool for addressing complex challenges across various domains.

3.4 Human-in-the-Loop

The human-in-the-loop (HITL) methodology involves integrating human feedback or over-
sight into a machine learning system, creating a symbiotic relationship between human
intelligence and machine capabilities. Humans actively guide, supervise, and offer crucial
feedback and corrections to an otherwise automated system. It is typically deployed in tasks
involving human-machine interaction. The principle is illustrated in Fig. 3.24.

scene model behaviour

human

confident

unsure review

Fig. 3.24 The human-in-the-loop (HITL) principle.

Broadly, we can define two categories based on the party leading the interaction [91]:

• Active learning: The system takes charge of the interaction, viewing the user as a
means to annotate unlabeled data for its machine learning algorithms.

• Machine teaching: The user leads the interaction, determining the type of data and
knowledge they wish to impart to the machine learning algorithms of the system.



Chapter 4

Multi-Agent based Neural Networks

Having extensively covered neural network architectures and explored various learning opti-
mization techniques in preceding chapters – including an analysis of optimization algorithms
rooted in RL and multi-agent systems – this chapter now shifts the focus. Here, we delve
into the second segment of this study: the introduction of the proposed methodology for
constructing neural networks from scratch. At first, the problem formulation of this study
is put. Then, the key ideas and concepts are presented, leading us to the description of the
developed algorithm and opening the research questions.

4.1 Problem Formulation

Within the broad spectrum of machine learning challenges and despite its potential applica-
bility across other categories, the proposed method has been developed and demonstrated to
address classification problems of non-sequential data (dressed in yellow in Fig. 4.1).

Machine
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Unsupervised 
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Reinforcement 
Learning 

Clustering 

Classification 

Regression 
Sequential 

data 

Non-Sequential 
data 

Self-Supervised 
Learning 

N features

M classes

model

Fig. 4.1 Depiction of the proposed method’s focus within machine learning (highlighted in
yellow). Reinforcement learning principles (purple) are leveraged as a supportive tool.
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This problem is characterized by the number of input features N, the number of output
classes M, and a dataset comprising S samples. The goal of the method is to produce a
feedforward neural network architecture, called target network (or Net), capable of effectively
classifying the data. That means maximizing accuracy on the dataset while simultaneously
minimizing the number of parameters p in the network architecture. To provide a formal
definition, we can state that given a dataset D consisting of S samples (x1,x2, ...,xS) ∈ RN

and their corresponding targets (y1,y2, ...,yS) ∈ RM, the objective is to discover a model
comprising p parameters capable of classifying the testing portion of the dataset Dtest with an
accuracy acc = nC

nC+nF
, where nC represents the number of correctly classified samples from

Dtest and nF denotes the number of failures. Hence, we have two criteria for a successful
outcome, prioritized as follows: 1) target network accuracy; 2) number of parameters p. This
study investigates primarily the following hypotheses.

Hypothesis H1 Fully-connected network architectures include redundant synapses. This
assumption is supported in [20] demonstrating that pruned neural networks, even with a high
percentage of parameters removed, perform equally well as fully-connected baselines.

Furthermore, a similar behaviour can be observed when employing the dropout mech-
anism (refer to Sec. 2.6.3 and Fig. 2.39). This technique demonstrates that randomly
deactivating individual components of a network during training enhances its overall general-
ization capabilities.

Hypothesis H2 A sparse (not fully-connected) network, modularized into distinct compo-
nents, may offer improved explainability compared to fully-connected versions.
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Fig. 4.2 An illustration of a pruned (and partially explainable) network, overtaken from [20].
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In Fig. 4.2, a simplified example of a pruned network is illustrated, utilizing only 20 input
features (out of the original 728) and 38 synapses to achieve a classification accuracy of 50%
on the MNIST dataset [29]. This visualization allows tracking the flow of data from features
to individual classes, indicated by colors. Consequently, we can elaborate on which parts of
the network handle specific information and how different features influence various classes.

Research basis At this stage, we reference the Universal Approximation Theorem detailed
in [26] to underscore the motivation for tackling the challenge of neural architecture search.
Let φ be any non-constant, bounded, and monotonically-increasing continuous function
(activation function), and let σ(x) represent the output function of a neural network with a
single hidden layer. Then, for any continuous function f defined on a compact subset K of
Rn and any ε > 0, there exists a neural network with weights and biases such that:∣∣σ(x)− f (x)

∣∣< ε (4.1)

for all x in K. This statement asserts that a feedforward neural network with a single hidden
layer, comprising a finite number of neurons, can approximate any continuous function on a
compact subset of Euclidean space to any desired degree of accuracy, provided a sufficiently
large number of neurons. Additionally, in 1991, Hornik demonstrated [57] that it is not the
specific choice of the activation function, but rather the multilayer feed-forward architecture
itself, that gives neural networks the potential of being universal approximators. And this is a
strong motivation for further research.

Inapplicability of brute-force techniques Assuming a feedforward neural network (illus-
trated in Fig. 2.3) with N = 2 input neurons, one hidden layer of r neurons, and one output
neuron (M = 1), the potential number of parameters is given by pM = N · r+ r+ r ·M+M.
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Fig. 4.3 Number of architecture variants (right y-axis / red) vs. number of hidden neurons.
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Given that each parameter (synapse) can either be present (ON) or absent (OFF) in sparse
networks, leading to two states for each, the total number of potential network architecture
variations (i.e., the size of the state space) is nS = 2pM . This poses computational infeasibility
for brute-force algorithms, even with a small number of hidden neurons (r < 10), as depicted
in Fig. 4.3, and particularly for deep, commonly utilized structures. Hence, optimization
techniques are needed to address this challenge.

4.2 Key Concepts

In this section, we introduce the key ideas that form the foundation and contribute to the
uniqueness of the proposed algorithm for neural architecture search (Sec. 4.3). The algorithm
is composed as a combination of the following concepts.

4.2.1 No Layers

As previously specified in the preceding section, the target network architecture is constrained
to be feedforward, given by the condition in Eq. 2.1. However, in addition to the standard
layer-wise approach (Fig. 4.4a), this work introduces a more flexible data flow by eliminating
the organization to layers. Neurons are granted additional freedom by allowing connections
to any other neuron that activates later in time, as indicated by their vertical positions in Fig.
4.4b. The implementation ensures there are no loops in the data flow.

(a) (b)

Fig. 4.4 Elimination of layers: a) standard layer-wise approach; b) proposed approach.

This approach aligns with the concept of skipping connections employed in Residual net-
works, which has demonstrated efficiency and is frequently utilized (e.g., in the Transformer
block - see Fig. 2.29). At the same time, it adheres to the biological model, as there are also
no layers in the human brain.
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4.2.2 Network Architecture Representation

To implement the layer-free architecture shown in the previous section (4.2.1), we introduce
the concept of a Grid. While it may remind us of the conventional layers-wise approach, it
serves primarily for implementation purposes. This way, we can still utilize fast matrix com-
putations for both forward and backward passes through the network, while simultaneously
accommodating their sparsity and connectivity potential introduced in Fig. 4.4b.
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Fig. 4.5 The concept of a Grid defining the target network capacity.

The Grid concept is illustrated in Fig. 4.5a (left), while on the right (Fig. 4.5b), we see
a randomly selected example of a single architecture variant. Importantly, we prepend one
more feature that is always 1 to the feature vector on the first position. By connecting it to
all the neurons in the grid, we implement the bias like this, while we keep the intuition of
synapses corresponding to individual parameters. Each cell in the Grid, including the one for
biases and the input neurons, has a number (indicated by the little yellow boxes in Fig. 4.5a).
The total number of cells in a Grid is denoted as C (in the example, including bias, C = 10).

