
Master’s Thesis

Real-Time Concept for
SmartCGMS

Petr Kocián

PILSEN, CZECH REPUBLIC 2024

Master’s Thesis

Real-Time Concept for
SmartCGMS

Petr Kocián

Thesis advisor
Doc. Ing. Tomáš Koutný, Ph.D.

PILSEN, CZECH REPUBLIC 2024

© 2024 Petr Kocián.

All rights reserved. No part of this document may be reproduced or transmitted in

any form by any means, electronic or mechanical including photocopying, record-

ing or by any information storage and retrieval system, without permission from

the copyright holder(s) in writing.

Citation in the bibliography/reference list:
KOCIÁN, Petr. Real-Time Concept for SmartCGMS. Pilsen, Czech Republic, 2024.

Master’s Thesis. University of West Bohemia, Faculty of Applied Sciences, Depart-

ment of Computer Science and Engineering. Thesis advisor Doc. Ing. Tomáš Koutný,

Ph.D.

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2023/2024

ZADÁNÍ DIPLOMOVÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Petr KOCIÁN
Osobní číslo: A21N0034P
Studijní program: N3902 Inženýrská informatika
Studijní obor: Počítačové systémy a sítě
Téma práce: Real-Time koncept SmartCGMS
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s frameworkem SmartCGMS.
2. Seznamte se s operačním systémem FreeRTOS.
3. Seznamte se se zařízeními RPI Zero a vývojovým kitem ESP32.
4. Dle stávajícího rozhraní SmartCGMS navrhněte jeho koncept pro FreeRTOS, který poběží na daných

zařízeních.
5. Implementujte navržený koncept, který bude přenositelný na úrovni zdrojového kódu mezi instrukč-

ními sadami AMD64/x86-64, Armv6 a ESP32.
6. Dále implementujte 4 jednoduché SmartCGMS filtry – (1) čtení, (2) transformace a (3) vizualizace

dat, a (4) watchdog.
7. Otestujte funkčnost celého řešení a změřte jeho provozní charakteristiky.
8. Kriticky zhodnoťte dosažené výsledky.

Rozsah diplomové práce: doporuč. 50 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování diplomové práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

dodá vedoucí diplomové práce

Vedoucí diplomové práce: Doc. Ing. Tomáš Koutný, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání diplomové práce: 8. září 2023
Termín odevzdání diplomové práce: 16. května 2024

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 11. října 2023

Declaration

I hereby declare that this Master’s Thesis is completely my own work and that I

used only the cited sources, literature, and other resources. This thesis has not been

used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from

Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that the

University of West Bohemia has the right to conclude a licence agreement for the

use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

In Pilsen, on 16 May 2024

. .

Petr Kocián

(i)

Abstract

SmartCGMS is a framework for continuous glucosemonitoring systems. It has been

used extensively for testing and optimizing in silico models, but it needs to improve

its support for execution on low-power devices.

This paper proposes a real-time SmartCGMS concept based on FreeRTOS to

examine options for compiling and executing SmartCGMS on low-power devices.

The concept has been deployed as a native application on an ESP32 and a Rasp-

berry Pi Zero W. Additionally, it was compiled into WebAssembly as it is an emerg-

ing approach to deploying applications to low-power devices in the Internet of

Things. Compiling toWebAssembly also allows configuring and experimentingwith

SmartCGMS directly in the web browser. The native application and WebAssembly

module were compared on GNU/Linux to decide which approach to adopt in the

SmartCGMS framework.

The results confirmed the expectations of the computational and memory over-

head of the WebAssembly approach. Furthermore, the size of the compiled We-

bAssembly SmartCGMS concept revealed that the ESP32 does not offer sufficient

DRAM for theWebAssembly approach with the used setup. Regardless of these limi-

tations, theWebAssembly approach should not be abandoned as it provides a way to

execute SmartCGMS in the web browser that could help it to widespread adoption.

(ii)

Abstrakt

SmartCGMS je framework zaměřený na systémykontinuálníhomonitorování glukózy.

SmartCGMS je již široce používáno na testování a optimalizaci in silico modelů,

ovšem je potřeba rozšířit jeho podporu na nízko-příkonových zařízeních.

V této práci je navrhnut real-time koncept SmartCGMS běžící na FreeRTOS pro

vyhodnocení a prozkoumánímožností kompilace a spouštění SmartCGMSna nízko-

příkonových zařízeních. Navrhnutý koncept byl spušten jako nativní aplikace na

ESP32 a Raspberry Pi ZeroW. Kromě toho byl koncept zkompilován doWebAssem-

bly, jakož nově se rozvíjející způsob spouštění aplikací na zařízení v Internet of

Things. Kompilace do WebAssembly dále umožňuje konfiguraci a experimentování

se SmartCGMS ve webovém prohlížeči. Nativní aplikace a WebAssembly modul

byly porovnány na GNU/Linux za účelem výběru, který přístup dále použít pro

vývoj SmartCGMS.

Výsledky potvrdily očekávání ohledně výpočetní a paměťové náročnosti při

použití WebAssembly. Dále bylo odhaleno, že ESP32 nenabízí dostatečnou DRAM

paměť pro spuštění SmartCGMSWebAssembly modulu. Nehledě na tato omezení

umožňujeWebAssembly spouštění vewebovémprohlížeči, cožmůže pomoci rozšířit

povědomí o SmartCGMS, a proto byWebAssembly mělo zůstat podporovanou plat-

formou.

Keywords

Continuous glucose monitoring • SmartCGMS • Low-power devices • FreeRTOS •

WebAssembly

(iii)

Contents

1 Introduction 3

2 State of the Art 4
2.1 Diabetes Mellitus . 4

2.1.1 Insulin Therapy . 5

2.2 Continuous Glucose Monitoring 5

2.2.1 OpenAPS . 6

2.2.2 AndroidAPS . 7

2.2.3 Loop . 7

2.2.4 Medtronic MiniMed 670G 7

2.2.5 SmartCGMS . 7

2.3 Current Efforts to Execute SmartCGMS on Low-Power Devices . 8

2.3.1 WebAssembly . 9

2.4 Building Blocks of Proposed SmartCGMS Concept 9

2.4.1 SmartCGMS . 10

2.4.2 FreeRTOS . 13

2.4.3 WebAssembly . 14

3 Proposed System 18
3.1 System Design . 19

3.1.1 Static Linking . 19

3.1.2 Filter Preprocessor . 19

3.1.3 Preserving Modularity . 20

3.1.4 WebAssembly . 21

3.2 Target Architectures . 21

3.2.1 Low-Power Devices . 21

3.2.2 High Performance Computing 22

4 Implementation 23
4.1 SmartCGMS Codebase . 23

4.1.1 Functions Incompatible with Embedded Environments . . 23

1

Contents

4.1.2 Resolving Symbols . 24

4.1.3 Managing Entities . 24

4.2 Filter Preprocessor . 27

4.3 SmartCGMS Concept API . 28

4.4 Filters . 28

4.4.1 Data Reading Filter . 29

4.4.2 Data Transformation Filter 30

4.4.3 Data Visualization Filter 30

4.4.4 Watchdog Filter . 31

4.5 Supported Platforms . 32

4.5.1 Raspberry Pi Zero W . 33

4.5.2 ESP32 . 33

4.5.3 WebAssembly (WASM) Standalone Runtime 34

4.5.4 WASM Targeted at The Web 35

5 Evaluation 39
5.1 Correctnes of Execution . 40

5.1.1 Experimental Setup . 40

5.1.2 Results and Discussion . 41

5.2 Memory Usage . 42

5.2.1 Experimental Setup . 42

5.2.2 Results and Discussion . 43

5.3 Execution Time . 47

5.3.1 Experimental Setup . 47

5.3.2 Results and Discussion . 48

6 Conclusion and Future Work 50

Bibliography

User Manual

List of Figures

List of Tables

List of Listings

Acronyms

2

Introduction 1
Diabetes mellitus is a globally widespread metabolic disorder characterized by ele-

vated blood glucose levels, which, if left unmanaged, can lead to severe complications.

Measuring blood glucose levels is essential for diabetic patients. A glucometer can

be used to obtain approximate values from a drop of blood. A more convenient way

is using a Continuous Glucose Monitoring (CGM) system. CGM is a method of

tracking blood glucose levels using a blood glucose sensor that measures the levels,

which are then transmitted to a receiver that can display the data or process them

further.

SmartCGMS is a software framework for signal processing focused on CGM.

SmartCGMS uses a fall-through architecture to represent the CGM system. The

signal passes through in one direction. Each part of the system (e.g., a transmitter or

an insulin pump) is represented by a filter. Individual components, i.e., SmartCGMS

filters, can be exchanged without adversely affecting the rest of the system (the idea

of High Level Architecture (HLA)). This enables a SmartCGMS application to be

developed and optimized using simulated devices and deployed to a real device

without modifications.

The project aims to propose, implement, and evaluate an approach to address

this challenge. It involves modifying SmartCGMS to create a concept that could be

run on devices using FreeRTOS. The main requirement is to retain compatibility

with the already supported platforms. Additionally, four filters should be imple-

mented to demonstrate the concept’s functionality: a filter to read data, transform

the data, visualize the data, and a watchdog filter. The project’s findings can be used

as a base for further SmartCGMS development.

3

State of the Art 2
As the prevalence of diabetes mellitus continues to rise, advancements in technol-

ogy are being directed toward improving the treatment of the disease. Continuous

Glucose Monitoring (CGM) systems allow diabetic patients to continuously moni-

tor their blood glucose levels. In combination with an insulin pump, a closed-loop

system can be created. Such a system can autonomously control patients’ blood

glucose levels. Today’s closed-loop systems are not fully autonomous yet and re-

quire patients to manually inject correcting insulin doses. The systems are referred

to as hybrid closed-loop. There are multiple hybrid closed-loop systems available

for diabetic patients, including certified (e.g.,Food and Drug Administration (FDA)

approved) [1] and Do-It-Yourself (DIY) devices [2][3][4]. Before a device can be made

commercially available, it must obtain approval from a governing body (e.g., FDA).

During the approval, clinical studies are conducted to assess the security and safety

of the device. Simulation can be used in the clinical studies [5]. SmartCGMS pro-

vides a framework to create CGM system or hybrid closed-loop software that can

be tested in a simulation and without any modifications deployed to a real device [6].

However, its support for low-power devices is limited. This chapter summarizes the

current state of popular available hybrid closed-loop systems, describes a recently-

emerging way of bringing WebAssembly (WASM) to Internet of Things (IoT) as a

way to create portable software, and details technologies used for the realization of

this project.

2.1 Diabetes Mellitus
Diabetes mellitus is a chronic metabolic disorder characterized by high blood glu-

cose levels (hyperglycemia) resulting from insufficient insulin production or the

body’s inability to use insulin effectively. Failing to keep blood glucose levels in the

optimal range can result in various health complications for the patients (e.g., kid-

ney damage, nerve damage, and cardiovascular diseases). The blood glucose levels

can be regulated by injecting insulin into the patient’s bloodstream. However, an

excessive insulin dose can result in a too-low blood glucose level (hypoglycemia). To

4

2.1.1 Insulin Therapy

avoid hyperglycemia and hypoglycemia, diabetic patients must closely monitor and

control their blood glucose levels.

2.1.1 Insulin Therapy
Some diabetic patients require insulin therapy. The patients inject synthetic insulin

into the fat layer under their skin, where it is absorbed into the bloodstream. Two

types of insulin are used: long-acting and short-acting. The long-acting insulin pro-

vides a steady supply of insulin. It helps regulate blood glucose levels throughout

the night and between meals. The short-acting insulin is injected before eating a

meal to help process the consumed carbohydrates or as a correction when the blood

glucose level is too high. It is referred to as a bolus dose.

Insulin pumps can be used for insulin therapy as an alternative to insulin injec-

tions. An insulin pump continuously injects insulin under the patient’s skin. It only

uses short-acting insulin to regulate blood glucose levels. The short-acting insulin is

injected continuously in small doses to mimic the body’s background level of insulin

production. This constant stream of short-acting insulin is referred to as basal rate.

Before a meal, the user can inject a higher bolus insulin dose to keep blood glucose

levels in the desired range.

2.2 Continuous Glucose Monitoring
To determine the required insulin dose, diabetic patients may measure their blood

glucose levels using a blood glucose meter. A blood glucose meter (glucometer) is a

device that measures blood glucose levels from a drop of blood. The blood is usually

extracted from the patient’s fingertip. Even diabetic patients without insulin therapy

are required to measure their blood glucose levels to help manage their medications

and evaluate the results of ongoing therapy (e.g., diet and exercise).

CGM system can be used instead of a glucometer. A CGM system is a device that

estimates a patient’s blood glucose level by using a sensor located under their skin. It

provides a real-time estimated value of the blood glucose levels. It consists of three

parts: a blood glucose sensor, a transmitter, and a receiver. The sensor measures

an electric current produced by a glucose-triggered electrochemical reaction. The

measured current is denoised and transformed into a blood glucose level estimate.

Then, these estimates are transmitted to the receiver. The receiver can be a smart-

phone, an insulin pump, or a separate device that displays or further processes the

measured data.

An insulin pump can be connected to a CGM system to create a closed-loop or a

hybrid closed-loop system. Such a system automatically adjusts the patient’s insulin

dosage based on the measurements from the CGM. A closed-loop system is fully

5

2.2.1 OpenAPS

autonomous. A hybrid closed-loop system requires users to input their meals into

the system.

2.2.1 OpenAPS
OpenAPS is an example of a hybrid closed-loop system. It is a DIY solution for

diabetic patients. It is distributed as an open-source software with thorough docu-

mentation on how to set it up. TheOpenAPS solution uses a certifiedCGMsystem to

collect the data but in a non-certified manner. It processes the data and then adjusts

the injected insulin dosage of a remotely connected certified insulin pump. It works

only with specific CGM systems and insulin pumps. For compatibility reasons, it

sometimes uses legacy technology. As a result, the DIY solutions like OpenAPS are

not certified by any authority.

OpenAPS uses an algorithm called oref0. It is a heuristic-based algorithm. Ope-

nAPS argues that an algorithm with decision-making that can be understood by the

user is beneficial. For safety reasons, the oref0 algorithm only adjusts the basal rate of

the insulin pump. The basal insulin rate’s maximum is low enough not to overdose

the patient. OpenAPS offers an improved version of the original oref0 algorithm

referred to as oref1. A study conducted by Petruzelkova et al. [7] concluded that

the OpenAPS oref0 algorithm is a safe alternative to the FDA approved algorithm

developed by Medtronic. Further studies showed that the OpenAPS solution can

improve the patient’s blood glucose levels [8]. However, Künzler et al. [9] showed

the limitations of DIY hybrid closed-loop systems, in their study users of OpenAPS

encountered malfunctions that rendered the system unusable for 23% of the total

measured time.