Beyond facilitating matrix computations, the Grid also establishes important parameters
for the optimization task. The number of samples N, as well as the number of classes M, is
determined by the specific classification problem defined by its dataset D. Next, we define
two parameters that characterize the capacity of the target network and the maximum number
of its parameters. The height of the Grid is denoted by H (H = 2 in the selected example
in Fig. 4.5) and in standard approaches it would correspond to the maximum number of
hidden layers. The width of the Grid is represented by V (V = 3 in Fig. 4.5), aligning with
the number of hidden neurons in a single layer. The first of these "layers," as we refer to
them for the sake of matrix computations and as depicted in Fig. 4.5, is labeled with −1
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and corresponds to the vector of input neurons carrying sample features, including the zero
position for biases. With this configuration, H (corresponding to the height of the Grid)
corresponds to the "layer" of output neurons (activated as the latest). With this, we can define
the maximum potential number of parameters pM (capacity) of the configured Grid as:

pM = pi + po+ ph = (N +1) · (H ·V +M)+M ·H ·V +
H · (H −1)

2
·V 2 (4.2)

Here, pi is the number of synapses coming from input neurons (including the biases), po

signifies the total number of synapses connected from hidden neurons to the output cells,
and ph denotes the number of synapses within the Grid body (not linked to either input
or output neurons). For the example in Fig. 4.5, the network capacity is computed as
pM = 21+6+9 = 36.

N0 N1 N2 N3 N4 N5 N6 N7 N8

N3 λ λ λ 0 0 0 0 0 0

N4 λ λ λ 0 0 0 0 0 0

N5 λ λ λ 0 0 0 0 0 0

N6 λ λ λ λ λ λ 0 0 0

N7 λ λ λ λ λ λ 0 0 0

N8 λ λ λ λ λ λ 0 0 0

N9 λ λ λ λ λ λ λ λ λ
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descriptive factor 
of synapse S82 

full network 
embedding

Fig. 4.6 The overall network architecture representation using a matrix embedding.

Using the defined notation and still considering the Grid example illustrated in Fig. 4.5a,
the network architecture can be fully described by a matrix introduced in Fig. 4.6. Here,
λ serves as a descriptive factor of arbitrary nature for parameter (synapse) representation.
By default, when determining whether the corresponding synapse is present (ON) or absent
(OFF), we use λ ∈ {0,1}. Alternatively, synapse weight or other descriptive factors can be
employed, as will be discussed later in this work. The forward flow is manually ensured in
the top-right part of the matrix by strictly setting the values to zero, as these connections
cannot exist.
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4.2.3 Multi-Agent System Analogy

The development of neural network architectures has been inspired by the biological template
(see Sec. 2.1). Interestingly, in contrast of the amazing capabilities of a biological brain as a
whole, the functionality of a single cell (Fig. 2.1) is pretty elementary. Its responsibility is
virtually just to sum up the incoming signals and to decide whether to fire (activate itself)
or not, while the cell itself is definitely not capable of understanding or even observing the
complex behaviour of the whole brain. Accordingly, what makes the brain such a powerful
machine is the enormous number of the elementary units and the way they interact.

classification problem ~ environment

A2

neural network ~ multi-agent system

samples

. 

. 

targets
A4

A5

Ak

A3

A1

Fig. 4.7 Neural network viewed as a multi-agent system.

Following the principles of multi-agent systems (see Sec. 3.2), we find a perfect analogy
here. Independent agents capable of primitive actions interact with each other and the
environment. These agents possess only a local view, and the problem addressed by the
entire system is too complex for any single agent to comprehend. However, when many
agents collaborate, the system can exhibit intelligent behavior, effectively tackling a globally
complex task. Moreover, the adaptive nature of multi-agent systems aligns with the ability of
neural networks to learn from new data samples. A crucial aspect explored and leveraged in
this work is the decomposition of complex tasks and the modularity of network architecture.

4.2.4 Self-Attention of Multi-Agent Systems

Expanding upon the theory presented in the previous section of viewing a neural network
architecture as a multi-agent system, a significant decision arises regarding the definition of a
single agent within the network. During the algorithm’s development, various configurations
were considered. For instance, initially, a single neural cell was deemed the single agent.
However, it was ultimately decided to define an agent as a single synapse (i.e., a single
parameter of the network). Hence, the concept presented in this section is illustrated using
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this configuration, although the principle is general and potentially adaptable to multiple
different configurations.

In a multi-agent system like this, the agents are expected to interact, collaborate, and
possibly communicate with each other to collectively tackle the shared complex task of
constructing the network architecture. To guide each agent in decision-making within the RL
algorithm at a particular time-step, designing a well-descriptive state representation is crucial.
This representation should capture the current state of the environment (i.e., how effectively
the problem at hand is currently classified). Additionally, what can aid each agent is the
relationship to the current states of other agents. As the number of agents in the system can
be very large, we seek an elegant and computationally efficient approach to relate individual
agents. This is where we attempt to apply the Attention mechanism (detailed in Sec. 2.4.1),
originally designed primarily for NLP tasks to establish relationships between individual
words in text, even in very long passages.
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Fig. 4.8 Idea of employing the Attention mechanism to map agents relations: (a) Attending
embeddings of agents analogically to a NLP task; (b) Attention scores ∼ agents relations.

In Fig. 4.8, the analogy with the NLP task is depicted. Just as we can create an embedding
(along with positional encoding) of a word within a sentence, we can similarly arrange the
agents of a network in a row and embed them into descriptive vector representations. There
are several advantageous aspects here with significant potential:

• The sequence length (i.e., the number of agents in a network) can be very long.

• Computing relations among agents during the forward pass is very fast, involving just
a few matrix multiplications.
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• The representations and relations can be trained using query, key, and value matrices.

• With this configuration, we can compute the self-attention of a single network. Addi-
tionally, we can attend to agents of one network with the agents of another using the
cross-attention mechanism with the query substitution trick described in Fig. 2.30.

• To enhance the approach’s capabilities, we can transition to the multi-head attention,
aiming to identify and represent multiple patterns among the agents. These patterns
could potentially relate to solving individual classes within the classification task.

This enables the agents in the network to have awareness of each other’s situations. The
pivotal design choice here is the formation of a single agent’s embedding, represented by a
vector of dimensionality k. This aspect is one of the research questions further discussed in
subsequent sections.

4.2.5 Employing Genetic Principles

Referring back to Sec. 3.3, which introduced another optimization technique commonly
known as Genetic algorithms, we now demonstrate that several principles from this domain
can also be applied. Once again, we identify several analogies. In a genetic algorithm, the
iterative loop seeks a chromosome that represents the solution to the given problem. This
chromosome consists of individual genes, formed into a representation, typically illustrated
as shown in Fig. 4.9. Relating this terminology to the task addressed in this work, we can
map the chromosome as the network architecture we aim to design, where genes correspond
to individual agents in our network.

chromosome ~ problem solutiongene

A1 A2 A3 A4 A5 A7A6
network 

architecture 

Fig. 4.9 Idea of applying genetic algorithms principles for neural architecture search.

With this setup, we can apply principles like the Fitness function to evaluate the qualities
of individual solutions (network architectures). Additionally, the mutation operation, involv-
ing a (typically random) alteration in the genes over generations, aligns well with changes in
the network architecture. However, instead of being random, these changes could be more
sophisticatedly induced using agents’ decisions. Finally, there is potential for the crossover
operation of chromosomes (architectures), where the cross-attention mechanism mentioned
in the previous section (4.2.4) can be a valuable tool. Of course, there are numerous research
questions in this area that will be further elaborated upon later.
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4.3 The Algorithm

This section presents the core of the work: an iterative algorithm integrating the concepts
introduced in Sec. 4.2. An overall view of the developed framework is shown in Fig. 4.10.
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Fig. 4.10 An overall view of the developed framework.

At this point, it is fitting to recapitulate the analogies and fundamental principles
previously discussed. Returning to the problem formulation, we have a classification task
represented by a dataset (with dimensionality N and M classes), and we aim to design a
network architecture (referred to as Net) that maximizes classification accuracy (acc) while
minimizing the number of parameters p. Drawing from the ideas introduced in Sec. 4.2, we
consider the following:

• A predefined Grid structure (see Fig. 4.5) is characterized by its width V and height H.
It ensures a forward data flow and grants neurons freedom in connectivity by eliminat-
ing traditional layers. The capacity of the network pM is defined by Eq. 4.2.

• The classification problem, seamlessly integrated into the framework like a floppy disc,
defines the Environment of a multi-agent system.

• The generated network architecture (Net) corresponds to a solution to the problem at
hand, analogous to an individual entity (chromosome) within a genetic algorithm popu-
lation. This entity’s characteristics, such as the number of parameters p, classification
accuracy acc, and loss L, can be formed into a fitness function (more in Sec. 4.3.2).

• At the same time, Net embodies a multi-agent system. A single synapse (parameter) of
the network represents an individual agent.

• Additionally, an integrated Monitor, represented by a graphical interface, facilitates
asynchronous communication while the algorithm is in progress.
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Now, further specifications of the generated network design are needed. The implementation
is carried out in PyTorch [99] by designing a custom module tailored to the needs of the
proposed framework. The ReLU activation function, depicted in Figure 2.4, is selected for
all cells in the generated network – recent research [98] published in 2021, focusing on
the Universal Approximation Theorem, confirms its suitability. The AdamW optimizer is
employed, implementing the decoupled weight decay regularization technique [82], with an
initial learning rate set to lr = 0.07. Finally, we choose out of two loss functions:

• We use the categorical cross-entropy loss (Eq. 2.43) for problems with M > 2.

• Alternatively, to ensure the algorithm can generate the minimal possible network
architecture, a special trick is employed for classification problems of two classes. Here,
a single output neuron with thresholding is utilized, allowing for binary classification
using the binary cross-entropy loss (Eq. 2.42). In this scenario, the parameter M is
manually set to 1 to align with the configuration described in Eq. 4.2, which computes
the number of parameters based on M. Thus, in case of two classes, we have M = 1.

The main loop of the algorithm follows the principle of Genetic Algorithms (GA, Sec.3.3),
albeit with slight adjustments from the typical version shown in Fig. 3.23. The primary
distinction lies in skipping the crossover operation in this version of the algorithm, although
its potential inclusion is discussed in Sec. 4.4. Illustrated in Fig.4.11, the algorithm initiates
at time-step t = 0 (yellow box). Subsequently, the iterative optimization algorithm performs
its search for the target network architecture (Net). Each iteration corresponds to a single
generation in GA terminology and also represents a single episode of a RL algorithm, which
is hidden within the purple mutation box and elaborated upon in detail in Sec. 4.3.5. The
loop terminates upon meeting the specified termination condition, indicating the selection of
a suitable candidate of target network architecture (green box).

fitness

INIT 
t = 0

update 
best 

update 
monitor STOP?

mutation 
 
 

DONE.

t += 1

one RL episode ~ GA generation

selectionRL

Fig. 4.11 The main loop of the algorithm based on the GA principle.

In App. B.3, there is the default configuration, aligning with the blocks depicted in Fig.
4.11 and their parametrization. Each of these blocks is now detailed in the following sections.
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4.3.1 Initialization

The algorithm begins by setting the initial population with predefined number of entities,
denoted as G (defaultly set to G = 4) and differing in the randomly set values of their
parameters. For the purpose of constructing the network architecture from scratch, two
methods (Fig. 4.12) were implemented: a) zero: no synapses are present (newborns have no
parameters, default); b) cherries: initialize synapses connecting all input neurons (including
the bias) to all output neurons (newborn entities contain p = (N +1) · M parameters).

y

x1 x21

y

x1 x21

(a) zero (b) cherries

Fig. 4.12 Algorithm initialization methods - (b) example: N = 2 and M = 1 leads to p = 3.

4.3.2 Fitness Function

The fitness function evaluates individual entities (network architectures) based on their
ability to maximize classification accuracy while minimizing the number of parameters.
Besides the accuracy acc, we also employ a relative version of current loss L with the default
maximal loss LM = 2 if not specified otherwise by the problem in hand. With p representing
the number of parameters and pM denoting the capacity of the Grid, the fitness function is
given by Eq. 4.3. Meta-parameter β ∈ [0,1] (defaultly β = 0.6) determines the trade-off
between the two optimized qualities and its impact is demonstrated in Fig. 4.13.

F = acc · (1− (β · L
LM

+(1−β ) · p
pM

)) (4.3)
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Fig. 4.13 Fitness function value across different β configurations.
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4.3.3 Monitor - Graphical Interface

The backend algorithm is complemented by a web-based graphical interface. Its primary
function is to assist in making crucial design decisions during the development of the
overarching algorithm and to validate proof-of-concept solutions for low-dimensional tasks.
This visualization tool is invaluable for gaining insights into the functioning of the running
program. It is developed using the latest web technologies, primarily built in React.js,
and utilizing the 3D Force-Directed Graph library [6] for dynamic and interactive network
illustration. Data is transmitted to the web server using the MQTT protocol, leveraging a
public broker to enable asynchronous communication even from a public domain where the
webpage is hosted.
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Fig. 4.14 Screenshot of the graphical interface.

The visualization of the current network architecture is presented as a draggable and
adjustable 3D object, automatically laid out on the page for optimal clarity. It can display
arbitrary scores or weights of the synapses and visually distinguish between input, body, and
output neurons. Additionally, it maintains the order of neurons from bottom to top, aligning
with the forward data flow. In the case of a two-dimensional problem, a 2D space is provided
on the left side of the page. Here, we can observe how the current network classifies the entire
2D space (transparent circles), as well as the actual samples from the dataset. Additionally,
the dataset description is displayed, allowing users to extend a pop-up window to view all
misclassified samples for each class. The top bar provides information such as the timestamp
of network compilation, the current time-step of the algorithm, and statistics such as the
number of neurons and synapses in the architecture. Finally, in the top right corner, we can
access crucial network capabilities such as fitness, loss, and classification accuracy.
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4.3.4 Termination Condition

Several variants of termination conditions were explored during the algorithm’s development.
Potential strategies include achieving a designated accuracy threshold monitoring the conver-
gence of the fitness function across multiple episodes, which may also involve minimizing
p and thus is more suitable. In this version, the algorithm is manually stopped using the
graphical interface (Sec. 4.3.3), typically when an architecture that meets our requirements
is observed. This approach aligns with the human-in-the-loop principle (described in Sec.
3.4), where interaction with the algorithm occurs during the process. In this scenario, the
human intervention is represented by terminating the algorithm at the right time. At the same
time, the best entity observed is iteratively updated (see Sec. 4.3.7).

4.3.5 Multi-Agent based Mutation

In this section, we introduce the key component of the main algorithm that allows the
entities transform (mutate). Everything described here takes place within the purple Mutation
box in Fig. 4.11. The mutation process integrates a reinforcement learning algorithm,
specifically the Asynchronous Advantage Actor Critic (A3C) method, as detailed in Sec.
3.1.7. Importantly, the main outer loop of the genetic algorithm corresponds to the episodes
of the RL algorithm. Therefore, the GA acts as an intelligent selector of the initial state for
the RL algorithm at the beginning of each episode (which is usually chosen randomly in
standard RL). The entity on the input to the mutation process is called mutatee. Drawing
from the approach introduced in Sec. 4.2.3, each entity is considered to be a multi-agent
system. In this analogy, each agent within the system, representing a single synapse in the
network, has two possible actions: 1) ON or 2) OFF, indicating its current presence within
the network architecture. The transformed entity on the output of mutation is called mutant.
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Fig. 4.15 The mutation process within a single episode of the GA outer loop.
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Figure 4.15 illustrates the overall iterative process, equivalent to a single trajectory within
the state space, using RL terminology. Each block in the diagram is described in detail in
the subsequent paragraphs. Notably, with a policy-based RL algorithm such as A3C, the
experiences gained from navigating the search space are stored across epochs, as depicted by
the conveyor belt metaphor in Fig. 4.15. Policy optimization steps of all actors (agents) as
well as the critic are performed at the end of each episode, following the quitting from the
inner loop of epochs.

This aspect is not evident in Fig. 4.16; however, this illustration provides a detailed
perspective of a single epoch of the RL algorithm. Importantly, it shows how the global state
of the environment is computed and utilized by individual agents. Here, we leverage the
critical concept introduced in Sec. 4.2.4 of utilizing the Self-Attention mechanism. Hence, it
is appropriate to update the RL method name. As we incorporate Attention, it results in A4C.
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Fig. 4.16 A single epoch of the A4C learning (no policy updates included).