It should be strongly noted that Petruzelkova et al. did not investigate the hard-

ware and software design of the OpenAPS solution, and they did not evaluate any

fault-tolerant or fail-safe aspect of the system. By examining its source code, partic-

ularly the recent git commit da7015c [10], it can be seen that the software does not

meet fail-safe nor fault-tolerant requirements. This is in accordance with study [9].

Therefore, we conclude that improvement of the patient medical condition could

have been achieved rather by increased self-monitoring of the blood glucose level

and more frequent patient interventions (bolus, meal, physical activity, stress relief,

etc.), thus being the oref-benefit a self-bias affected. This is in accordance, e.g., with

study [11] that states "OpenAPS shows similar results to more rigorously developed

and tested AP technology in a highly selective, motivated and technology-adept pop-

ulation of individuals with type 1 diabetes" [sic!]. Another study [12], is concerned

about the cybersecurity of DIY solutions, explicitly naming OpenAPS, whereas the

cybersecurity comes from the hardware and software design of the system.

When building an OpenAPS system, a CGM system, an insulin pump, and addi-

6

2.2.2 AndroidAPS

tional hardware that runs OpenAPS are required. OpenAPS recommends, for exam-

ple, the Raspberry Pi Zero WH. If using the Raspberry Pi, the OpenAPS application

runs on the Raspberry Pi OS Lite operating system. This allows the application to

be updated without rebuilding the whole system. [2]

2.2.2 AndroidAPS
AndroidAPS (AAPS) is another DIY hybrid closed-loop system. It is an Android

application based on the oref0 and oref1 algorithms from OpenAPS. The AAPS

system uses an AAPS application to control the insulin rate and another application

to communicate with the CGM system. Some pumps might require an additional

device to be able to communicate with the phone - a RileyLink compatible device.

RileyLink is a protocol defined for communication with insulin pumps. The data is

collected using Bluetooth. AAPS is compatible with more insulin pumps and CGM

systems than the OpenAPS solution. [3]

2.2.3 Loop
Loop is also a DIY hybrid closed-loop system. It is an application for iPhones. It

uses its own algorithm to determine the optimal insulin bolus and basal rate. Unlike

OpenAPS’s oref0 algorithm, which only computes the basal rate. Loop does not

issue insulin bolus commands by default. It only suggests a recommended dose.

The Loop system also requires a RileyLink compatible device to communicate with

certain insulin pumps. [4]

2.2.4 Medtronic MiniMed 670G
Medtronic MiniMed 670G is the first FDA approved hybrid closed-loop system, but

more hybrid closed-loop systems have been approved since its approval in 2016. The

MiniMed 670G comprises a CGM system and an insulin pump. The insulin basal

rates are computed using a SmartGuard algorithm developed by Medtronic. The

MiniMed system offers two modes: auto mode and manual mode. In auto mode,

the basal insulin dosage is automatically adjusted based on data from the CGM

system. In manual mode, users have control over setting the basal rate themselves.

Numerous studies, such as [13] and [14], have shown that the device in auto mode

- acting as a hybrid closed-loop - has a positive effect on a patient’s blood glucose

levels. [15][1]

2.2.5 SmartCGMS
SmartCGMS is an open-source software architecture framework for continuous glu-

cose monitoring. SmartCGMS is based on the idea of co-simulation and High Level

7

2.3 Current Efforts to Execute SmartCGMS on Low-Power Devices

Architecture (HLA) standard. HLA is a standard that allows the combination of mul-

tiple real and simulated devices in a distributed simulation [16]. In the SmartCGMS

framework, such a device can be, for example, a glucose sensor, insulin pump, or a

predictor of glucose level. The SmartCGMS framework defines filters that represent

individual parts of the system. The concept of co-simulation allows developers to

perform optimization and development on simulated devices and then switch the

simulated device to a real one when the program code is ready. An example of how

SmartCGMS can be used has been shown in [6]. In this study, SmartCGMS has been

used to evaluate the oref algorithm using an FDA approved virtual diabetic patients

simulator DMMS.R [5]. By taking advantage of SmartCGMS co-simulation support,

the original oref code could have been directly used in the experimental setup [6].

[17]

2.3 Current Efforts to Execute SmartCGMS
on Low-Power Devices

SmartCGMS officially supports these platforms:

• Win64

• MacOS 64

• Debian 64

• Android arm64-v8a

• Android armeabi-v7a

In a study by Otta [18] an approach was proposed to execute SmartCGMS on

the ESP32 system on a chip. In the proposal, Otta suggests using Espressif IoT De-

velopment Framework (ESP-IDF) as the underlying software system. The ESP-IDF

is based on FreeRTOS and provides multiple software components (e.g., peripheral

drivers and network stack). Using a Real-time operating system (RTOS) ensures the

system’s critical tasks are executed in time. In the proposed system, several tasks run

on top of FreeRTOS to manage applications, remote communication, and updates.

The proposal defines features - applications that can be remotely installed (e.g.,

SmartCGMS). Each feature is aWASMmodule run by a lightweight virtual machine.

There are already multiple supported WASM runtimes for ESP-IDF [19][20]. The

features can then be updated during runtime.

8

2.3.1 WebAssembly

2.3.1 WebAssembly
WASM is a binary format defined by The World Wide Web Consortium [21]. The

definition includes a set of virtual instructions. The instructions are executed by a

virtual stack machine. The code is distributed in WASM binary files called WASM

modules. Initially, WASM was meant for web browsers, but the virtual instructions

set can be implemented in a standalone runtime. Some of these standalone runtimes

also support embedded devices (e.g., the ESP32) [19] [20].

WASMwas designed to be safe, fast, and portable [22]. The binary files are called

modules. The modules define functions, globals, tables, and memories. Definitions

can be both imported and exported. All imports must be resolvedwhen instantiating

the module. A module is the static representation of the program. The dynamic

representation is called an instance. Instances hold the runtime state of the WASM

module, allowing execution and interaction with the host environment. Functions

represent an executable block of code. Exported functions can be called from the

host environment directly, or they can be called by other WASM functions, even

recursively. Globals are global variables defined in the module. Tables are arrays

of references to objects. The memory of a WASM module is a large array of bytes

(referred to as linear memory). The unit of size for WASM module memory is 64

KB. Each module can only have one memory, but it is possible to grow the module’s

memory in increments of 64 KB. The memory is separate from the code space and

execution stack. This makes executing WASMmodules safe, as they cannot corrupt

their execution environment. The module’s memory can, however, be accessed by

the execution environment. This makes it possible to make a shared memory region

between the module and the execution environment. [22] [21]

Several papers have been published on the usability of WASM in low-power

devices, mainly with a focus on the IoT, such as [23] and [24]. Its low overhead, safety,

and portability make it a good candidate for IoT applications [25]. The main appeal

of WASM for SmartCGMS is the ability to update the application dynamically as

suggested by [18] and [24] and evaluated by [26]. Compiling SmartCGMS for low-

power devices as a native application using an RTOS (e.g., FreeRTOS) would require

flashing the whole firmware when introducing new functionality or fixing issues.

2.4 Building Blocks of Proposed
SmartCGMS Concept

This paper proposes and evaluates another approach for executing SmartCGMS

on low-power devices. The project’s requirements are to define and implement a

real-time SmartCGMS concept based on FreeRTOS. The concept should maintain

compatibility with the x86-64 Instruction Set Architecture (ISA). The concept will

9

2.4.1 SmartCGMS

also be compiled into the WASM format to test the feasibility of Otta’s suggested

solution [18]. The following sections describe the technologies used to implement

the proposed system. First, the SmartCGMS framework and its relevant parts are

described. The next section describes FreeRTOS, and the last section is dedicated

to WASM tools.

2.4.1 SmartCGMS
The general description of SmartCGMS and the description of what it can be used

for is in section 2.2.5. This section details the project-relevant SmartCGMS internals.

2.4.1.1 SmartCGMS Architecture

SmartCGMS uses a fall-through architecture for signal processing. The steps of the

processing are represented by filters, which together form a filter chain. A signal is

processed as a series of messages called device events that linearly pass through the

filter chain. Typically, at the beginning of the filter chain, there is a filter representing

a source of device events. This filter can either simulate a device (e.g., by generating

events from a predefined dataset) or read data from a real device. The device event

is then sent to the next filter. Each filter can decide to destroy, modify, or pass the

event through. It can also generate a new event. At the end of the filter chain, an

output filter can represent, for example, an insulin pump or a filter visualizing the

data from the events. An example of a filter chain can be seen in figure 2.1. [27]

Figure 2.1: Example of a SmartCGMS filter chain [27].

SmartCGMS also defines other entities (e.g., models and signals). Each entity is

compiled into a dynamic library. A SmartCGMS application is a set of dynamic li-

braries. Themain SmartCGMS components are SmartCGMS core and SmartCGMS

common. The common library defines interfaces for SmartCGMS entities based on

theComponentObjectModel, and it provides base implementations for SmartCGMS

classes, functions, and utilities. The SmartCGMS core librarymanages the resources

of a SmartCGMS application (e.g., builds the filter chain and creates events). A typical

SmartCGMS application includes the core and common SmartCGMS dynamic li-

braries and then a dynamic library for each entity that is used in the application. The

SmartCGMS project currently offers precompiled binaries for Windows, MacOS,

Debian, and Android operating systems. [27]

10

2.4.1.2 Device Event

2.4.1.2 Device Event

The device event represents a message in the SmartCGMS filter chain. It is a struc-

ture that holds a device globally unique identifier (GUID) that identifies each event

originator, signal GUID that identifies the signal carried by the event, device and

logical time, and segment ID (specifying a time segment the event belongs to). The

data carried by the event is stored in a union containing a level (signal level value), pa-

rameters (array of parameters), and info (a string). The type of event is distinguished

by event code. There are fifteen different event codes. [27]

There are four event codes relevant to this project:

• Shut_Down - signals to a filter that it should terminate and release its re-

sources

• Level - holds a signal value

• Information - holds an information string

• Error - reports an error, holds the error string

2.4.1.3 SmartCGMS Filter

Each SmartCGMSfilter ismanaged as a dynamic library. It is loaded by the SmartCGMS

framework and managed by calling exported functions: do_create_filter and

do_get_filter_descriptors. A filter is described by its descriptor

(scgms::TFilter_Descriptor). It is a structure that holds the filter’s GUID, name,

description, parameter information, and flags. Each descriptor member provides

necessary information about the filter to the SmartCGMS framework or the de-

veloper. The filter must export the do_get_filter_descriptors function, which

returns its descriptors in a continuous array. [27]

To create the filter object, SmartCGMS uses the other exported function

do_create_filter. This function takes the filter GUID as a parameter. If the GUID

matches the GUID of the filter, it creates the filter and returns a reference to it. [27]

Once a filter is created, it has to be configured before it can process events. The

filter life cycle can be seen in figure 2.3. Each SmartCGMS filter must implement an

interface defined by the SmartCGMS framework called scgms::IFilter. This in-

terface is an abstract class with two pure virtual functions: Configure and Execute.

A pure virtual function in C++ is a function that is not defined in the base class. This

forces its classes to implement the function. [27]

The Configure function provides the filter parameters (loaded from the filter

chain configuration) to the filter. It configures the filter and puts it in the operational

state. When the filter is in the operational state, it can process events. The events are

11

2.4.1.4 SmartCGMS Discrete Model

processed by calling the Execute function. When the Execute function is called, an

event is passed to the filter. The filter can read and modify the event values. After

the filter processes the event, it can then either pass it to the next filter or deallocate

the event memory. The event processing is synchronous. Each Execute recursively

calls the next Execute functions until the event is deallocated by a filter or the

event reaches the end of the filter chain (where it is deallocated by a terminal filter).

Then the Execute function call returns. The filter chain execution is protected by

a recursive mutex. In the case of multiple threads calling Execute simultaneously,

SmartCGMS only allows a single call to the Execute function and blocks the other

threads. [27]

The filter is terminated when it receives a Shut_Down event. [27]

Figure 2.2: Life cycle of a SmartCGMS filter [27].

2.4.1.4 SmartCGMS Discrete Model

The SmartCGMS discrete model is an entity that can represent, for example, a phys-

iological model of a diabetic patient (e.g., The Bergman Minimal Model [28]). The

discrete model is implemented as a derived class from the scgms::IFilter inter-

face. It implements two additional functions: Step and Initialize. The discrete

model has a state. It has to be initialized prior to operation. The discrete model then

performs discrete steps to advance its state. The discrete model is managed by a

signal generator filter. Its operation can be seen in figure 2.2. The model parameters

are specified under the signal generator filter parameters in the configuration file.

Figure 2.3: Operation of the SmartCGMS signal generation filter and a discrete

model [27].

12

2.4.1.5 SmartCGMS Configuration

2.4.1.5 SmartCGMS Configuration

The SmartCGMS configuration is stored in an INI file. It defines the order of the

filters in the filter chain and contains their parameters. The configuration can be gen-

erated by the SmartCGMS GUI application or by using a text editor. It is designed

to be human-readable. A single filter can be configured, for example, as follows:

1 [Filter_001_{8FAB525C−5E86−AB81−12CB−D95B1588530A}]

2 Buffer_Size = 100

3 Log_File = Log.txt

The three-digit number after ’Filter_’ denotes the filter’s position in the filter chain,

the curly brackets hold its GUID, and then follow the filter’s parameters (specified

in the filter descriptor). [27]

2.4.1.6 SmartCGMS Portability

SmartCGMS has been developed with portability in mind. The source code is writ-

ten in C++ (C++17 standard) to make SmartCGMS portable, minimize its memory

footprint, and maximize its computational performance [29]. As mentioned in sec-

tion 2.4.1.1, SmartCGMS is available on Windows, MacOS, Debian, and Android. All

of these platforms have a file system and support dynamic libraries. These features

might not be available on embedded devices running a Real-time operating system

(RTOS), and thus, the support for such devices would require modifications to the

SmartCGMS code base. SmartCGMS has been compiled for Raspberry Pi, but it is

not officially supported and documented.