The formation of agent embeddings is discussed below. Each embedding has a shape
of k×1. Consequently, a matrix of these embeddings for all agents has a shape of k× pM.
Let χ ′

Ai
denote the embedding vector of agent Ai. Following the mechanism of trainable

attention (Sec. 2.4.1), we compute qi =Wq ·χ ′
Ai

, κi =Wκ ·χ ′
Ai

, and vi =Wv ·χ ′
Ai

, where Wq,
Wκ and Wv are matrices of trainable parameters, each of dimension k× k. Then, the attended
state χAi for agent Ai is computed as given by Eq. 4.4.

χAi = ∑
j

so f tmax(
qT

i ·κ j√
k

) · v j (4.4)

As the first dimension is fixed (dimensionality k) and the second one can vary, it allows
for a processing of both global entity state and states of individual agents using the same
attention mechanism. Moreover, with just one forward pass, we can obtain attended states for
all agents simultaneously, meeting our objective of effectively informing each agent about
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the situations of others. As the mechanism preserves the input dimensionality in the output,
we get a matrix of dimensionality k× pM as the input for the critic model and a vector of
dimensionality k×1 for the actor (agent) model.
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Fig. 4.17 Actor (agent) and critic models structures sharing the attended input.

Illustrated in Fig. 4.17, both models utilize the original agents embeddings using skip
connections. The subsequent architecture for both models closely resembles the Transformer
block. However, there is a difference in the output: the critic model requires a flattening
operation as it deals with a matrix input, producing a single logit value representing the
Q-value. On the other hand, the actor model outputs as many logits as there are defined
actions, which in this case are two for actions ON and OFF. These logits are subsequently
passed through the Softmax function to produce probabilities for each action. However, it’s
worth noting that softmax is not employed during model optimization and is therefore omitted
from the figure. The Q-value on the output of the critic model serves as the evaluation metric
for the current state of the entity (the current design of the network architecture).

Agents and Critic Optimization The models are optimized at the end of each episode,
which is triggered by reaching the maximum number of epochs, by default set to T = 100.
Alternatively, the inner loop can be quitted by meeting a termination condition, depicted
by the done block in Fig. 4.15. However, this is only feasible for tasks where the optimal
(minimal) network architecture is known. Typically, this information is unavailable, leading
to the execution of all epochs in every episode.

Given rewards r<t> and state values V<t> for each epoch t ∈ {1,2, ...,T}, we employ the
Generalized Advantage Estimation (GAE, [117]) to compute the Advantages, as defined by
Eq. 4.8. Here, done<t> ∈ {0,1} denotes the termination state flag at epoch t, and Â<T> = 0.
The values for each t are calculated in reverse order. The Advantages are then normalized.
By employing (GAE), we can effectively manage reward delays and noisy rewards, thereby
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improving the estimation of the true value of actions. The default parameter settings are
γ = 0.95 and λ = 0.98, where γ represents the learning rate and λ determines the balance
between short-term and long-term advantages.

δ
<T> = r<T>−V<T> (4.5)

δ
<t> = r<t>+ γ ·V<t+1> · (1−done<t+1>)−V<t> (4.6)

Â<t> = δ
<t>+ γ ·λ · (1−done<t>) · Â<t+1> (4.7)

A<t> =
Â<t>−mean(Â<t>)

std(Â<t>)
(4.8)

At this point, a very important research question arises regarding the design of the actor
(agent) model. Specifically, it pertains to whether to employ:

• An individual policy model (with separate parameters) for each single agent.

• A shared policy model for agents of the same entity.

• A shared policy model for all agents across the algorithm, even across different entities.

The Actor model – either a single one in the case of the shared-policy mode of learning
or separately for each agent – is optimized using Proximal Policy Optimization (PPO, Eq.
3.18 [118]) using a clipping value parameterized by ε = 0.2, the computed Advantages A<t>

and taken actions a<t> over the epochs. Then we use R̂<t> = A<t>+V<t> as the desired
targets for the Critic model, which uses the Mean Squared Error (MSE) loss function (Eq.
2.39). For both models, we employ the AdamW optimizer [82] with an initial learning rate of
0.001 and utilize the Gradient Clipping method [133] with max_norm = 0.5.

The choice of sharing the policy among agents is closely linked to the design of the
agent’s embedding, including considerations about whether to include the agent’s position
into the embedding or not. For the critic, the same model is utilized for all entities throughout
the algorithm episodes to accumulate a maximum amount of experience.

Agent Embedding Here we have another research question, as forming the embedding of
a single agent is crucial for the algorithm. Two variants were designed (shown in Fig. 4.18).

to from ON apriori dw

to from ON apriori dw θ1 grad ... θS grad

(a) k = 7

(b) k = S + 7

w grad

w

Fig. 4.18 Two proposed variants of the agent embedding (θi being training samples).
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Both variants are suitable for the shared policy of agents as both include an encoded
position of the synapse in the network. The Grid assigns a unique number to each neuron in
the network, thus, we can encode the source and the target neuron of the synapse. We use
a normalized value, obtained by dividing the neuron number by the total number of cells
C in the Grid. This makes the first two features static. Next, we incorporate information
about the current presence of the synapse in the network (ON ∼ 1, OFF ∼ 0). Then, we
introduce a feature called apriori, which provides information about the current situation of
the surrounding neurons (dead or active).
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IF          active neurons
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0 1

1 2

2
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0IF          active neurons
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2

Fig. 4.19 The prior probability of activating an agents is based on its current suroundings.

The next two features are the current weight w<t> of the synapse and the change in
weight since the beginning of training, defined as dw<t> = w<t>−w0. For the first variant
(a), the last seventh feature is the mean gradient value obtained after fitting all training
samples by computing a backward pass using the chain rule of backpropagation. In the case
of the second variant (b), this gradient value is computed for every single sample separately,
resulting in an embedding vector of length k = S+ 7, where S is the number of training
samples.

Learning of Self-Attention Returning to Fig. 4.17, another research question arises
regarding the training of the attention mechanism employed at the input to both the agent
and critic models. There are three potential variants for training the attention parameters:

• Utilizing only the actor model, which learns to predict the Q-Value of the k× pM state
of the entity.

• Employing only the model (or models if their policies are individual) of the agents,
learning the actions to take based on a k×1 agent’s state.

• Using a combination of both - agents’ updates as well as critic’s updates.
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Reward The design of the reward function is another critical aspect of the algorithm,
as it determines the learning objectives for the multi-agent system. After an extensive
experimental exploration of numerous variants, while maintaining the relation to the Fitness
function of the GA (Eq. 4.3), the formulation presented in Eq. 4.9 was derived. Its negative
nature encourages faster algorithm convergence and the high value of 10 favors the discovery
of an optimal architecture, if it is known for the task at hand.

r =

10 if optimal found

(2−acc) · [β · L
LM

+(1−β ) · p
pM

] otherwise
(4.9)

Selection of the mutant Finally, at the end of the mutation process, once we’ve exited the
inner loop and the models are already optimized, the last step is to generate the transformed
network architecture, referred to as the mutant. This entity is then considered as a candidate
for the population of the next generation of the GA (outer loop). It was determined to select
the architecture with the highest Fitness value (Eq. 4.3) across all epochs.

4.3.6 New Generation Selection

Finally, in reference to Fig. 4.11, the last decision to make is the selection of G entities
(defaulted to G = 4) to represent the next generation. As previously mentioned, this selection
essentially determines the initial state for the RL algorithm within the mutation block in
the subsequent episode (typically done randomly in standard RL). In this context, it was
determined to leverage structures obtained from previous generations (mutants) by selecting
G
2 best-performing entities based on the fitness function. To determine the best architectures
from the available candidates, for each of them, we apply the following procedure:

1. Reset parameters (weights).

2. Retrain a predefined number of epochs on the training set (by default 100 epochs).

3. Evaluate the performance on validation data with the Fitness function (Eq. 4.3).

The generation is then completed by adding G
2 initial structures, as defined in Sec. 4.3.1,

aiming to avoid diverging from unexplored architectures by following suboptimal trajectories.

4.3.7 Collecting Results

The best entity encountered during the loop is being updated. We differentiate between the
best entity of the current run and the best ever found for the problem. As the Fitness function
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(Eq. 4.3) depends on network capacity pM, which can vary, it’s only relevant for the current
run. To retain the best-ever network architecture, we compare a new candidate entity (A) with
the current best entity (B) as depicted in Fig. 4.20. This follows the objective to prioritize the
accuracy over minimizing the number of parameters. Additionally, as a byproduct, we obtain
trained Actor and Critic models, which can be utilized as demonstrated in Chap. 5.

B.acc == 1.0

A.acc > B.acc

A.p < B.p
true

false
A is better than B

true

true

Fig. 4.20 Determining if entity A is better than entity B (different runs).

4.4 Potential Extensions

The proposed method is complex, incorporating various machine learning principles and
raising several research questions for evaluation. Additionally, here are a few ideas not
implemented in this work, which deserve consideration and further exploration.

• Parallelization: The methodology is currently implemented in Python with minimal
code optimization. However, there is potential for enhancement which could expand
the capacity of the Grid. Parallelization can be applied at two levels: 1) at the entity
level (outer loop - genetic algorithm); and 2) at the agent level (inner loop - RL).

• Crossover operation: Although not currently implemented, the algorithm framework
is designed to accommodate crossover, potentially leveraging the cross-attention
mechanism as discussed in Sec. 4.2.4.

• Generation selection: This idea suggests integrating the ε-greedy strategy (presented
in Fig. 3.12), for selecting populations in the GA (Sec. 4.3.6). Initially favoring
random initial structures for exploration, the strategy would gradually shift towards
exploiting learned experience by prioritizing generated mutants.

• Kalman filter: Applying this well-known state estimation tool to enhance the state of
the agents presents a promising research avenue. Using an analytical solution could
yield significant improvements in the algorithm’s explainability.

• Human-in-the-loop. This concept is introduced in Sec. 3.4 and the idea is to integrate
it into the graphical interface (Sec. 4.3.3) for asynchronous interaction with the
algorithm during processing. For example, we could interactively prioritize selected
samples or classes and make the network more adaptive to new conditions.



Chapter 5

Experimental Evaluation

This section evaluates the presented methodology. We begin by describing the experimental
setup and introducing selected evaluation metrics. Subsequently, we introduce multiple
example datasets and employ them to evaluate the method. Finally, the obtained results are
summarized and the observations are listed.

5.1 Setup and Metrics

To prevent overfitting and assess the generalization capabilities of generated networks, we
employ dataset splitting into four subssets, in contrast to the standard approach of three sets
typically used in machine learning tasks. The type of itemization bullet corresponds to those
used in the figures below.

• Training set: The train subset is exclusively used for training the neural networks. It
serves to fit the specified number of epochs during the RL algorithm and for retraining
the network before evaluation in the Selection process.

■ Development set: The dev subset is utilized for evaluating entities during the mutation
process (RL algorithm) when computing the Fitness function and reward.

♦ Validation set: The val subset is used to evaluate entities in the outer loop (GA
algorithm) when computing the Fitness function for selecting the best entity of the
current generation.

⋆ Testing set: The test subset is never used in the training process of the algorithm.
These data samples are reserved for overall result evaluation.
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As previously discussed in Sec. 4.3.7, there are two main outcomes of the algorithm:

• best-ever entity: This is the main outcome of the algorithm. For a fixed classification
problem, the algorithm can be run several times with various configurations (see App.
B.3). The best-ever entity represents the neural network architecture, including trained
parameters, that performed the best on the testing set over all runs. The quality of the
entity is described by the following metrics:

– Classification accuracy on the testing subset.

– Loss on the testing subset. The loss functions used are:

1. Binary Crossentropy (Eq. 2.42) for tasks with M = 1.

2. Categorical Crossentropy (Eq. 2.43) for tasks with M > 1.

– Number of parameters corresponding to the number of active synapses in a
structure defined by the Grid (introduced in Fig. 4.5). Additionally, we can
observe the number of dead neurons in the architecture. The presence of dead
neurons indicates that some synapses may be redundant.

• trained agents: As a side result of the training process, we obtain two trained models:

1. Critic model: Capable of evaluating the current state of the entity and thus can be
used as a metric provider.

2. Actor model (or a set of models in the case of individual policies of agents):
Capable of making decisions for each single synapse about being or not being in
the network given the current entity state. Hence, by only applying these actions
in a loop, we can potentially transform any state of the entity (any initialization
of it) into the efficient final form.

During the episodes of the running algorithm, several measures can be observed, providing
insights into various aspects of the algorithm’s performance and behaviour during training.

• Critic Loss: The critic model is also trained in parallel during the RL algorithm.

• Sum of Returns: As the mutation models are trained, the cumulative rewards should
increase, and thus the sum of Returns over epochs should also increase with episodes.
We can observe them individually for each entity or take the mean over them.

• Fitness Function: Taking the value of the best entity in each episode, a plot over
episodes can be formed.

• Number of Epochs till Done: This is only applicable for tasks where the minimal
(target) architecture is known. This number should decrease with time.
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5.1.1 Default Configuration

The most critical configuration settings of the algorithm are outlined in Tab. 5.1, while
the complete configuration file is available in App. B.3. This configuration, derived as the
optimal choice, is utilized in all experiments unless specified otherwise.

Outer loop (GA) Inner loop (RL) - A4C Mutation
Population size (G) 4 Agents policy shared
Init method (a) zero (Fig. 4.12) Agent state (a) k=7 (Fig. 4.18)
Fitness β 0.6 RL timesteps (T) 50
Fitness retraining 100 epochs Retrain epochs (Z) 5
Stop method HITL (GUI) Attention updates agents only
Mutation method A4C Agents shuffling true
Crossover method not used Agents synchronization false

Table 5.1 Default configuration settings used in the experiments.

Importantly, the shared agents policy proved to be effective, resulting in a significant
improvement in processing time as only one model is trained for all agents—this was crucial.
Next, the shorter version of the agents’ state (k = 7) was utilized, while the alternative option
(Fig. 4.18b) is left for future research. Parameter Z represents the number of epochs that are
fitted to the network being generated at each timestep of the RL algorithm after taking agents’
actions. It helps the agents see the influence of their actions and allows the entity to learn
while traversing its trajectory. The research question addressed in Fig. 4.16 pertained to how
the parameters of the shared Attention are updated. It proved beneficial to utilize only agents’
updates, which makes sense as agents are the ones who creates the state. Finally, the order
of agents taking their actions is randomized each epoch of the RL algorithm before actions
are taken, and their states, on which these actions are based, are not synchronized. This
means that each agent makes its decision based on the output of the Attention mechanism
updated by the action of the previous agent. Consequently, the agents are aware of each
other’s behaviour without the need for network retraining after taking each single action.

5.2 Examples

The datasets used for evaluation range from low-dimensional classification problems, valuable
for method development and design choices, to multi-dimensional tasks. These tasks, each
showcasing different features of the algorithm, demonstrate the scalability and applicability
of the approach across various domains, for example in NLP, as demonstrated in Sec. 5.2.4.
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5.2.1 Fundamental 2D Problems

We begin with two elementary 2D tasks, both involving classification into two classes. The
Basic-2D task, as defined in Tab. 5.2, is linearly separable by a single line in the 2D space. In
contrast, the second 2D task, the XOR problem defined by Tab. 5.3, cannot be separated by a
single line in the 2D space and hence requires a more sophisticated network architecture.

x1 x2 y

0 1 1
-0.5 0 1
0.5 0 0
0 -1 0

Table 5.2 Basic 2D problem.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

Table 5.3 XOR problem.

Working with these tasks offers the advantage of being easily visualized in the 2D space.
Both problems are depicted in Fig. 5.1, where the four subsets described in Sec. 5.1 are
indicated by the shapes of their markers. The data is generated using the problem definition
in Tab. 5.2, complemented by additional mechanisms to supplement variability in the dataset.
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(a) Basic-2D dataset.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

Neg
Pos

(b) XOR dataset.

Fig. 5.1 Fundamental 2D tasks of two classes - illustration in the 2D space.

Importantly, the minimal required network architecture (and the minimal number of
parameters p) is known for both of these problems, as illustrated in Fig. 5.2. For the XOR
problem, two network architectures are known (Fig. 5.2 - b1 and b2), both considered
minimal. However, b1 is preferred due to its lower number of synapses (p = 7 with biases).
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(a) (b1) (b2)

Fig. 5.2 Minimal structures, 2D problems: a) Basic-2D; b1) XOR (p = 7); b2) XOR (p = 9).