2.4.2 FreeRTOS
To achieve predictability and reliability, a RTOS can be used to manage complex

programs in a real-time system. Safety-critical real-time systems (e.g., medical em-

bedded systems) require the highest level of predictability and reliability. This can

be achieved by using a certified RTOS [30]. FreeRTOS is a free, widespread RTOS

that offers a pre-certified version (SAFERTOS) with official instructions on how

to port an existing application from FreeRTOS to SAFERTOS [31][32]. However,

SAFERTOS does not use the same codebase as FreeRTOS. It is only based on its

functional model [31]. If certified software is not required for a solution, FreeRTOS

is very well supported by its community and also offers official technical support

under the project OpenRTOS. The codebase of FreeRTOS and OpenRTOS is shared.

Therefore, applications written for FreeRTOS can be ported to OpenRTOS without

any modifications [33].

As many other RTOSs, FreeRTOS has low processing and memory overhead

(typically around 6 to 12 KB). The core functionality of the kernel is located in only

13

2.4.2.1 Tasks

3 files, which makes it simple to use and understand. Its documentation is extensive,

and it offers official support for many architectures [32]. Additionally, many com-

munity ports are available online. FreeRTOS is also supported as a component in

Espressif IoT Development Framework (ESP-IDF) [34].

FreeRTOS was selected as a base operating system for the approach of bringing

SmartCGMS to a smartwatch proposed by [18]. It is also specified as a required RTOS

for this project.

2.4.2.1 Tasks

Tasks are the threads of a RTOS. A task in FreeRTOS is a function that executes as an

endless loop or must delete itself after finishing its execution. FreeRTOS scheduler

manages the execution of tasks and guarantees that only one task runs at a given

time. The tasks are executed according to their priority, which is set during the task

creation. Other parameters can also be configured during the creation. These are

the task’s code, its name, stack depth, parameters, priority, and a task handle that

refers to the created task. FreeRTOS additionally offers support for creating tasks

statically. In this case, the task is not allocated from the FreeRTOS heap, but the

memory needs to be provided at the task creation. This solution is slightly more

complex. There are two extra parameters: the task’s stack buffer (used for the task’s

stack) and the task buffer (used for storing runtime information about the task).

However, the task’s memory can be allocated at compile time. [32]

2.4.2.2 FreeRTOS-Plus-POSIX

FreeRTOS-Plus-POSIX is a FreeRTOS extension that implements a subset of the

POSIX threading Application Programming Interface (API) [35]. This extension

wraps the FreeRTOS tasks API with POSIX threads (pthreads) API, thus allowing

usage of pthreads API to control the execution of FreeRTOS tasks. Only 20% of the

pthreads API is implemented. Therefore, libraries written using pthreads can not

be ported directly to FreeRTOS using only this extension. [36]

2.4.3 WebAssembly
The goal of this project is to create a real-time concept of SmartCGMS that could be

compiled for embedded platforms (e.g., ESP32, Raspberry Pi Zero W) and general-

purpose computers (e.g., an x86-64 machine running Windows) with minimal dif-

ferences in the source code. A typical scenario of using the concept might look like

this: generate a configuration using the SmartCGMS GUI, optimize its parameters

on a general-purpose computer with higher computing power, and then upload the

14

2.4.3.1 Emscripten

code to an embedded device receiving data from a Continuous Glucose Monitoring

(CGM) system and controlling an insulin pump.

There are multiple ways to create portable software. One of them is CMake.

CMake is a software to manage build systems. It can support multiple platforms,

but it usually requires slight modifications to the source code for each platform (e.g.,

in the form of C/C++ preprocessor directives). WebAssembly (WASM), on the other

hand, is a portable binary format for a virtual stack machine [22]. It is, therefore,

possible to run the same compiled binary on any machine implementing the WASM

virtual instruction set. It was originally intended for web browsers, but the virtual

instruction set has also been implemented in non-web environments [37]. These

standalone runtimes also support some embedded devices (e.g., the ESP32) [19] [20].

WASM supports the compilation of programs written in different programming lan-

guages (e.g., C, C++, Rust, C#) [38]. This makes it a good candidate for developing a

multi-platform prototype of SmartCGMS, as suggested by Otta [18]. The WASM for-

mat is described in section 2.3.1. This section describes WASM tools and toolchains

used in this project.

2.4.3.1 Emscripten

Emscripten is a complete compiler toolchain for WASM. It supports C and C++ and

other languages that support Low Level VirtualMachine (LLVM) toWASM compila-

tion. Emscripten targetsmainly theweb andNode.jsWASM runtimes. Alongside the

compiled WASM binary, it produces JavaScript glue code that ensures the WASM

module can run (e.g., it imports required functions). Emscripten provides its own

implementation of the standard C and C++ library. In addition to exporting func-

tions from the compiled C/C++ code, Emscripten provides ways for the C/C++

code to execute JavaScript. All functions exported from the WASM module must

be declared as C functions (using Extern "C" to prevent C++ name mangling). [39]

[40]

2.4.3.2 WebAssembly System Interface

AsWASM gained popularity outside of browsers, there is a need for standardization

of the system interface. This is what WebAssembly System Interface (WASI) aims

to resolve. WASM requires access to system resources (e.g., system calls) to utilize

the full potential of the environment it is running in. WASI is a system interface

between the WASMmodule and the host system. It provides a standardized API to

the WASM module that can be used to access the system resources. It is up to each

WASM environment to implement this interface.

15

2.4.3.3 WASI Software Development Kit

2.4.3.3 WASI Software Development Kit

WASI Software Development Kit (SDK) is a toolchain that combines WASI C library

implementation, Clang and LLVM to one SDK. It is used to compile C and C++ into

WASM. It offers a Docker image for a portable way to build WASM modules. The

WASI SDK supports most of C and C++ functionality. However, C++ exceptions

are not yet supported, and threads are still an experimental feature without long-

term stability. Regardless, WASI is in constant development, and more features are

planned to be supported in the future. [37] [41]

2.4.3.4 Standalone WebAssembly Runtime

When running WASM outside of the browser environment, a standalone WASM

runtime is required. Standalone WASM runtime is an application or a library that

implements the WASM virtual stack machine. Such a runtime can then be embed-

ded into an existing application outside of the web browser. There are multiple

standalone WASM runtimes available. The most popular (based on GitHub stars)

standalone WASM runtimes at the time of writing this project are:

• Wasmer [42]

• Wasmtime [43]

• WebAssembly Micro Runtime (WAMR) [19]

• Wasm3 [20]

• wazero [44]

• WasmEdge [45]

Of these runtimes, only two officially support real-time devices: WAMR and

Wasm3. The other runtimes are targeted at systems running GNU/Linux, Microsoft

Windows, or MacOS operating systems. Both WAMR and Wasm3 support Xtensa,

ARM, and x86-64 Instruction Set Architectures (ISAs), and both support WASI.

Wasm3 is currently in a phase of minimal maintenance. Therefore, WAMR has been

selected as the standalone WASM runtime for this project.

2.4.3.5 WebAssembly Micro Runtime

WAMR is a standalone WASM runtime. It has a small memory footprint, high per-

formance, and many configurable features [19]. Features that are relevant for this

project are WASI threads support, pthread API, and out-of-the-box support for

Xtensa (ESP-IDF) and x86-64 with prepared examples. It supports three modes to

execute a WASMmodule:

16

2.4.3.5 WebAssembly Micro Runtime

• Ahead-Of-Time (AOT) compilation mode

• Interpreter mode

• Just-In-Time (JIT) compilation mode

When using the AOTmode, the WASMmodule is compiled into native machine

code ahead of deployment to WAMR. The WASM module is compiled using wamrc

compiler. It needs to be compiled separately for each different platform. Its advan-

tage is nearly native execution speed and very quick startup. It also has a very small

memory footprint. [46]

The interpreter mode is the slowest of the three modes. It has a small mem-

ory footprint. The WASM instructions are interpreted by WAMR during runtime.

WAMRoffers two interprets: classic and fast. The fast interpreter is 2 times faster but

consumes more memory. The classic interpreter supports source code debugging.

[46]

JIT mode offers the same execution speed as AOT and is platform-agnostic.

The disadvantage is a long startup time as the WASM module is compiled during

execution. [46]

17

Proposed System 3
The proposed system is a SmartCGMS concept that can be compiled for low-power

devices and general-purpose computers with minimal modifications. The project re-

quirements specify two low-power platforms: Raspberry Pi ZeroWandESP32.How-

ever, additional platformsmight be required in the future. Therefore, the SmartCGMS

concept should be easily portable. As suggested by Otta in [18], one of the sup-

ported platforms will be WebAssembly (WASM). Then, any platform implementing

the WASM virtual stack machine will be able to execute the SmartCGMS concept

WASMmodule. The scenario of compiling the proposed SmartCGMS concept ap-

plication is displayed in figure 3.1. The SmartCGMS concept application comprises

three parts: the SmartCGMS framework source code, a SmartCGMS filter chain,

and a platform environment (e.g., FreeRTOS source code, drivers). Throughout this

thesis, the SmartCGMS concept applicationwill refer to the executable for a spe-

cific platform or its source code. The SmartCGMS concept will refer to the whole

proposed system used to compile SmartCGMS concept applications. The current

state of the SmartCGMS frameworkwill be referred to as the original SmartCGMS

or just SmartCGMS.

Figure 3.1: Steps to deploy the SmartCGMS concept to different platforms

18

3.1 System Design

This chapter describes the proposed SmartCGMS concept, the design choices,

and the platforms on which the SmartCGMS concept applications will be tested.

3.1 System Design
SmartCGMS is written in C++ using the C++17 standard. It relies heavily on the

C++17 features, namely the C++17 standard filesystem library. Although C++ is con-

sidered portable, many low-power devices still lack the support for some C++17

features, such as the C++17 standard filesystem library. The SmartCGMS framework

requires the filesystem library to load its components (the SmartCGMS core and

common libraries) and to manage entities (e.g., filters) as each entity is implemented

as a dynamic library.

3.1.1 Static Linking
Given the lack of support for the C++ standard filesystem library on low-power

devices, it would be necessary to implement a way to manage dynamic libraries

for each low-power device. This would complicate the introduction of new plat-

forms that are compatible with the concept. Therefore, the SmartCGMS concept

applications will be linked statically at compile time instead.

3.1.2 Filter Preprocessor
SmartCGMS uses functions exported by the filters to construct the filter chain.

The exported function names of different filters in the original SmartCGMS are

identical (do_create_filter and do_get_filter_descriptors). When linking

the SmartCGMSconcept applications statically, identical function nameswould lead

to linker conflicts. To avoid this, each filter in the SmartCGMS concept applications

is required to export functions with unique names.

This approach is not compatible with the original SmartCGMS. To prevent

the need to develop separate filters for the SmartCGMS concept and the original

SmartCGMS, a filter preprocessor tool is proposed. The purpose of the preprocessor

is to modify the source code of the filters developed for the original SmartCGMS

to avoid linker conflicts.

Conflicting function names are appended with a suffix to ensure each function

has a unique signature. Tominimizemodifications to the SmartCGMS codebase, the

preprocessor generates additional source code files. These files replace parts of the

original SmartCGMS that manage the filters’ dynamic libraries. Instead, the filter

functions with modified names are called directly.

This tool ensures that SmartCGMS filters do not need to be implemented specif-

ically for the SmartCGMS concept. A filter can be developed as a dynamic library

19

3.1.3 Preserving Modularity

satisfying the requirements of the original SmartCGMS. It is then modified by the

preprocessor and used in the SmartCGMS concept without any modifications done

by the developer.

3.1.3 Preserving Modularity
It is important to keep the SmartCGMS concepts modular. To achieve this, the

separation between the SmartCGMS codebase and the filter chain is maintained.

The proposed system can be split into three main components:

• SmartCGMS codebase

• Platform environment

• Filter chain

The SmartCGMS codebase includes the original SmartCGMS codebase (the

core and common libraries). SmartCGMS offers a simple interface that allows using

the SmartCGMS framework from other programming languages. It is a C-style

Application Programming Interface (API). The simple API functions are: create a

filter chain specified by a configuration file, shut the filter chain down, and inject

events into the filter chain. This interface can be used for the SmartCGMS concept as

it offers a basic set of functions to interact with SmartCGMS. Missing functionality

can be implemented. The SmartCGMS codebase might remain unchanged for each

platform except for one file. SmartCGMS uses a WinAPI mapping file to provide

access to system resources. This file needs to be updated when a new platform is

introduced.

The platform environment code defines the behavior of the SmartCGMS con-

cept application. From the environment source code, the SmartCGMS API is called.

Additionally, the FreeRTOS source code, drivers, and other necessary software com-

ponents belong to the platform environment. Build scripts can also be provided to

simplify the compilation process of the SmartCGMS concept application. CMake

will be used to generate build files for all platforms.

When creating filters for the SmartCGMS concept, many can be implemented

as platform-independent, such as filters computing a signal value. Whereas some

filters are, by design, platform-dependent. This includes input filters, such as a filter

listening on a peripheral device for incoming events, and output filters generating

output. The reason for their platform dependency can be, for example, a display

driver specific to a target platform. Any filter that requires asynchronous processing

of information and needs to create a new thread will also need to be developed

with a specific platform in mind (e.g., using FreeRTOS tasks in low-power devices

20

3.1.4 WebAssembly

running FreeRTOS versus using standard thread library from C++ in platforms that

support it).

3.1.4 WebAssembly
In addition to targeting traditional Instruction Set Architectures (ISAs) likeAMD64/x86-

64, ARMv6, and Xtensa, the goal is to support WASM for maximum portability.

There are no obstacles that would limit compiling a SmartCGMS concept applica-

tion to WASM. The issue with WASM lies in preparing the platform environment

to support WASM. A WASM standalone runtime must be ported to the platform to

be able to execute WASM modules. Although WASM is not yet widely supported

by many embedded platforms, there is a growing effort to standardize WASM in-

teraction with the underlying platform (WebAssembly System Interface (WASI) -

described in section 2.4.3.2) and bring it to new platforms.

Compiling the SmartCGMS concept application to WASM offers two main ad-

vantages. Firstly, it allows the software to be compiled just once and then trans-

mitted in the WASM binary format to other platforms. This eliminates the need

for platform-specific compilation. Secondly, it brings SmartCGMS to the web. The

ability to use SmartCGMS from the web browser makes it more accessible to users

and potentially speeds up its adoption. A drawback ofWASM is the complex process

of porting WASM runtimes to new platforms.