The performance of the algorithm on these fundamental 2D tasks is depicted in Fig. 5.3.
Since the algorithm is fully stochastic and dependent on several randomized initializations,
the experiment was run 10 times, and the figures provide the mean and standard deviation
values across these realizations. Each of these figures shows the statistics of the best entity
available at the given episode. The left y-axis represents the accuracy and the value of the
entity’s fitness (see Eq. 4.3). The right y-axis indicates the number of parameters p.
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(a) Performance on the Basic-2D task.
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(b) Performance on the XOR task

Fig. 5.3 Algorithm performance on 2D tasks - mean and standard dev. of 10 realizations.

As the optimal architecture is known for these fundamental tasks, we can state that it was
evidently found in all realizations for both cases. For the Basic-2D problem, the algorithm
quickly determined that only p = 2 parameters are needed, even though it worked with a
Grid of capacity pM = 11 - two hidden neurons were successfully left out. In the case of the
XOR problem, the resulting number of parameters across realizations oscillated between
p = 6 and p = 7, indicating that with a good initialization, one of the biases is actually also
not needed. The Grid capacity for the XOR problem was tested with two (pM = 11) and
three (pM = 19) hidden neurons. The resulting network architectures are illustrated using the
developed web-based Monitor (see Sec. 4.3.3) in Fig. 5.4.
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(a) Resulitng Basic-2D network (p = 2). (b) Resulting XOR network (p = 6).

Fig. 5.4 Generated networks - fundamental 2D tasks (corresponding with targets - Fig. 5.2).

5.2.2 A Multi-class 2D Problem - Continents

In the second example, we remain in the 2D space, but the classification task becomes more
challenging as we distinguish between five classes. Therefore, M = 5, and the Categorical
Crossentropy loss function is used (Eq. 2.43). The data are inspired by the layout of the
continents (Fig. 5.5a). The generated network of p = 21, achieving 100% accuracy, is
interesting in terms of explainability. For example, we can observe that neuron N4 works for
classes Asia and America based solely on the x2 feature.
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(a) Multi-class 2D dataset - Continents.
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(b) Best architecture for the multi-class 2D task.

Fig. 5.5 The multi-class 2D task and a partially explainable network architecture solving it.
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5.2.3 A Multidimensional Problem - Michalski’s Trains

Next, we transition back to a classification task with two classes (M = 1), but this time
the problem is multidimensional (N = 7). The Michalski’s trains problem was originally
introduced in [73], further elaborated in [92], and recently used in [20] to evaluate a network
pruning algorithm. The task involves determining concise decision rules to distinguish
between two sets of trains (Eastbound and Westbound). A simplified version from [92] is
illustrated in Fig. 5.6. Each train is described by 7 binary features listed in Tab. 5.4.

feature encoded as 0 encoded as 1

1 car length long short
2 car type open closed
3 cabin pattern vertical lines horizontal lines
4 load shape triangle circle
5 color of trailer wheels white black
6 color of first car wheel white black
7 color of second car wheel white black

Table 5.4 Features describing the trains (table overtaken from [20]).

With the information in Tab. 5.4, we can encode the trains shown in Fig. 5.6 into feature
vectors as shown in Tab. 5.5. The task is then to determine the minimal number of input
features needed for the east-west classification based on the six possible types of trains. In
this task, we obviously cannot split the dataset into subsets as usual.

Fig. 5.6 The Michalski’s Trains task [92].

class EAST

east 1 [0,1,1,0,0,0,1]
east 2 [0,0,1,0,1,0,0]
east 3 [0,0,1,0,0,1,1]

class WEST

west 1 [0,1,1,1,1,0,0]
west 2 [1,1,1,0,1,0,0]
west 3 [1,1,0,1,1,1,1]

Table 5.5 Trains: encoded features.



5.2 Examples 110

Looking at Fig. 5.6, the optimal solution for this problem is to retain the car length and
load shape features (1 and 4), as they are sufficient to distinguish west trains from east trains.
This provides us with information about the optimal target network architecture - it should
have only one output neuron (M = 1) and three parameters (two synapses and the bias). This
is also supported by [92], where one hidden neuron is used to learn this problem.
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Fig. 5.7 Resulting generated network architecture for the Michalski’s trains problem.

Therefore, we conducted experiments with a tiny Grid consisting of a single hidden
neuron only, resulting in a capacity of pM = 19 (for N = 7). Fig. 5.7 shows that the algorithm
successfully identified the two needed features and resulted in the expected architecture.
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Fig. 5.8 The Michalski’s trains problem: trained attention scores and best entity statistics.
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Furthermore, as depicted in Fig. 5.8a, the significance of the two selected features is
supported by the trained attention scores of the best entity. Here, the axis tick labels are
encoded as neuron-to:neuron-from, and therefore, with 9 being the number of the output
neuron, the positions 9:1 and 9:4 fit.

In Fig. 5.8b, we can see statistics of a single selected run of the algorithm over GA
generations (RL episodes). The bottom figure shows the cumulative rewards gained. We can
notice that the peaks perfectly align with the epochs where the optimal solution was found
and hence the agents were awarded by r = 10 (see Eq. 4.9). The top figure shows, for each
episode, the timestep (epoch of the RL algorithm) when the highest fitness was found (black)
and the length of the episode (blue). Here we have a maximum of T = 50 epochs, unless the
optimal solution is found and the inner loop is exited earlier.
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Fig. 5.9 Probability of agents taking action ON (activating themselves).

Finally, Fig. 5.9 illustrates the learning process of the agents’ shared policy represented
by a model described in Fig. 4.17. Although the model is shared by all agents, each agent
has its own state derived using the Attention mechanism, resulting in different model outputs
for different agents. In the figure, we can observe the probability of taking the ON action
(activating self in the network) for every single agent over the episodes. The input uses the
state of the currently best-performing entity (network) for each episode.

Interestingly, we observe that the two important synapses (9:1 and 9:4, highlighted in
Fig. 5.9) are closely related to each other. They switch to a probability of being active equal
to one around the 25th episode and then never leave this status. In contrast, the other agents
tend to be deactivated as the actor and critic models learn over the episodes.
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5.2.4 Intent Classification

In this section, we explore an example that is multidimensional (N = 16) and multi-class
(M = 4) for evaluating the algorithm. The task involves intent classification in the domain
of Natural Language Processing (NLP). The dataset, manually created for demonstration
purposes, is very small (eight samples per class, two in each subset). The samples are listed
in Tab. 5.6, sorted into their classes, and also subsets indicated by the shapes on the left, that
correspond to the settings in Sec. 5.1.

NEGATIVE POSITIVE HELLO QUESTION
• ’I hate you.’ ’You are beautiful.’ ’Hello.’ ’What are you doing?’
• ’Your dog is so ugly.’ ’The weather is nice today.’ ’Hi.’ ’Who are you?’
■ ’I am depressed.’ ’I like you.’ ’Good afternoon.’ ’What do you want?’
■ ’I have so bad day today.’ ’You are the best.’ ’Good evening’ ’What is the time?’
♦ ’It is a rubbish!’ ’It is gonna be OK.’ ’Hey.’ ’Where do you live?’
♦ ’You are stupid!’ ’Sounds good’ ’Good morning.’ ’What is your name?’
⋆ ’I do not like it.’ ’You are perfect to me.’ ’Aloha!’ ’What music do you like?’
⋆ ’This color is the worst.’ ’This is my favourite one.’ ’Hi there!’ ’Are you OK?’

Table 5.6 Samples of the intent classification dataset sorted into classes and subsets.

To transform the textual inputs into encoded samples, two external tools are employed.

1. Sentence Transformer library [109]: As depicted in Fig. 5.10, a pre-trained BERT
model transforms a textual input of arbitrary length into an embedding vector of a
fixed dimension. In this case, the model all-MiniLM-L6-v2 was used, resulting in an
embedding dimension of 348. The embedding encodes also the semantics of the input.

2. Principal Component Analysis (PCA) [40]: Since the algorithm is not optimized for
high-dimensional data yet, the dimension is reduced using the well-known method
of PCA. Empirically derived, the dimension of the samples is reduced to N = 16,
resulting in an explained variance ratio of 0.79 (see Fig. 5.11a). This has proven to be
sufficient for our purposes, but it leaves room for potential future experiments.