3.2 Target Architectures
This section describes the specific platforms representing each ISA specified by the

project requirements.

3.2.1 Low-Power Devices
The ARMv6 and Xtensa ISA devices represent low-power devices that could be used

in the field (e.g., worn by a diabetic patient). Raspberry Pi Zero W and ESP32 chips

have been selected for this project.

3.2.1.1 ESP32

ESP32 is a microcontroller unit with ultra-low power consumption, robust design,

and connectivity (Wi-Fi and Bluetooth) [47]. It is widely adopted in the Internet

of Things applications due to its price and performance [48]. The board has an

Xtensa LX6 Dual-Core 240 MHz CPU, 520 KB of SRAM, and 2 MB of FLASH (with

support up to 64 MB) with an operating current of 80 mA. The development for the

board is simple, thanks to the Espressif IoT Development Framework (ESP-IDF) -

21

3.2.1.2 Raspberry Pi Zero W

ESP32 official development framework. It provides an easy way to build and flash

ESP32 projects to the board. ESP-IDF is based on FreeRTOS, thus FreeRTOS API

is available when developing applications for ESP32. ESP-IDF build system is based

on CMake. It offers additional syntax to reduce boilerplate, but pure CMake can

also be used to configure projects. ESP-IDF’s build system uses a concept called

components. Components are static libraries linked to the ESP32 application that

are defined using CMake files. There are official components offered by ESP-IDF

(e.g., FreeRTOS), but one can also implement their own components. The ease of

use and availability make the ESP32 a good candidate for this project. Additionally,

it has been selected by Otta in [18] as the hardware of choice. [47][34]

3.2.1.2 Raspberry Pi Zero W

Raspberry Pi Zero W is a compact and cheaper alternative to the Raspberry Pi mi-

crocontroller board. The ’W’ represents connectivity, namely Wi-Fi and Bluetooth.

It has a BCM2835 ARMv6 1Ghz single-core CPU, 512 KB of SDRAM, and support for

a microSD card. Its operating current is 100 mA [49]. An official port of FreeRTOS

[32] is not available for the board. The Raspberry Pi Zero W offers more computing

power andmemory than the ESP32 at the cost of increased energy usage. It has been

selected for this project due to its availability and similarity to the ESP32.

Raspberry Pi Foundation offers an operating system for the Raspberry Pi Zero

W - the Raspberry Pi OS (previously called Raspbian). It is based on Debian, and

it provides a desktop environment called PIXEL (Pi Improved Xwindows Environ-

ment, Lightweight) [49]. It is not an Real-time operating system (RTOS). Therefore,

FreeRTOS has been ported to Raspberry Pi Zero W and used instead.

3.2.2 High Performance Computing
The AMD64/x86-64 ISA represents computers with high processing power com-

pared to the Raspberry Pi and ESP32. The reason why SmartCGMS is targeted at

these platforms is to run computationally intensive simulations.

The SmartCGMS console application was developed to preserve system re-

sources and can be used for computationally extensive tasks [27]. The SmartCGMS

concept does not aim to offer better processing performance than the existing

SmartCGMS solutions. The reason the proposed SmartCGMS concept is compati-

ble with general-purpose computers (e.g., x86-64 running GNU/Linux) is to be able

to verify the correct functionality of a filter chain before deployment to a low-power

device.

22

Implementation 4
This chapter presents the implementation of the SmartCGMS concept proposed

in chapter 3. The first section describes modifications to the SmartCGMS code-

base. The second section describes the implementation of the proposed filter pre-

processor tool. The third section describes the SmartCGMS concept Application

Programming Interface (API). The fourth section describes filters implemented to

test and showcase the proposed concept. The last section describes the platforms

for which the concept application has been compiled and the differences between

the platforms.

4.1 SmartCGMS Codebase
As already discussed in chapter 3, to make the SmartCGMS concept easily portable

to new embedded platforms, the SmartCMGS concept application needs to be linked

statically instead of dynamically. This section describes the necessary changes to

the SmartCGMS codebase to compile the SmartCGMS concept application for low-

power platforms.

4.1.1 Functions Incompatible with Embedded
Environments

The original SmartCGMS codebase contains functions that can not be supported

in a portable embedded environment and functions related to SmartCGMS’s dy-

namic linking nature. These functions were either removed or modified to avoid

any unwanted side effects (e.g., by removing the function body and returning a de-

fault value). The decision of whether to remove a function or modify it was made

individually for each function. The goal was to keep the code readable andminimize

modifications to the source code. Most of the modifications are implemented using

preprocessor #if defined() directives, with the macro name EMBEDDED.

23

4.1.1.1 SmartCGMS Interfaces

4.1.1.1 SmartCGMS Interfaces

The SmartCGMS common library defines interfaces that each entity must imple-

ment (e.g., scgms::IFilter for filters). Some of the interfaces contain functions that

rely on filesystem API. As the low-power platforms selected for the SmartCGMS

concept do not support C++ standard filesystem API, these functions were removed

from the interfaces.

4.1.2 Resolving Symbols
When a SmartCGMS application is started, it loads all the dynamic libraries from

its working directory. To resolve functions between the SmartCGMS core and com-

mon dynamic libraries, it uses a function called resolve_symbol. It is a wrapper for

the GetProcAddress function, which retrieves the address of an exported function

from a dynamic library. In the SmartCGMS concept, the resolve_symbol function

can call the functions directly as the concept applications are compiled as mono-

lithic executables. The function in the SmartCGMS concept codebase is defined in

a new file staticLink.cpp and is called resolve_symbol_static. To be able to

resolve the functions, the headers declaring the functions need to be included in the

file implementing the resolve_symbol_static function. An example of how the

functions are resolved can be seen in figure 4.1.

1 void∗ resolve_symbol(const char ∗symbol_name) noexcept
2 {

3 if (strcmp(symbol_name, "create_device_event") == 0)
4 {

5 return reinterpret_cast<void∗>(create_device_event);
6 }

7 if (strcmp(symbol_name, "get_filter_descriptors") == 0)
8 {

9 return reinterpret_cast<void∗>(get_all_descriptors);
10 }

11 if (strcmp(symbol_name, "execute_filter_configuration") == 0)
12 {

13 return reinterpret_cast<void∗>(execute_filter_configuration);
14 }

15 return nullptr;
16 }

Source code 4.1: Example implementation of the resolve_symbol_static() function

4.1.3 Managing Entities
To manage entities, SmartCGMS uses a class called CLoaded_Filters. This class

stores information about each entity (e.g., its descriptors, handle to its dynamic

24

4.1.3 Managing Entities

library). On startup, SmartCGMS checks each dynamic library in its project folder

if it exports functions defined for a SmartCGMS entity. If a library exports the

defined functions, it is then stored in this class. When an action is requested on a

specific entity, the CLoaded_Filters class can then call the corresponding function

by using the dynamic library handle. The entities are identified by a globally unique

identifier (GUID). The CLoaded_Filters class does not store the GUIDs of the

entities. When executing a function (e.g., do_create_filter), it calls the function

from each dynamic library until one of the calls returns a success return code (each

entity checks the GUID passed as an argument to the function and executes the

function only if the GUIDmatches its own). The CLoaded_Filters class is replaced

in the SmartCGMS concept by a class with the same name. The class is completely

generated by the preprocessor tool.

Filter Descriptors

The newly implemented class stores the filter descriptors (TFilter_Descriptor)

in an std::vector. These descriptors are loaded when the class is instantiated. To

load the descriptors, the class defines a lambda function to copy the descriptors of

each filter to the CLoaded_Filters class, see 4.2.

1 using FilterDescriptorFunction =

2 HRESULT(∗)(scgms::TFilter_Descriptor∗∗, scgms::TFilter_Descriptor∗∗);

3

4 auto get_descriptors = [&](FilterDescriptorFunction get_filter_descriptors)

5 {

6 scgms::TFilter_Descriptor ∗desc_begin, ∗desc_end;

7 bool result = get_filter_descriptors(&desc_begin, &desc_end) == S_OK;

8 if (result)

9 {

10 std::copy(desc_begin, desc_end, std::back_inserter(mFilter_Descriptors));

11 }

12 };

Source code 4.2: Lambda function to replace do_get_filter_descriptors calls to

dynamic libraries

The exported do_get_filter_descriptors function of each filter is passed as

a parameter to the lambda function and then the filter descriptors are copied to the

std::vector mFilter_Descriptors in CLoaded_Filters class.

Creating Filters

The original SmartCGMScodebase contains a function called create_filter_body.

This function is called when a filter needs to be constructed. The filter is specified

25

4.1.3 Managing Entities

by its GUID. The function iterates through the filters’ dynamic libraries stored

in CLoaded_Filters and calls the do_create_filter functions until one of the

calls returns signaling success. As the SmartCGMS concept’s CLoaded_Filters

class only stores the filter descriptors and can not call the function of the filters,

the create_filter_body function also needs to be replaced. The new implemen-

tation simply unrolls the loop of the original function and in each step calls the

do_create_filter function for a different filter as seen in listing 4.3.

1 scgms::SFilter create_filter_body(const GUID &id, scgms::IFilter ∗next_filter)

2 {

3 scgms::SFilter result;

4 scgms::IFilter ∗filter;

5

6 if (do_create_filter_data_filter(&id, next_filter, &filter) == S_OK)

7 {

8 result = refcnt::make_shared_reference_ext<scgms::SFilter,

scgms::IFilter>(filter, false);

9 return result;

10 }

11 if (do_create_filter_ema_filter(&id, next_filter, &filter) == S_OK)

12 {

13 result = refcnt::make_shared_reference_ext<scgms::SFilter,

scgms::IFilter>(filter, false);

14 return result;

15 }

16 if (do_create_filter_watchdog_filter(&id, next_filter, &filter) == S_OK)

17 {

18 result = refcnt::make_shared_reference_ext<scgms::SFilter,

scgms::IFilter>(filter, false);

19 return result;

20 }

21 if (do_create_filter_print_filter(&id, next_filter, &filter) == S_OK)

22 {

23 result = refcnt::make_shared_reference_ext<scgms::SFilter,

scgms::IFilter>(filter, false);

24 return result;

25 }

26

27 return result;

28 }

Source code 4.3: Example implementation of the create_filter_body() function

26

4.2 Filter Preprocessor

4.2 Filter Preprocessor
As the original SmartCGMS is a set of dynamic libraries and each filter is its own

dynamic library, the exported functions of each filter can have the same function

signature and not cause conflicts at the linking stage when building a SmartCGMS

application. In the SmartCGMS concept, the function names are modified, as seen

in figure 4.3. This is to prevent linking conflicts. To prevent developers from having

to write separate filters for the original SmartCGMS and the SmartCGMS concept

and to keep SmartCGMS entities’ API unchanged, a filter preprocessor tool has been

proposed and implemented.

The source code modifications described in section 4.1.3 all come from the same

source and header files filters.cpp and filters.h. These files are not included in

the SmartCGMS concept codebase. Instead, they are generated by the filter prepro-

cessor tool and added for each filter chain subsequently. The reason is that each ad-

ditional filter in a filter chain requires its functions to be added to the filters.cpp

source code file.

The filter preprocessor tool takes a folder containing an original SmartCGMS

filter chain source code as input and generates a folder containing a SmartCGMS

concept filter chain source code as output. The expected input folder structure is that

each subfolder of the input folder contains a single filter implementation. The name

of the root folder of each filter is used to identify the filters in the generated files. The

source code of each filter is searched and thenmodified by appending the root folder

name as a suffix to the functions that are exported by the filters (do_create_filter

and do_get_filter_descriptors). The definitions of the new functions are added

to the generated header file. All the modified names of the functions are stored

and then used to generate the body of the create_filter_body function and the

function to gather filter descriptors to CLoaded_Filters using the lambda function

from listing 4.2.

SmartCGMS offers a way to load the filter chain configuration from memory.

The filter preprocessor tool copies the .ini configuration file to a C++ raw string

literal from which it can then be loaded in the SmartCGMS concept.

The filter preprocessor does not check if the provided filter chain contains all

filters specified by the configuration file. If there is a filter specified in the configura-

tion but the source code files for it are not provided to the preprocessor, the issue

will be discovered at runtime after building the SmartCGMS concept application.

In case there is an error in the configuration of the filter chain, it can be resolved by

uploading a new configuration at runtime. If the error comes from a missing filter,

then the whole application has to be rebuilt.

27

4.3 SmartCGMS Concept API

4.3 SmartCGMS Concept API
To interact with the SmartCGMS concept, the original SmartCGMS API can be

used. Only parts of the original SmartCGMS API have been implemented for the

SmartCGMS concept due to time constraints. Additionally, a new minimal C-style

API (similar to the simple interface of SmartCGMS) has been implemented to test

the functionality of the proposed system. The introduced API allows usage of the

SmartCGMS concept without any underlying knowledge of SmartCGMS. There

are three interface functions:

• int build_filter_chain(const char* configuration_input)

• const char* get_config_data()

• void create_event(const SCGMS_Event* event)

The build_filter_chain function is used to construct the filter chain. It takes

a C string as input. If an input string is not provided, the filter chain is built using the

configuration with which the SmartCGMS concept application has been compiled.

The default configuration can be retrieved as a C string using the get_config_data

function. This allows an application using the SmartCGMS concept to easily edit

the default filter parameters. The configuration can be retrieved before the filter

chain is built. The last function create_event() injects events into the filter chain.

This function can be used to send data to the filter chain when it is received outside

of the SmartCGMS filter chain. The SmartCGMS filter chain can be shut down by

creating a shutdown event.

4.4 Filters
Four filters have been developed for the SmartCGMS concept demonstration:

• Data reading filter

• Data transformation filter

• Data visualization filter

• Watchdog filter

The filters have been developed to support all the platforms specified in section

4.5. In cases where the implementation needed to differ, preprocessor directives

were used. The filters were implemented as dynamic libraries to maintain compat-

ibility with the original SmartCGMS. Filters that do not rely on platform-specific

28

4.4.1 Data Reading Filter

features can be used as dynamic libraries on platforms supported by the original

SmartCGMS. The following sections describe the implemented filters.

4.4.1 Data Reading Filter
The data reading filter is meant to be an input filter of a filter chain, but it can also be

used to store statistics at the end of a filter chain. The common part for all platforms

acts as a simple event statistic counter. The filter logs the number of all events passing

through it. The filter additionally logs the number of error events, warning events,

level events, and information events. When the filter receives a shutdown event, it

prints the gathered statistics to the console. An example scenario of how the data

reading filter could be used is depicted in figure 4.1. One data reading filter can be set

up to log incoming events into the filter chain and one can be positioned at the end

of the filter chain. On the filter chain shutdown, the statistics can be compared and,

for example, a number of error events generated by the filter chain can be calculated.

Figure 4.1: Example of a SmartCGMS filter chain containing data reading filters at

the beginning and the end to calculate event statistics.

The data reading filter for the ESP32 platform creates a new task that listens on

the UART interface. It expects to receive numbers in the double-precision format

on the UART interface. Whenever a number is received, a SmartCGMS level event is

generated using the received number as the level value and sent into the filter chain.

The UART task is created during the configuration of the data reading filter. The

filter can still process events originating from previous filters or outside the filter

chain using the Execute function. The task creation during the filter configuration

is optional and is set using a create_task parameter in the configuration file to

either true or false. On the Raspberry Pi Zero W platform, the data reading filter

can create a task that reads level values from an input.h file that is compiled with

the filter source code. When a shutdown event is received by the data reading filter

and the task has been started, the filter shuts it down synchronously.

TheWebAssembly (WASM) platforms do not support creating a task (or a POSIX

thread (pthread)) for reading or generating data since the selected environments for

WASM offer only experimental support for pthreads (WebAssembly Micro Runtime

(WAMR)) or since it would greatly increase resource management and synchro-

nization complexity (using JavaScript multithreading on the web). The parameter

create_task on these platforms is ignored.

29

4.4.2 Data Transformation Filter

4.4.2 Data Transformation Filter
The data transformation filter implementation is portable across all the platforms

supported by the SmartCGMS concept and the original SmartCGMS. The filter

computes the ExponentialMoving Average (EMA) value of the event levels. An EMA

is a moving average that applies decreasing weight to older values. The formula for

the EMA calculated in the filter can be seen in listing 4.4. The accumulator value is

the EMA value. The alpha is a constant parameter that modifies the ratio at which

the weight of older data decreases. When constructing the filter the alpha constant is

read from the configuration file using an alpha parameter that can be set to a value

between 0 and 1. The filter computes the EMA from the level value of SmartCGMS

level events. All other events are passed through unmodified.

1 accumulator = (alpha ∗ event.level()) + (1.0 − alpha) ∗ accumulator;

Source code 4.4: Exponential moving average calculation

4.4.3 Data Visualization Filter
The data visualization filter has a specific implementation for each platform. It does

not have any parameters that can be specified in the configuration file and it does not

modify the passing events in any way. On embedded platforms and in the WASM

environment targeted at standaloneWASM runtimes, the filter prints the event level

values and information event strings. For each event, it also prints the device time.

On the embedded platforms the data is sent to UART. In the WASM standalone

runtime, the WebAssembly System Interface (WASI) is used to print the data to the

console on the hosting system.

For the WASM environment targeting the web, Emscripten is used to call a

JavaScript function from the C++ source code. Emscripten provides a C-style func-

tion emscripten_run_script that takes a C string as an argument and executes it as

JavaScript code in the host environment. The call to the emscripten_run_script

function is shown in listing 4.5. The generated JavaScript code can be seen in list-

ing 4.6. The generated JavaScript code creates a message object and calls a function

postData providing the object as an argument. This approach allows developers to

tailor the postData function implementation to a specific application and it does

not expose the implementation to the data visualization filter. The message object

can be extended with more information about the event, but for demonstration

purposes, it has been kept simple.

30

4.4.4 Watchdog Filter

1 std::string js_code = R"(

2 var message = {

3 data_level:)" + std::to_string(event.level()) + R"(,

4 data_device_time:)" + Rat_Time_To_Local_Time_Str(event.device_time(),

"%H:%M:%S") + R"(,

5 data_logical_time:)" + std::to_string(event.logical_time()) + R"(

6 };

7 postData(message);

8)";

9 emscripten_run_script(js_code.c_str());

Source code 4.5: Calling JavaScript to post event data to the web environment

running the SmartCGMS WASMmodule.

1 var message = {
2 data_level: 101.348,

3 data_device_time: 13:45:22,

4 data_logical_time: 76

5 };

6 postData(message);

Source code 4.6: An example of JavaScript code contained in the js_code string

from listing 4.5

The SmartCGMS concept application can be executed asynchronously on the

web as a JavaScript web worker (JavaScript thread equivalent). The postData func-

tion then has to be changed to self.postMessage. This posts the message object to

the thread that spawned the SmartCGMS web worker. The object can then be han-

dled inside worker.onmessage handler in the thread that controls the SmartCGMS

web worker.

4.4.4 Watchdog Filter
The purpose of the watchdog filter is to ensure a correct run of the filter chain, to

notify about any unusual behavior, and possibly to shut the filter chain down. The

implementation monitors two things. Firstly, if the filter chain is active (an event

passing through before a specified timeout). Secondly, if the events in the filter chain

are chronologically ordered (the logical event time is increasing). The first condition

is monitored with a task that runs asynchronously. The task has a set timer, when

it expires the watchdog checks whether any events passed through. If the watchdog

hasn’t been reset by a passing event, it triggers an action (function Trigger is called).

When the Do_Execute function is called (upon receiving an event), it calls a Kick

function. This function takes the event’s logical time as a parameter and it compares

it to the logical time of the previous event. If the new event’s logical time is lower

31

4.5 Supported Platforms

than the previous event’s time (the new event is older) the watchdog also triggers

an action.

Thewatchdog task is implemented as a pthread for theWASMplatforms and the

ESP32. For Raspberry Pi Zero W the watchdog task is implemented as a FreeRTOS

task. In case of porting this filter to a new platform, it is required to implement the

Trigger function and to create the watchdog task during the filter configuration.

The watchdog filter has one parameter - the timeout timer interval in milliseconds.

4.5 Supported Platforms
This section describes platforms for which an environment was created to support

the SmartCGMS concept. There are 4 platforms (in brackets are specified the plat-

form’s Instruction Set Architectures (ISAs)):

• Raspberry Pi Zero W (ARMv6)

• ESP32 (Xtensa)

• WASM targeted at the web (x86-64)

• WASM targeted at a standalone runtime (portable)

The Raspberry Pi Zero W and ESP32 represent embedded devices. Their en-

vironment is based on FreeRTOS. The ESP32 environment uses the Espressif IoT

Development Framework (ESP-IDF), which offers additional software components.

The WASM platforms use the standard C library built on top of WASI system calls.

SmartCGMS uses a winapi_mapping.cpp file to provide a wrapper around func-

tions from different platforms (e.g., function to allocate memory). Functions to allo-

cate memory for each platform were added to this file.

The directory layout is similar for all platforms. The SmartCGMS codebase and

filter chain are separated as proposed in section 3.1.3. The platform environment

from section 3.1.3 refers to the whole directory of the SmartCGMS concept appli-

cation for a specific platform (including build scripts, CMake files, and FreeRTOS

source code).

A Python script has been implemented to assist the development. First, it down-

loads the platformenvironment froma remote repository, followed by the SmartCGMS

codebase. The filter chain is taken from an input directory. The Python script then

uses the preprocessor tool to modify the filters’ source code and generate the re-

quired files. Finally, all the source code files are combined in the downloaded plat-

form environment directory. Each platform uses CMake to simplify the build pro-

cess of the SmartCGMS concept.

32

4.5.1 Raspberry Pi Zero W

The platform environments and the Python script generating the build directo-

ries are targeted at GNU/Linux. Therefore, the Python script has been Dockerized

to allow development on other platforms. The Python script generates an additional

CMake file that contains environment variables specific for each platform (e.g., path

to ARM embedded toolchain for Raspberry Pi Zero W or path to the ESP-IDF for

the ESP32). The SmartCGMS concept application can then be built using a simple

build shell script that is also provided for each platform. To avoid local installation

of multiple toolchains, Docker images that are provided for the WASM and ESP32

platforms on their official repositories can be used.

4.5.1 Raspberry Pi Zero W
The ARMv6 ISA requires an implementation of the C++ atomic library helper

functions to be provided, as it does not implement the atomic library [50]. This

step has been omitted due to project time constraints and atomic variables in the

SmartCGMS codebase have been replaced by their non-atomic equivalents. Prepro-

cessor directives have been used to maintain atomicity on other platforms.

A custom port of FreeRTOS has been used. FreeRTOS-Plus-POSIX extension

has been added to allow all platforms to use pthreads to manage tasks. To allocate

memory, FreeRTOS pvPortMalloc needs to be called.

When creating a SmartCGMS concept application for the Raspberry Pi Zero

W the data for the filter chain (e.g. blood glucose levels from a sensor sent over

UART) can be received and processed directly in the SmartCGMS filter chain us-

ing a specialized filter. The data can also be received and processed in a separate

FreeRTOS task that sends the events into the SmartCGMS filter chain. Using the sec-

ond approach, the SmartCGMS concept can be easily implemented into an existing

FreeRTOS application.

4.5.2 ESP32
The ESP32 environment uses the ESP-IDF. The SmartCGMS concept application

is divided into three distinct parts: the SmartCGMS codebase, the filter chain, and

the main application. The first two parts are implemented as ESP-IDF components.

The main application then uses these components. The SmartCGMS codebase and

the filter chain components depend on each other and can not be used on their

own. The filter chain component’s name is filters. The SmartCGMS codebase

component is called scgms_embedded. The main application is expected to interact

with the scgms_embedded component. The API functions described in section 4.3

are defined in this component in a header file scgms.h.

Similarly to the Raspberry Pi Zero W, the ESP32 SmartCGMS concept can be

used in two ways. Either the main application can receive data and then send it

33

4.5.3 WASM Standalone Runtime

into the SmartCGMS filter chain, or it can build a filter chain that creates its own

FreeRTOS task for receiving data (e.g., by using the UART data reading filter from

section 4.4).

4.5.3 WASM Standalone Runtime
For the standalone WASM runtime, the SmartCGMS concept application is com-

piled to the WASM binary format using Clang. To provide C standard library im-

plementation and the WASI, WASI Software Development Kit (SDK) is used for the

build. The platform environment has a similar structure to the embedded environ-

ments. It contains two directories: the SmartCGMS codebase and the filter chain,

plus additional files like CMake files, build scripts, and a main.cpp source code file.
To control what functions are exported from the WASM module, the main.cpp

and the CMakeLists.txt file can be edited. Currently, the WASMmodule exports

the main function, which is started directly after loading the module. The main

function builds the filter chain specified by the configuration file provided by the

preprocessor. The WASM module can be optionally set up as a library (without a

main function). The WASM compiled SmartCGMS concept supports asynchronous

filters. A filter can create a thread using pthreads. Although WASI SDK offers only

experimental support for threads. The WASMmodule compiled for the standalone

WASM runtime can be executed even on the web. To run the WASM module, the

platform needs to support WASI calls used in the module. TheWASI calls may differ

for eachWASMSmartCGMS concept application depending on the used filter chain

(e.g., if using a filter with pthreads).

The standalone WASM runtime selected for this project is WAMR. Relevant

features that are supported byWAMR are pthreads andWASI. WAMR also supports

multiple ISAs including Xtensa, x86-64, and ARM. WAMR provides a command

line interface application called iwasm. The application for this project has been

compiled and used on GNU/Linux, though other x86-64 systems are also supported

(e.g., MacOS andWindows). AWAMR application for the ESP32 is also available. It is

based on the ESP-IDF and loads the WASM module from a C-style byte array from

memory. To be able to execute the WASM module on the ESP32, the build script

in the WASM standalone runtime environment also generates a C/C++ header file

containing a byte array with theWASMmodule. AsWASM is a binary format, this is

achieved by hex dumping the WASM into the byte array. AlthoughWAMR supports

ARM ISA, the Raspberry Pi Zero W platform is not officially supported, and neither

is FreeRTOS.

34

4.5.4 WASM Targeted at The Web

4.5.4 WASM Targeted at The Web
While the WASM module compiled using WASI SDK can be executed in a web

browser, it is easier to use a WASMmodule that was compiled using the Emscripten

toolchain. The reason is that Emscripten also generates JavaScript wrapper code

to simplify the module’s loading. Emscripten can also directly generate an HTML

file that loads and executes the WASM module. The platform environment direc-

tory structure is the same as the directory structure for compiling WASM for stan-

dalone runtimes. One folder contains the SmartCGMS codebase, one contains the

filter chain, and then there is an additional main.cpp file, which interacts with the

SmartCGMS concept API and defines functions that are exported by the WASM

module. The CMakeLists.txt does not have to be edited when exporting new sym-

bols, as the Emscripten toolchain can automatically handle symbol exports from

C++ code to JavaScript, see listing 4.7. Emscripten features that are relevant for this

project are multi-threading support and the ability to execute JavaScript code inside

the WASMmodule.

1 extern "C" {
2 EMSCRIPTEN_KEEPALIVE

3 const char∗ get_config()
4 {

5 return get_config_data();
6 }

7 }

Source code 4.7: An example of exporting symbols from WASM module using

Emscripten

TheWASMmodule compiled in the environment targeted at the web can also be

executed in standalone runtimes, thoughWAMR does not recommend running Em-

scripten compiled WASM modules. Therefore, it is recommended to use WASM

modules built in this environment only in the web browser. When the WASM

SmartCGMS concept application is built, two files are created: the WASMmodule

and a JavaScript code to load and execute the module. Additionally, a third file might

be generated: a JavaScript web worker code. This file is generated when threads are

created inside the SmartCGMS concept application. Using the JavaScript code, the

module can be easily embedded into a webpage. To demonstrate the functionality of

the WASM SmartCGMS concept, a demo webpage was created. The webpage uses

JavaScript to load the compiled SmartCGMS concept WASM module. It provides

buttons to build the filter chain and then injects events into it. The events are dis-

played using Chart.js (JavaScript data visualization library) in a line graph. The

graph displays the original event level value injected into the filter chain and then the

modified value provided by the data visualization filter (using the postData func-

35

4.5.4 WASM Targeted at The Web

tion), which is described in section 4.4.3. The filter chain can be built either with

the configuration it was compiled with or with a custom configuration supplied

from the webpage. The webpage has an editable text field to edit the configuration,

which can then be sent to the SmartCGMS WASM module. To simplify the cre-

ation of a custom configuration, the default configuration can be loaded from the

SmartCGMSWASMmodule (using the API function: get_config_data()). A filter

chain configuration and event data in the line graph can be seen in figure 4.2. The

data to the filters are pseudo-randomly generated, and the filter chain consists of

the four filters from section 4.4 in the same order as they are described. Additional

output from the SmartCGMS concept application can be seen in the web browser

developer console, shown in figure 4.3.