Sentence 
Transformer

"What does the fox say?"

PCA

348 x 1 16 x 1

x

yQuestion

Fig. 5.10 Creation of the intent classification dataset.



5.2 Examples 113

0 5 10 15 20 25 30
N (PCA components)

0.0

0.2

0.4

0.6

0.8

1.0
Ex

pl
ai

ne
d 

va
ria

nc
e 

ra
tio

(a) Intents: PCA explained variance vs. N.

0 20 40 60 80 100
Episodes / Generations

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy
Fitness

0

15

30

45

60

75

90

105

120

p

(b) Performance on the Intents task

Fig. 5.11 Intent classification: Performance of the algorithm (mean of 10 realizations).

In contrast to Tab. 5.1, in this task, experiments were performed with the key parameter
β ∈ {0.6,0.7}, proving to yield better performance. Figure 5.11b presents the algorithm
evaluation, following the same setup as used for the 2D tasks. The left y-axis corresponds to
the accuracy and fitness values, while the right y-axis displays the number of parameters.
The figure depicts the mean and standard deviation values of the best available entity for
each episode (generation) of the algorithm following the criterion presented in Sec. 4.3.7.

negative

positive

hello

question

Fig. 5.12 Resulting generated network architecture for the intent classification task.
In this scenario, the Grid comprises three hidden neurons, resulting in an available

capacity of pM = 131. The overall best architecture found (Fig. 5.12) consists of p = 25
synapses while maintaining the validation accuracy of 100%. Additionally, it leads to insights
about the architecture; for example, we can see that one of the hidden neurons was completely
left out or that the Hello class only requires two features.
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5.3 Summary of Results

The algorithm underwent evaluation using five classification problems. Initially, it was
demonstrated on two fundamental 2D tasks: a linearly separable Basic-2D dataset requiring
a single neuron for resolution, and the linearly inseparable XOR problem, necessitating an
additional neuron. In both cases, the algorithm produced optimal network architectures.
Subsequently, its scalability was demonstrated on a multi-class problem (Sec. 5.2.2), followed
by application to a multidimensional (but binary) classification problem of Michalski’s trains
(Sec. 5.2.3). Finally, the algorithm was applied to a multidimensional and also multi-class
task of intent classification in Sec. 5.2.4. The results are summarized in Tab. 5.7.

Basic-2D XOR Multi-class Trains Intents
V x H 1 x 1 3 x 1 3 x 1 1 x 1 3 x 1

pM 11 19 29 19 131
potential variants 2048 524K 537M 524K 2.7 ·1039

be
st

ge
ne

ra
te

d
en

tit
y

p 2 6 21 3 25

dev
acc 1.00 1.00 0.90 1.00 0.88
loss 0.09 0.05 1.13 0.02 1.11

fitness 0.86 0.83 0.40 0.92 0.49

val
acc 1.00 1.00 1.00 1.00 1.00
loss 0.05 0.06 1.11 0.02 0.94

fitness 0.87 0.82 0.45 0.92 0.62

test
acc 1.00 1.00 1.00 1.00 0.75
loss 0.07 0.04 1.12 0.02 1.29

fitness 0.86 0.83 0.44 0.92 0.37

Table 5.7 Results summary for all presented examples.

The most significant observations gathered during the algorithm evaluation are as follows.

• The algorithm demonstrates scalability to multidimensional and multi-class prob-
lems. Notably, even for extending the Grid capacity beyond a hundred parameters, as
demonstrated in Section 5.2.4, the algorithm succeeded and produced an architecture.

• The integration of the Attention mechanism as a communication tool for agents in the
multi-agent system appears promising (see Fig. 5.8a).

• Generated networks show potential of partial explainability (Figs. 5.5b and 5.12). As
all components are considered essential, signals from features to classes can be tracked.



Chapter 6

Discussion

This work is devoted to the challenging task of crafting neural networks architectures
from scratch and tailoring them for arbitrary classification problems. Unlike traditional
neural architecture search methods, which typically involve tuning meta-parameters through
Bayesian optimization, reinforcement learning, or evolutionary algorithms, here the state
space is directly formed by different network architecture variants, particularly their compo-
nents. Solving this task with brute force methods, such as searching the state space, yields as
many as 2pM potential variants, where pM represents the total number of available parameters
to be decided for inclusion in the network. (e.g. for pM = 131 ∼ 2.7 ·1039 variants).

The proposed method was tested across five diverse classification problems, consistently
achieving 100% validation accuracy while using only a fraction of the available parameters. In
the Intent classification scenario (Sec. 5.2.4), for instance, the algorithm identified a minimal
network configuration with just p = 25 synapses out of pM = 131 potential parameters.
Despite room for improvement (fails on test set, Tab. 5.7), the algorithm’s capability to
design compact yet effective networks on given data is rare in the field of machine learning.

Revisiting Hypotheses

• Hypothesis H1, originally confirmed in [20] through network pruning, finds further
support from a different perspective in this study. Discovering a functional network
architecture while utilizing only a fraction of available parameters suggests the presence
of redundant components within fully-connected structures.

• Hypothesis H2, regarding the partial explainability of sparse neural network architec-
tures, warrants further investigation. Initial indications supporting this concept are
observed in Figs. 5.5b, 5.7, and 5.12, where the roles of individual neurons in relation
to class and input features can be vizualized.
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Regarding the objectives of the thesis outlined in Sec. 1.1, all can be considered achieved.
The methodology was proposed, and the algorithm was practically implemented (as detailed
in App. B). However, further enhancements to the implementation would be beneficial,
as the proof-of-concept version developed in Python hampers processing speed, limits the
exploration of numerous arising research questions, and disables the use of Grids with high
capacities of parameters.

6.1 Future Research Directions

As highlighted repeatedly in this thesis, this work presents a multitude of research avenues
that can be further explored. The potential extensions outlined in Section 4.4 has already
offered some of the ideas. Let’s complement these extensions for a comprehensive overview.

• Agent Definition: The overall methodology of the proposed algorithm is based on
several analogies, where one of them is considering a single synapse (parameter) to
be the agent. However, it could be expanded by defining agents as neurons or entire
networks, offering alternative perspectives.

• Crossover of Entities: Introducing crossover operations in the outer loop of the genetic
algorithm, possibly leveraging the cross-attention mechanism (see Sec. 2.4.1).

• Training the Attention: Further experiments and refinement of training strategies are
needed in this area. The mechanism can be updated by the Critic, the Actor or both.

• Agent’s Embedding: The second strategy outlined in Fig. 4.18b remains unexplored.

• Agent’s Synchronization: A detailed investigation into the order of agents’ actions is
warranted. The agents can be activated in parallel or sequentially (shuffled or not).

• Transfer Learning: Utilizing pre-trained Critic and Actor models from one task/domain
as a starting point for learning in is another idea to be tested.

• Configuration Tweaking: The configuration presented in Tab. 5.1 is the best that
was derived in this work, however, the number of potential combinations for the
configuration of the framework is enormous and thus there is always room for further
exploration.

• Signal Tracking: Having the generated network architecture with only synapses that
are needed for solving the problem in hand (are not redundant), allows us to track
the signals from features to classes and back. This could enhance the adaptivity and
targeted modifications in trained networks.



Chapter 7

Conclusion

This study offers an alternative perspective on neural networks and their principles,
diverging from the prevailing trend dominated by large language models in AI research. In
contrast to traditional approaches that prioritize scaling up model sizes, this work focuses on
designing very compact network architectures and tries to find the meaning of their individual
components.

The proposed methodology is novel and never seen or published before. It involves
several intriguing concepts, such as identifying analogies among various machine learning
strategies or employing the attention mechanism as a cohesive element for individual agents
of the multi-agent system. The state of the work is definitely not final. Presented proof-of-
concept experiments have shown promising results, indicating the potential of the proposed
methodology, however, many more ideas remain unexplored. An advanced version of such an
algorithm on a larger scale holds the potential to generate tailored network architectures for
any given machine learning problem, while providing deep insights into the inner workings
of the network. This may enable targeted modifications to trained network architectures.