Figure 4.2: SmartCGMS WASM demo webpage: Filter chain configuration and

pseudo-randomly generated data processed by the filter chain displayed in a

Chart.js graph.

36

4.5.4 WASM Targeted at The Web

Figure 4.3: SmartCGMS WASM demo webpage: Additional output printed to the

Google Chrome developer console by the SmartCGMS WASMmodule

SmartCGMSWeb Demo

The SmartCGMS concept application compiled as a WASMmodule was extended

to create simulation of a diabetic patient’s blood glucose levels running on the web.

Currently, it is deployed only locally.

The demo webpage was modified to allow input of meals, insulin boluses, and

basal rate (simulated by small bolus doses). Each event sent to the filter chain ad-

vances the simulation time by 5minutes. The filter chain configuration can be edited

to modify the parameters of the filters or the model. Additionally, the parameters

can be saved to a file fromwhich they can be loaded. The file is stored in a virtual file

system created by Emscripten. Multiple files can be created. This allows us to use

filters that require files (e.g., log filter). However, the files stored in the Emscripten

virtual file system are only temporary and are deleted when the webpage is reloaded.

To maintain the content of the files, it needs to be copied when the simulation is

over.

37

4.5.4 WASM Targeted at The Web

The model is managed by a signal generator filter. This filter is required when

configuring the filter chain in the demo. Another required filter is the data visualiza-

tion filter that sends the events’ information back to the JavaScript code to update

the graph. Additional filters can be added to the filter chain.

The SmartCGMS web demo supports two models: Samadi model based on [51]

and S2013 model based on [52]. The models can be changed just by modifying the

model’s GUID in the configuration.

38

Evaluation 5
The goal of the projectwas to implement a portable SmartCGMSconcept. To achieve

this, the SmartCGMS codebase has beenmodified to use static linking during compi-

lation, and C++ features that are not widely available in Real-time operating systems

(RTOSs) have been removed. With these modifications, it is possible to compile the

SmartCGMS concept as a native application for FreeRTOS or any platform that

supports C++17.

To evaluate the SmartCGMS concept, it has been compiled for five different

platforms. The five platforms are:

• Raspberry Pi Zero W running FreeRTOS (ARMv6)

• ESP32 running FreeRTOS (Xtensa)

• GNU/Linux (x86-64)

• WAMR (compiled using WASI SDK)

• SmartCGMS demo webpage (compiled using Emscripten)

The first three platforms use a native application for specified ISA and operating

system, while the last two are compiled toWASM. A set of four filters has been devel-

oped (described in section 4.4. The filters can be compiled for any of the mentioned

platforms.

The evaluation is divided into two parts. First, the correct functionality of the

modified SmartCGMS framework and the developed filters is verified. Second, the

operational characteristics of the SmartCGMS concept applications are measured

and compared for different platforms. The next sections outline the experimental

setup for each measurement, followed by the presentation and discussion of the

gathered results.

39

5.1 Correctnes of Execution

5.1 Correctnes of Execution
To verify the correct functionality of the modified SmartCGMS framework, a test

scenario consisting of several interactionswith the SmartCGMS frameworkwas cre-

ated. The test scenario was executed on each platform, and the results were collected

and compared. The goal of this test was to evaluate if the modified SmartCGMS

framework can load the developed filters, build a filter chain, and process events

with the same results as the original SmartCGMS. This test also aimed to verify that

the implemented filters behave as intended.

5.1.1 Experimental Setup
The experimental setup includes an array of 100 double-precision floating-point

values. The values were pseudo-randomly generated and do not represent any real

data. The same array was used on all platforms. These values were then used to

create level events and were processed by the SmartCGMS concept applications.

The filter chain processing the events was the same for all platforms. It includes

these filters in the specified order:

• Data reading filter

• Data transformation filter

• Data visualization filter

First, the filters were compiled as Microsoft Windows dynamic-link libraries

for the original SmartCGMS. The filters’ source code files were then preprocessed

by the implemented filter preprocessor. The modified source code files of the filters

were then compiled for the SmartCGMS concept platforms.

The configuration remained identical for all platforms except for the create_task

parameter of the data reading filter. On the ESP32, a task to listen for incoming data

on UART was created. The data from the array was then transmitted to the ESP32

using UART. The other platforms used the provided SmartCGMS concept API to

create events directly in the same task/thread that built the filter chain. The results

were collected using the data visualization filter. After each execution of the test

scenario, the printed event levels were saved to a file. The same test scenario was

carried out using the SmartCGMS console application on Microsoft Windows 10.

After all the results were gathered, the events’ level values were compared.

The watchdog filter has been tested separately. The watchdog has been imple-

mented to indicate that the filter chain is inactive. To test its correct functionality a

filter chain was built but no events were sent into the chain. After the timeout period,

the watchdog was expected to trigger. For the test, the Trigger function has been

40

5.1.2 Results and Discussion

Figure 5.1: ESP32

Figure 5.2: The SmartCGMS webpage

Figure 5.3: The event level values being collected on different platforms

implemented as a print statement to the console, signaling the chain is inactive. The

test scenario was executed, and the console was observed to see whether the watch-

dog was triggered or not. This test has been carried out only on the SmartCGMS

concept platforms.

5.1.2 Results and Discussion
The events’ level values were printed with a precision of six decimal places. The

level values were identical on all platforms, including the original SmartCGMS.

This suggests that themodifications to the SmartCGMS codebase didn’t influence its

functionality. Additionally, the performed tests indicate that the proposed and imple-

mented filter preprocessor functions correctly as it was used during the setup for the

tests. One of the biggest limitations of the SmartCGMS concept is its lack of filesys-

tem support. Multiple filters that are developed for the original SmartCGMS use

files. Implementing a simple filesystem for the SmartCGMS concept-supported plat-

forms would allow us to bring the concept even closer to the original SmartCGMS.

Emscripten provides a virtual filesystem that allows us to use more features from

the original SmartCGMS (e.g., deferring model parameters to files), see section 4.5.4

The filters’ behavior (described in section 4.4) verification was also successful.

The data filter’s task successfully received/generated the data on platforms that used

the create_task parameter set to true (ESP32 and Raspberry Pi Zero W). The cor-

rect calculation of the EMA by the data transformation filter has been presented

by the modified level values printed to the console. The data visualization filter’s

functionality was verified by collecting the level values from the console. The watch-

dog filter was successfully triggered on all SmartCGMS concept platforms except

WAMR. The reason was that WAMR support for pthreads is only experimental, and

41

5.2 Memory Usage

attempts to create a separate pthread for the watchdog timer were unsuccessful. The

SmartCGMS web demo requires the browser to support SharedArrayBuffer for

correct functionality of the watchdog timer thread.

SmartCGMS definesmultiple kinds of entities that can be usedwithin the frame-

work. The SmartCGMS concept focused on SmartCGMS filters as the top-level

entity. Support for other entities was not implemented in the SmartCGMS concept

and, therefore, was not tested. The gathered results suggest that the SmartCGMS

concept is capable of building a filter chain (potentially with asynchronous filters)

and executing events on all supported platforms. Only the most basic functionality

of the SmartCGMS concept has been tested. Thorough testingwill be required along

with further development of the concept.

5.2 Memory Usage
The memory usage of an application for low-power devices is an important charac-

teristic. Low-power devices often have a limited amount of Random-access memory

(RAM). When writing an application for a low-power device, it is important to keep

the memory requirements as low as possible. On the other hand, predictability is

also an important factor, and it may be preferable to have an application with a

constant higher memory consumption than an application with very low memory

requirements that has sudden peaks of memory usage. In this test, the memory

footprint of the SmartCGMS concept application is measured. This test has two ob-

jectives. The first objective is to provide insight into how the SmartCGMS concept

application manages memory allocations during runtime. The second objective of

the test is to compare the SmartCGMS concept’s memory footprint compiled as a

native application and a WASM application.

5.2.1 Experimental Setup
The memory consumption has been measured on four different platforms:

• Raspberry Pi Zero W running FreeRTOS (ARMv6)

• ESP32 running FreeRTOS (Xtensa)

• GNU/Linux (x86-64)

• WAMR (running on GNU/Linux (x86-64))

The first two platforms were used to gather data about how much memory the

SmartCGMS concept allocates when building a filter chain and processing events.

42

5.2.2 Results and Discussion

The last two platforms were used to compare the memory footprint of the native

and WASM applications.

The same array of event levels from the test scenario in section 5.1 was used. All

four implemented filters were used. In the following order:

• #1 Data reading filter

• #2 Data transformation filter

• #3 Data visualization filter

• #4 Watchdog filter

A FreeRTOS xPortGetFreeHeapSizeAPIwas used to gather the dynamicmem-

ory usage on the Raspberry Pi Zero W. The ESP-IDF provides its own API for re-

questing heap information heap_caps_print_heap_info. Both of these functions

provide information about the current free heap size. The data from these functions

were collected before and after building the filter chain. Then, the heap information

was sampled for each second during the execution of the test scenario. The events

were injected every two seconds into the filter chain.

To compare the native and WASM applications, GNU/Linux was used. Origi-

nally, the goal was to use ESP32 for the comparison, but the compiled SmartCGMS

WASM module was too large for its limited RAM. On the GNU/Linux platforms,

both versions of the SmartCGMS concept application were measured using the

same tools. For measuring the heap memory usage, the Valgrind Massif heap pro-

filer tool was used. Valgrind measures how much memory the program allocates

from the heap [53]. The static memory footprint of the SmartCGMS concept appli-

cation was measured using the sizeGNU utility. The size tool displays the sizes of

each section and the total size of a specified object [54]. The total memory footprint

of the application was then computed as a sum of the total size of the executable

and the maximum heap usage. For the WASM version, both the size of the WASM

module and the WASM runtime were summed. To make the comparison as fair as

possible, the SmartCGMS concept application has been compiled using the same

build environment. The only difference was that the WASM module was compiled

using WASISDK cross-compile toolchain file. The cross-compile toolchain file spec-

ifies the correct compiler, linker, and additional tools required for the compilation

to WASM.

5.2.2 Results and Discussion
Figure 5.4 presents the allocated heap space during the SmartCGMS concept appli-

cation runtime on the Raspberry Pi Zero W and ESP32 platforms. The actual value

43

5.2.2 Results and Discussion

of the allocated heap space is not relevant. Rather, the focus is on the shape of the

graph lines. The concrete values can change depending on the specific parameters

of the filters (e.g., the watchdog task’s stack size) and their implementation. From

the graph, it can be observed that once the filter chain is built and the first event is

injected into the filter chain, the allocated heap space does not change. The constant

memory usage is desired on embedded devices. It is achieved by the SmartCGMS

framework’s device event pool. SmartCGMS implements its own statically allocated

pool of device events. When an event is created, SmartCGMS first tries to create it

from the event pool, and only if it fails will it allocate the event on the heap.

Figure 5.4: Dynamic memory usage of SmartCGMS concept application executed

as a FreeRTOS native application on Raspberry Pi Zero W and ESP32. Only the first

four events are displayed since the allocated memory remains constant afterward.

The initial rise of allocated memory is caused by the construction of the filter

chain. The SmartCGMS concept applications are using dynamic task allocation.

The tasks’ stacks are therefore allocated from the heap and this causes a relatively

big increase in memory usage. While static allocation is generally preferred for

programming low-power devices due to its predictability, dynamic allocations occur

only during the initialization phase of the application - when configuring the filters

in the filter chain. Ensuring the application shuts down safely in case of insufficient

memory during the filter chain configuration is relatively easy to control. Compared

to encountering a depletion of free heap space during event processing. Regardless,

there are not any constraints that would prevent allocating the tasks’ stacks statically

(FreeRTOS offers the xTaskCreateStatic API).

44

5.2.2 Results and Discussion

The figure 5.5 displays the dynamic memory usage of the SmartCGMS concept

native application onGNU/Linux. TheWASMmodule’s memory usage is presented

in figure 5.6. The maximum values are presented in table 5.1. As the goal was to

compare the memory requirements of the two approaches, the exact values are

relevant. The heapmemory usage of theWASM version of the SmartCGMS concept

application is approximately 85x higher than the usage of the native version. The

main reason is that the WASM standalone runtime must load the whole WASM

module into a buffer, and then additional memory is required to load the module

sections and instantiate the module as the operations are not performed in place.

The native application’s memory usage consists mainly of allocations performed by

the standard C++ library.

Figure 5.5: Dynamicmemory usage of SmartCGMS concept application executed on

GNU/Linux as a native application, only the totalmemory consumption is displayed.

The time displayed on the x-axis is measured in executed instructions.

When comparing the static memory footprint of the two versions, the native

SmartCGMS application has a smaller footprint. The specific values are presented in

table 5.1. The footprint of the WASMmodule and the WAMR application combined

is almost twice as big as the footprint of the native application. When comparing

the total memory footprint of the two approaches (table 5.1), the SmartCGMS native

application’s memory footprint is approximately 9x lower than that of the WASM

version. The results for the WASMmodule were gathered fromWAMR in the fast

interpreter mode.

45

5.2.2 Results and Discussion

Figure 5.6: Dynamic memory usage of SmartCGMS concept application executed

as a WASMmodule in WAMR on GNU/Linux. The time displayed on the x-axis is

measured in executed instructions.

Table 5.1: Memory Footprint of the SmartCGMS Concept Application

WASM Native

Executable Size 1223KB 880KB

Runtime Size 360KB -

Maximum Heap Usage 7085KB 83KB

Total Size 8668KB 963KB

WAMR also offers AOT mode that requires the WASM code to be compiled

for a specific architecture before it can be loaded and executed. This mode offers

increased execution speed as the Just-In-Time (JIT) LLVM mode but without the

added memory overhead of the LLVM compilation during runtime. This mode

appears to be the best fit for the anticipated usage of the SmartCGMS concept, but

attempts to compile and run it on the GNU/Linux platform were unsuccessful.

As mentioned earlier, the WASM memory footprint of the current approach

rules out low-power devices with less than 10 MB of RAM (e.g., ESP32). The WASM

module size could be further reducedwith code optimizations and different compile

options, but without a major redesign of the SmartCGMS Concept, it is impossible

to fit within the memory limit of ESP32 (320 KB of Data RAM).

TheWASMmodulewas linkedwith theC/C++ standard library.When compiled

46

5.3 Execution Time

with the option -nostdlib (and then using the host environment’s C/C++ stdlib

implementation), the size of the executable is reduced to 168KB. However, from

observing the memory allocation of WAMR in figure 5.6, the ESP32 would still

be unable to execute the SmartCGMS concept WASM module. WAMR allocates

at least twice the memory of the WASM module when loading and instantiating

it. Alternative runtime targeted at memory-constrained devices (such as the one

proposed in [55]) might allow execution of the SmartCGMS concept application

compiled to WASM on the ESP32. The Raspberry Pi Zero W is a viable candidate

for the WASM version of the SmartCGMS concept application as it has sufficient

RAM (512 MB). At the writing of the project, a ready-to-execute WASM standalone

runtime was not available for the Raspberry Pi Zero W, and creating a custom port

of available WASM runtimes was out of the scope of the project. Therefore, it is only

a suggestion for further research.

5.3 Execution Time
Execution time might not appear as a critical parameter when considering the use

case of the SmartCGMS concept application as an insulin pump controller. How-

ever, it is directly related to energy consumption. The more time the device spends

processing events, the more energy it consumes. Given that WASM can run on em-

bedded devices, a test scenario was created to compare the SmartCGMS concept

application compiled to WASM for WAMR and a native application in terms of the

time required to process a specific number of events. This test aims to provide more

insight into the WASMmodules versus native applications debate and help steer the

future development of the SmartCGMS concept.

5.3.1 Experimental Setup
The execution speed of the SmartCGMS concept application was evaluated on

GNU/Linux. A native SmartCGMS concept application and WASM module for

WAMR were compared. The tested application consisted of building a filter chain

and then executing a specified number of events. The events were created using the

level values from the array from previous experiments. The filter chain included

these filters:

• #1 Data reading filter

• #2 Data transformation filter

• #3 Watchdog filter

47

5.3.2 Results and Discussion

The data visualization filter was not used in this evaluation as the I/O operations

would probably be the main bottleneck of the execution speed. To obtain accurate

results, the event set was iterated multiple times. Different numbers of iterations

through the set were measured: 1000, 10 000, and 100 000. The native SmartCGMS

concept application was compared to the WASM application running in WAMR

in the fast interpreter mode and the LLVM JIT mode. Each test was performed 10

times, and the times were averaged. Multiple runs of the test should ensure bet-

ter accuracy of the data by reducing the influence of random variations caused

by, for example, cache, I/O operations, memory management, or background pro-

cesses. The execution time was measured using the clock_gettime function from

the GNU C library, defined in time.h header. The function takes two parameters.

The ID of the clock that it should obtain the time from and a pointer to a timespec

struct, in which the current time of the clock is returned. A high-resolution clock

(CLOCK_PROCESS_CPUTIME_ID) was used for measuring the execution time of the

tests. The time required for the execution was computed by subtracting two times-

tamps. In the native application, the initial timestamp was recorded before building

the filter chain, and the ending timestamp was recorded after all the events were

processed. The WASM modules execution time was measured from WAMR. The

initial timestamp was recorded before calling the main function of the WASMmod-

ule, and the ending timestamp was recorded right after the main function returned.

The main function of the WASMmodule was identical to the main function of the

native application and consisted only of building the chain and then executing the

defined set of events.

5.3.2 Results and Discussion
The averaged results are displayed in Figure 5.7, with precise numeric values pro-

vided in Table 5.2. The findings are similar to the ones published in [56]. The execu-

tion is approximately 10 times slower in WAMR fast interpreter mode compared to

the native application. The JIT mode performs the best when the WASM module

performs a large number of operations. The disadvantage of JIT mode is that the

initialization of the WASM module includes its compilation for the target architec-

ture. This creates a large memory and execution time overhead when the module

is loaded. From the table 5.2, it can be seen that the execution time of the WASM

module executed in JIT mode increased in similar increment to the native approach

between the two largest number of iterations. The WAMR Ahead-Of-Time (AOT)

mode could be used as an alternative to the JIT mode in the SmartCGMS concept.

It has the advantage of faster execution with platform-specific code and the compi-

lation overhead does not affect the execution as it is compiled AOT.

48

5.3.2 Results and Discussion

Figure 5.7: Comparison of the SmartCGMS concept application execution times on

different platforms: Native GNU/Linux, WAMR fast interpreter, and WAMR JIT

mode. The y-axis displays time on a logarithmic scale.

Table 5.2: Execution Times of the SmartCGMS concept application on different

platforms (in seconds). The top line refers to the number of processed events by the

filter chain.

Execution Type 10
5
events 10

6
events 10

7
events

Native Application 0.14 1.41 10.38

WAMR Fast Interprer 1.39 14.32 145.54

WAMR JIT Mode 57.67 65.87 74.94

49

Conclusion and
Future Work 6
The goal of this thesis was to propose and implement a SmartCGMS concept and

evaluate its execution on low-power devices. The main requirements were to use

FreeRTOS and retain compatibility with the x86-64 Instruction Set Architecture

(ISA).

The proposed SmartCGMS concept uses static linking instead of dynamic link-

ing. To complement the changes in the SmartCGMS codebase, a preprocessor tool

was implemented that automatically generates source code files to overcome issues

introduced by changing the linking strategy. Static linking has been chosen for its

ease of portability across low-power platforms. The work results in a prototype

SmartCGMS concept for low-power devices. The implementation was successfully

executed on five different platforms: ESP32, Raspberry Pi Zero W, GNU/Linux,

WebAssembly Micro Runtime (WAMR), and as aWebAssembly (WASM) module

embedded in a webpage.

The evaluation focused on the correct functionality of the SmartCGMS con-

cept. Four filters were implemented to compare the original SmartCGMS and the

SmartCGMS concept. The results were gathered by executing the same test scenario

in the original SmartCGMS framework and on all the SmartCGMS concept sup-

ported platforms. The verification was successful, the results from the SmartCGMS

concept applications were the same as from the original SmartCGMS. Furthermore,

the evaluation included a comparison of the execution and memory overhead be-

tween the SmartCGMS concept compiled as a native application and as a WASM

module. This comparison not only assessed the performance of the WASM and

native approaches for the SmartCGMS framework on low-power devices but also

highlighted the need for low overhead WASM runtimes for Internet of Things (IoT)

devices.

This research has proposed and implemented two approaches for executing

SmartCGMS on low-power devices. Both solutions have their advantages and dis-

advantages. For future SmartCGMS research, it is important to focus on evaluating

WASM runtimes regarding their memory requirements.

50

Bibliography

[1] MedtronicMiniMed 670G. url: https://www.medtronic.com/ca-en/diabetes/
home/products/insulin-pumps/minimed-670g.html. (Accessed: 2024-04-

24).

[2] OpenAPS. url: https://openaps.org/. (Accessed: 2024-04-24).

[3] AndroidAPS. url: https://androidaps.readthedocs.io/. (Accessed: 2024-
04-24).

[4] Loop. url: https://loopkit.github.io/loopdocs/. (Accessed: 2024-04-24).

[5] T. E. Group.Diabetes Mellitus Metabolic Simulator for Research (DMMS.R). url:
https://tegvirginia.com/dmms-r/. (Accessed: 2024-04-24).

[6] M. Ubl, T. Koutny, A. Della Cioppa, I. De Falco, E. Tarantino, and U. Scafuri.

“Distributed Assessment of Virtual Insulin-Pump Settings Using SmartCGMS

and DMMS.R for Diabetes Treatment”. In: Sensors 22.23 (2022). issn: 1424-
8220. url: https://www.mdpi.com/1424-8220/22/23/9445.

[7] L. Petruzelkova, J. Soupal, V. Plasova, P. Jiranova, V. Neuman, L. Plachy, S.

Pruhova, Z. Sumnik, andB.Obermannova. “ExcellentGlycemicControlMain-

tained by Open-Source Hybrid Closed-Loop AndroidAPS During and Af-

ter Sustained Physical Activity”. In: Diabetes Technology & Therapeutics 20.11
(2018), pp. 744–750.

[8] D. M. Lewis, R. S. Swain, and T. W. Donner. “Improvements in A1C and time-

in-range in DIY closed-loop (OpenAPS) users”. In: Diabetes 67.Supplement_1

(2018).

[9] J. Künzler, T. Züger, C. Stettler, M. Laimer, and A. Melmer. “Comparing the

technical reliability and insulin dosing of a" do-it-yourself artificial pancreas"

with a commercial hybrid closed-loop system in a" shadow-mode" scenario:

An exploratory study.” In: Diabetes, obesity & metabolism (2023).

[10] OpenAPS determine-basal.js. url: https://github.com/openaps/oref0/blob/
master/lib/determine-basal/determine-basal.js. (Accessed: 2024-05-

15).

https://www.medtronic.com/ca-en/diabetes/home/products/insulin-pumps/minimed-670g.html
https://www.medtronic.com/ca-en/diabetes/home/products/insulin-pumps/minimed-670g.html
https://openaps.org/
https://androidaps.readthedocs.io/
https://loopkit.github.io/loopdocs/
https://tegvirginia.com/dmms-r/
https://www.mdpi.com/1424-8220/22/23/9445
https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js
https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js

[11] A. Melmer, T. Züger, D. M. Lewis, S. Leibrand, C. Stettler, and M. Laimer.

“Glycaemic control in individuals with type 1 diabetes using an open source

artificial pancreas system (OpenAPS)”. In: Diabetes, Obesity and Metabolism
21.10 (2019), pp. 2333–2337.

[12] D. C. Klonoff. “Cybersecurity for connected diabetes devices”. In: Journal of
diabetes science and technology 9.5 (2015), pp. 1143–1147.

[13] M. E. Horowitz, W. A. Kaye, G. M. Pepper, K. E. Reynolds, S. R. Patel, K. C.

Knudson, G. K. Kale, M. E. Gutierrez, L. A. Cotto, and B. S. Horowitz. “An

analysis of Medtronic MiniMed 670G insulin pump use in clinical practice

and the impact on glycemic control, quality of life, and compliance”. In: Dia-
betes Research and Clinical Practice 177 (2021), p. 108876. issn: 0168-8227. doi:
https://doi.org/10.1016/j.diabres.2021.108876. url: https://www.

sciencedirect.com/science/article/pii/S0168822721002357.

[14] L. H. M. Aria Saunders and G. P. Forlenza. “MiniMed 670G hybrid closed

loop artificial pancreas system for the treatment of type 1 diabetes mellitus:

overview of its safety and efficacy”. In: Expert Review of Medical Devices 16.10
(2019), pp. 845–853.

[15] T. Knebel and J. J. Neumiller. “MedtronicMiniMed 670GHybrid Closed-Loop

System”. In: Clinical Diabetes 37.1 (Jan. 2019), pp. 94–95. issn: 0891-8929. doi:
10.2337/cd18-0067. eprint: https://diabetesjournals.org/clinical/

article-pdf/37/1/94/501043/94.pdf. url: https://doi.org/10.2337/

cd18-0067.

[16] F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer simulation systems:
an introduction to the high level architecture. Prentice Hall PTR, 1999.

[17] T. Koutny and M. Ubl. “SmartCGMS as a Testbed for a Blood-Glucose Level

Prediction and/or Control Challenge with (an FDA-Accepted) Diabetic Pa-

tient Simulation”. In: Procedia Computer Science 177 (2020). The 11th Inter-

national Conference on Emerging Ubiquitous Systems and Pervasive Net-

works (EUSPN 2020) / The 10th International Conference on Current and

Future Trends of Information and Communication Technologies in Health-

care (ICTH 2020) / Affiliated Workshops, pp. 354–362. issn: 1877-0509. doi:

https://doi.org/10.1016/j.procs.2020.10.048. url: https://www.

sciencedirect.com/science/article/pii/S1877050920323164.

[18] M. Otta. “Towards a health software supporting platform for wearable de-

vices”. In: Procedia Computer Science 210 (2022), pp. 112–115. issn: 1877-0509.

doi: https://doi.org/10.1016/j.procs.2022.10.126. url: https://

www.sciencedirect.com/science/article/pii/S1877050922015836.

https://doi.org/https://doi.org/10.1016/j.diabres.2021.108876
https://www.sciencedirect.com/science/article/pii/S0168822721002357
https://www.sciencedirect.com/science/article/pii/S0168822721002357
https://doi.org/10.2337/cd18-0067
https://diabetesjournals.org/clinical/article-pdf/37/1/94/501043/94.pdf
https://diabetesjournals.org/clinical/article-pdf/37/1/94/501043/94.pdf
https://doi.org/10.2337/cd18-0067
https://doi.org/10.2337/cd18-0067
https://doi.org/https://doi.org/10.1016/j.procs.2020.10.048
https://www.sciencedirect.com/science/article/pii/S1877050920323164
https://www.sciencedirect.com/science/article/pii/S1877050920323164
https://doi.org/https://doi.org/10.1016/j.procs.2022.10.126
https://www.sciencedirect.com/science/article/pii/S1877050922015836
https://www.sciencedirect.com/science/article/pii/S1877050922015836

[19] Bytecode Alliance. WebAssembly micro runtime. url: https://github.com/
bytecodealliance/wasm-micro-runtime. (Accessed: 2024-02-22).

[20] Wasm3. url: https://github.com/wasm3/wasm3. (Accessed: 2024-02-22).

[21] WebAssembly Core Specification. Version 2.0. W3C, Apr. 19, 2022. url: https:

//www.w3.org/TR/wasm-core-2/.

[22] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer,M. Holman, D. Gohman, L.Wag-

ner, A. Zakai, and J. Bastien. “Bringing the web up to speed with WebAssem-

bly”. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2017, pp. 185–200.

[23] E. Wen and G. Weber. “Wasmachine: Bring iot up to speed with a webassem-

bly os”. In: 2020 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops). IEEE. 2020, pp. 1–4.

[24] N.Mäkitalo, T.Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris, R.Mikkola,

and O. Beletski. “WebAssembly modules as lightweight containers for liquid

IoT applications”. In: International Conference on Web Engineering. Springer.
2021, pp. 328–336.

[25] P. P. Ray. “An Overview of WebAssembly for IoT: Background, Tools, State-

of-the-Art, Challenges, and Future Directions”. In: Future Internet 15.8 (2023),
p. 275.

[26] P. Kocian. Dynamic Software Image Update on ESP32. url: https://github.
com/PetrKocian/ESP32-WASM-Dynamic-Update/. (Accessed: 2024-04-24).

[27] diabetes.zcu.cz. url: https://diabetes.zcu.cz/. (accessed: 2022-02-23).