As this study reaches its conclusion, we find resonance in the introductory quote. Our
research curiosity has driven us to uncover answers to specific questions, yet simultaneously,
it has prompted the emergence of new questions for further exploration.
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Appendix A

Notation Conventions

Notation conventions used in this study are overtaken from [20].
First of all, we define a dataset consisting of samples X and labels Y ′.

X
n×p

=
[
X1 X2 · · · Xp

]
=


x11 x12 · · · x1p

x21 x22 · · · x2p
...

... . . . ...
xn1 xn2 · · · xnp


Y ′

1×p
=
[
Y ′

1 Y ′
2 · · · Y ′

p

]
where X1 is the first sample, p is the number of samples and n is the problem dimension.

Y ′ is the vector of labels. A label can be represented as a number or a string. For example,
we can set Y ′

1 = ”a” be a label of sample X1, which is a sample of phoneme "a". To make it
work together with our neural network implementation, each label has a transcript, which is
unique for every class. The transcript is so called one-hot vector, a zero vector of length m
(number of classes), which has the only one "1" at the position corresponding to its class.
For example, if we classify 5 phonemes and the class "a" was assigned to position 2, its
transcript Y1 would be:

Y1
5×1

=



y11

y21

y31

y41

y51


=



0
1
0
0
0
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A general matrix of these transcripts Y is then:

Y
m×p

=
[
Y1 Y2 · · · Yp

]
=


y11 y12 · · · y1p

y21 y22 · · · y2p
...

... . . . ...
ym1 ym2 · · · ymp


We consider Y to be a predicted output of our neural network. Analogically, we get a

general matrix of a desired output of a network and those two can be item-wise compared.

U
m×p

=
[
U1 U2 · · · Up

]
=


u11 u12 · · · u1p

u21 u22 · · · u2p
...

... . . . ...
um1 um2 · · · ump


Moreover, we decipher the matrices of weights and biases. We have a vector W of weight

matrices W (i), which is always of length (q+1), where q is the number of hidden layers.

W
1×(q+1)

=
[
W (1) W (2) · · · W (q+1)

]
Shapes of matrices W (i) then reveals the network structure. For example we itemize W (1),
which carries the information about problem dimension n. Let’s assume we have j neurons
in the first hidden layer.

W (1)
j×n

=


w(1)

11 w(1)
12 · · · w(1)

1n

w(1)
21 w(1)

22 · · · w(1)
2n

...
... . . . ...

w(1)
j1 w(1)

j2 · · · w(1)
jn


Clearly, the first (row) index indicates the neuron we are going to and the second (column)
index indicates the neuron we are coming from. A corresponding bias vector would look as



129

follows.

B(1)
j×1

=


b(1)1

b(1)2
...

b(1)j


Finally, the error matrix in the output layer of m neurons for p samples is given as follows:

∆
(q+1)
m×p

=


δ
(q+1)
11 δ

(q+1)
12 · · · δ

(q+1)
1p

δ
(q+1)
21 δ

(q+1)
22 · · · δ

(q+1)
2p

...
... . . . ...

δ
(q+1)
m1 δ

(q+1)
m2 · · · δ

(q+1)
mp


Then for ξ = 1, the errors corresponding to the first sample X1 are:

∆
(q+1)
(1) =


δ
(q+1)
11

δ
(q+1)
21

...

δ
(q+1)
m1





Appendix B

Project API

The project is hosted in a private GitHub repository1, where both the versioned thesis
(serving as documentation for the framework) and the framework’s code can be found. Next,
the repository contains file requirments.txt listing all the required packages and their
versions necessary to run the code.

B.1 Framework Implementation

The majority of the code is implemented in Python, primarily leveraging the PyTorch library
[99]. The backend engine is complemented by a web-based graphical interface implemented
in React/TypeScript. The connection between these two components is established via the
MQTT protocol and a public broker. The framework is modularized as depicted in Fig. B.1.

App

Eg

Grid

Monitor

Dumper

Algorithm

Init

Fitness

Mutation

Stop

Selection

A4C

Critic

Agent

AttentionEntity

Net
Neuron

Synapse

MQTT 
Broker

Next.js 
+ 

Typescript

Fig. B.1 Implementation - structure of the framework.

1https://github.com/kitt10/phd
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The list of all Python modules is detailed in Sec. B.2, with each module representing a
methodology outlined in the thesis. The framework is designed to be highly versatile, capable
of handling any specified classification problem placed within the /code/egs/ directory and
inheriting from the Dataset class declared in dataset.py.

Subsequently, each algorithm run is parametrized using a configuration file located in
the /code/cfg/ folder, passed as an argument to the main process. The configuration can
be highly granular, covering every aspect of the framework, as demonstrated by an example
configuration file in Sec. B.3. The main process is initiated with the following command.

$ python app.py -eq EG -cfg CFG_FILENAME -d DEVICE -g H V

-eg –example: Example (task) name in the /code/egs/ directory. Required.

-cfg –config: Name of the configuration file in the /code/cfg/ folder. Default: default

-g –grid: Capacity of the Grid, two integers: V ∼ width and H ∼ height. Default: 3 1

-d –device: Force run on specific device (cpu / cuda). Detected automatically otherwise.

-s –seed: Fixing the random seed for reproducability. Not used by default.

-e –eval: If present, the evaluation mode is active. By default it is inactive.

An example of the command to initiate the main genetic algorithm is provided below. It is
important to specify the output folder where the trained models, responsible for the mutation
operation, will be saved (dumper/save_models_dir in the configuration file—see Sec. B.3).
Optionally, starting from a pre-trained checkpoint (mutation/kwargs/load_models_dir)
is also supported.

$ python app.py -eq XOR -d cpu -g 4 1

The best-found network architecture during the training process is saved to the directory
of the example, along with the statistics, in the /egs/EG/best/ directory, where EG is the
name of the example. Finally, if we want to run the mutation operation using a pre-trained
model on a network from its current state (by default generated randomly based on the init
parameters in the configuration file), we can execute the following command and observe the
mutation process on-the-fly. The pre-trained model is specified in the configuration file.

$ python app.py -eq EG --eval

The real-time evolution of the network architecture can be observed using the web-based
interface (see Sec. 4.3.3) on a public domain. However, the MQTT broker configuration is
required for this purpose, which is not provided in the thesis publicly for obvious reasons.
Finally, the watcher.py script can independently monitor training statistics, also in real-time.
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B.2 Structure of the Workspace

GitHub repo

thesis

code

cfg

config.yml

egs

BASIC2D

XOR

CHAL2D

MNIST

INTENTS

dataset.py

lib

a4c.py

actor.py

agent.py

algorithm.py

attention.py

critic.py

crossover.py

dumper.py

entity.py

evaluation.py

fcn.py

fitness.py

generation.py

...
...

...

grid.py

init.py

monitor.py

mutatees.py

mutation.py

net.py

neuron.py

parents.py

plotter.py

selection.py

stop.py

synapse.py

models

monitor

deploy

devel

runs

app.py

watcher.py
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B.3 Configuration File Example

algorithm:
G: 4
net:
lr: 0.07
loss_lim: 0.01

init:
method: InitDefault
kwargs:
#method: cherries
method: zero

mutation:
method: MutationA4C
kwargs:
load_models_dir: ./models/xor
T: 50
Z: 5
k: 7
reward_done: 10.
gamma: 0.95
lam: 0.98
clip: 0.2
centralized: False
sync: False
shuffle: True
att_updates:
#- critic
- agents

lr_critic: 0.001
lr_actor: 0.001
actor_hidden_dim: 64
critic_hidden_dim: 64

fitness:
method: FitnessDefault
kwargs:
Fm: 1.
beta: 0.35
retrain_epochs: 0

stop:
method: StopHITL
kwargs:
prob_thr: 0.75

selection:
method: SelectionFiftyFifty
kwargs: {}

dumper:
path: ./runs
period: 1
save_models_dir: ./models/xor-2

mqtt:
ip: ’0.0.0.0’
port: 1883
uname: ’XXX’
passwd: ’XXX’
topic: ’XXX’

monitor:
on_visual: True
on_textual: False
width: 200
height: 250

eval:
T: 100
retrain: 10
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verzita v Plzni, Univerzitní 2732/8, 301 00 Plzeň 3, 2017.
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