[28] R. N. Bergman. “Toward physiological understanding of glucose tolerance:

minimal-model approach”. In: Diabetes 38.12 (1989), pp. 1512–1527.

[29] T. Koutny and M. Ubl. “Parallel software architecture for the next genera-

tion of glucose monitoring”. In: Procedia Computer Science 141 (2018), pp. 279–
286. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2018.10.197.

url: https://www.sciencedirect.com/science/article/pii/S1877050918318507.

[30] M. Nanda, S. Dhage, and J. Jayanthi. “An approach to formally qualify com-

mercial RTOS for safety application”. In: 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom). 2015, pp. 816–821.

[31] SAFERTOS. url: https://www.highintegritysystems.com/safertos/. (ac-
cessed: 2022-02-24).

[32] FreeRTOS. url: http://www.freertos.org. (accessed: 24.02.2024).

[33] OpenRTOS. url: https://www.highintegritysystems.com/openrtos/. (ac-
cessed: 2022-02-24).

https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/wasm3/wasm3
https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://github.com/PetrKocian/ESP32-WASM-Dynamic-Update/
https://github.com/PetrKocian/ESP32-WASM-Dynamic-Update/
https://diabetes.zcu.cz/
https://doi.org/https://doi.org/10.1016/j.procs.2018.10.197
https://www.sciencedirect.com/science/article/pii/S1877050918318507
https://www.highintegritysystems.com/safertos/
http://www.freertos.org
https://www.highintegritysystems.com/openrtos/

[34] E. Systems. ESP-IDF: Espressif IoT Development Framework. Espressif Systems.

url: https://github.com/espressif/esp-idf.

[35] The Open Group Base Specifications Issue 7, IEEE Std 1003.1. url: https://pubs.
opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html. (Ac-

cessed: 2024-03-22).

[36] FreeRTOS-Plus-POSIX. url: https://www.freertos.org/FreeRTOS-Plus/
FreeRTOS Plus POSIX/index.html. (accessed: 23.03.2024).

[37] Standardizing WASI: A system interface to run WebAssembly outside the web.
url: https ://hacks . mozilla . org/2019/03/standardizing - wasi - a -

webassembly-system-interface/. (Accessed: 2024-02-22).

[38] WebAssembly. Accessed: 2022-02-24. 2024. url: https://webassembly.org/.

[39] Emscripten. url: https://emscripten.org/. (Accessed: 2024-02-22).

[40] A. Zakai. “Emscripten: an LLVM-to-JavaScript compiler”. In: New York, NY,

USA: Association for Computing Machinery, 2011. isbn: 9781450309424. doi:

10 . 1145/2048147 . 2048224. url: https ://doi . org/10 . 1145/2048147 .

2048224.

[41] WASI-SDK. url: https://github.com/WebAssembly/wasi-sdk. (Accessed:
2024-02-22).

[42] Wasmer. url: https://github.com/wasmerio/wasmer. (Accessed: 2024-03-
22).

[43] Wasmtime. url: https ://github . com/bytecodealliance/wasmtime. (Ac-
cessed: 2024-03-22).

[44] wazero. url: https://github.com/tetratelabs/wazero. (Accessed: 2024-03-
22).

[45] WasmEdge. url: https://github.com/WasmEdge/WasmEdge. (Accessed: 2024-
03-22).

[46] Bytecode Alliance. Introduction to WAMR running modes. 2023. url: https://
bytecodealliance.github.io/wamr.dev/blog/introduction-to-wamr-

running-modes/. (Accessed: 2024-04-24).

[47] Espressif Systems. ESP32 Overviewl. Accessed: 2022-01-24. 2024. url: https:
//www.espressif.com/en/products/socs/esp32.

[48] A.Maier, A. Sharp, and Y. Vagapov. “Comparative analysis and practical imple-

mentation of the ESP32 microcontroller module for the internet of things”.

In: 2017 Internet Technologies and Applications (ITA). 2017, pp. 143–148. doi:
10.1109/ITECHA.2017.8101926.

https://github.com/espressif/esp-idf
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_POSIX/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_POSIX/index.html
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://webassembly.org/
https://emscripten.org/
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1145/2048147.2048224
https://github.com/WebAssembly/wasi-sdk
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/tetratelabs/wazero
https://github.com/WasmEdge/WasmEdge
https://bytecodealliance.github.io/wamr.dev/blog/introduction-to-wamr-running-modes/
https://bytecodealliance.github.io/wamr.dev/blog/introduction-to-wamr-running-modes/
https://bytecodealliance.github.io/wamr.dev/blog/introduction-to-wamr-running-modes/
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://doi.org/10.1109/ITECHA.2017.8101926

[49] RaspberryPi. Accessed: 2022-01-24. 2024. url: https://www.raspberrypi.
com.

[50] Arm Documentation. section: ISO C library implementation definition. url:

https://developer.arm.com/documentation. (Accessed: 2024-04-04).

[51] M. Rashid, S. Samadi, M. Sevil, I. Hajizadeh, P. Kolodziej, N. Hobbs, Z. Mal-

oney, R. Brandt, J. Feng, M. Park, et al. “Simulation software for assessment

of nonlinear and adaptive multivariable control algorithms: glucose–insulin

dynamics in type 1 diabetes”. In: Computers & Chemical Engineering 130 (2019),
p. 106565.

[52] C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Cobelli. “The

UVA/PADOVA Type 1 Diabetes Simulator: New Features”. In: Journal of Di-
abetes Science and Technology 8.1 (2014). PMID: 24876534, pp. 26–34. doi: 10.

1177/1932296813514502. url: https://doi.org/10.1177/1932296813514502.

[53] Valgrind Documentation. Massif: a heap profiler. url: https://valgrind.org/

docs/manual/ms-manual.html. (Accessed: 2024-04-12).

[54] Linuxmanual. page: size(1). url: https://man7.org/linux/man-pages/man1/
size.1.html. (Accessed: 2024-04-12).

[55] B. Li, H. Fan, Y. Gao, and W. Dong. “Bringing WebAssembly to Resource-

constrained IoT Devices for Seamless Device-Cloud Integration”. In: Proceed-
ings of the 20th Annual International Conference on Mobile Systems, Applications
and Services. 2022, pp. 261–272.

[56] W. Wang. “How Far We’ve Come – A Characterization Study of Standalone

WebAssembly Runtimes”. In: 2022 IEEE International Symposium on Workload
Characterization (IISWC). 2022, pp. 228–241. doi: 10.1109/IISWC55918.2022.
00028.

https://www.raspberrypi.com
https://www.raspberrypi.com
https://developer.arm.com/documentation
https://doi.org/10.1177/1932296813514502
https://doi.org/10.1177/1932296813514502
https://doi.org/10.1177/1932296813514502
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/ms-manual.html
https://man7.org/linux/man-pages/man1/size.1.html
https://man7.org/linux/man-pages/man1/size.1.html
https://doi.org/10.1109/IISWC55918.2022.00028
https://doi.org/10.1109/IISWC55918.2022.00028

User Manual

This appendix chapter includes details on how to use and extend the developed

SmartCGMS concept. The project is split into three repositories:

• SmartCGMS Embedded Codebase

• Build Environments

• Build System

The SmartCGMSEmbeddedCodebase repository contains the currentmodified

codebase of SmartCGMS. When the concept is officially adopted by SmartCGMS,

this repository will be replaced by the official SmartCGMS repositories core and

common.

The Build Environments repository contains files and directories used to build

the SmartCGMS concept for all supported platforms. Each platformhas its directory

in the root directory of the repository. Each currently supported platform uses

CMake to simplify the build process. Each platform provides a build script that

generates the compiled binary. Some platforms contain additional run script that

uploads the binary to the platform. Directories of low-power supported platforms

contain the source code of FreeRTOS and required drivers.

The Build System repository is targeted at GNU/Linux. It contains a Python

script to pull the SmartCGMS code and the build environment for a specified plat-

form from the repositories. It also contains the filter preprocessor tool. When exe-

cuting the Python script, the filter preprocessor tool is used to modify the source

code files of filters in the input folder. The repository contains a Dockerfile to build

an image that can be used to execute the Python script.

How toDevelop a SmartCGMSConceptAppli-
cation
The build system and the build environments are targeted at GNU/Linux. It is there-

fore recommended to use GNU/Linux when building the SmartCGMS concept ap-

plication.

Toolchains
The dependencies differ for each platform. The table 1 presents the required tools

and toolchains for each platform.

Table 1: Tools required by the SmartCGMS concept

Tool Required by

Git The Build System

Docker The Build System

CMake All platforms

ESP-IDF ESP32

ARMv6 Cross-compiler RasperryPi Zero W

Emscripten WASM targeted at the web

WASI SDK WASM for WAMR

Developing Filters
The SmartCGMS concept supports only the filters from the SmartCGMS entities.

To develop a custom application using the SmartCGMS concept, the user must first

implement custom filters for their desired platforms. To develop a filter, follow the

official SmartCGMS documentation. There are four experimental filters provided

with the SmartCGMS concept. They are described in the chapter 4.

Cloning the Build System Repository
Once the filters are implemented. The next step in creating the SmartCGMS concept

application is to clone the Build System repository. To do so, the user can use the

command displayed in listing 6.1. The Build System is also provided in the folder

Aplication_and_libraries/Build_System_Linux/build_script.

Listing 6.1: Cloning the Build System repository

1 petrk@pc:$ git clone https://github.com/PetrKocian/SCGMS−Build−System.git

https://diabetes.zcu.cz/docs/api/filter

Creating a Folder for a Supported Platform
The Build System repository contains the filter preprocessor tool and a Python

script to create build directories for supported platforms.

The build directory-generating script can be used in the provided Docker image

or the local GNU/Linux environment. The dependencies for the build script are

defined in the Dockerfile. To use the Docker image, it has to be built first. It can be

done by running the build_docker.sh script or executing directly the command

from listing 6.2:

Listing 6.2: Building a Docker image for executing the Python build script

1 petrk@pc:$ docker build docker −t scgms−builder

After the Docker image is built, the supported platforms can be displayed by

executing the run_docker.sh script without any parameters. To generate a build

directory for a desired platform, invoke the script with the name of the platform as

the only parameter. The names of the supported platforms are:

• esp32

• rpizerow

• wasm_emcc

• wasm_wamr

The directories for all platforms can be generated at once by providing the

parameter all (seen in listing 6.3).

Listing 6.3: Running the Python build script inside using provided Docker script.

1 petrk@pc:$./run_docker.sh all

The Python script paths_to_toolchains.py contains the paths to required

toolchains used by individual platforms. These paths are used to generate CMake

files or shell scripts that are then used by the platforms’ build scripts. If the instal-

lation location of the toolchains differs for the user, these paths should be edited

directly in the script to ensure the correct generation of the toolchain files in the

platform build directories.

PATHS TO TOOLCHAINS

esp_idf_path = "~/esp/esp-idf"

wasi_path = "/opt/wasi-sdk"

emsdk_path = "~/emsdk"

The script also invokes the filter preprocessor. The original filter source code

files are taken from the input directory. The filter preprocessor then generates files

that are ready for compilation in the platform directory.

The script does a clean build whenever its invoked - the directory where the

platform build files are generated is deleted and then generated again. It is

therefore important to copy the generated folder to a different location or

rename it, in case it should not be deleted.

Alternative Approach without Docker

The Python build script can be invoked directly. To use it, it is necessary to install:

• Python

• GitPython

The script can then be called directly. See listing 6.4.

Listing 6.4: Invokind Python build script directly.

1 petrk@pc:$ python prepare_build.py all

Filter Preprocessor

The filter preprocessor can be used as a standalone application. To preprocess the

filters, copy their source code files to input directory where the filter preprocessor

executable is located. Then run the preprocessor executable. If the preprocessing

is successful, the modified filter files are generated to temp directory.

Building the SmartCGMS Concept Executable
Once the build directory for a platform is generated, it should be possible to build

an executable for the target platform. Each platform build directory contains a shell

script build.sh. If the toolchain paths have been specified correctly in the previous

step, the build.sh should compile the SmartCGMS concept executable to a build

directory.

Executing the SmartCGMS Concept Application
Raspberry Pi Zero W

To execute the SmartCGMS concept application on Raspberry Pi Zero W, ensure

that the Raspberry Pi has a SREC bootloader on its microSD card. Once the ex-

ecutable is ready, restart the Raspberry Pi Zero W (e.g., unplug and plug back in

https://github.com/MartinUbl/KIV-RTOS/tree/master/misc/bootloader

power) and execute the start.sh script. The script uploads the rpiscgms.srec

SREC image to the Raspberry Pi Zero W over UART and then starts listening on

UART. The upload is slow - approximately 5 minutes - but it can be uploaded with-

out using a microSD card reader.

ESP32

To execute the prepared SmartCGMS concept application on the ESP32, the user

can use the start.sh shell script. The project uses the Espressif IoT Development

Framework (ESP-IDF). To use the idf.py command to interact with the project, the

user can export the required variables and use the commanddirectly, instead of using

the provided shell scripts. The ESP32 application listens on UART for incoming

data. A UART sender application is provided in folder UART_Event_Sender that

periodically sends data to the UART. It can be executed by running the run.sh

script.

WASM for WAMR

Once the SmartCGMS concept application for WAMR is built, it can be executed

using the iwasm executable binary. WAMR provides a guide on how to build the

iwasm binary on its GitHub page. The SmartCGMS concept application WASM

module can then be executed by using the command in listing 6.5.

Listing 6.5: Executing SmartCGMS concept applicationWASMmodule using iwasm.

1 petrk@pc:$./iwasm scgms

GNU/Linux
To compile the SmartCGMS concept application for GNU/Linux, use the WASM

for WAMR environment. Do not use the provided build.sh script, but instead use

this series of commands:

rm -rf build

mkdir build

cd build

cmake ..

make

https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/add-idf_path-to-profile.html
https://github.com/bytecodealliance/wasm-micro-runtime/tree/main/product-mini

WASM for the Web

To execute the WASM module compiled using Emscripten, a demo webpage is

provided. To run the compiled WASM SmartCGMS module, copy the scgms.js,

scgms.wasm, and scgms.worker.jsfiles to the root directory of the SCGMS_Web_Demo.

To start the server with the demowebpage, use the scgms_server.py Python script.

To be able to start threads in theWASMwebSmartCGMSdemo, SharedArrayBuffer

needs to be enabled in the web browser as specified in Emscripten documentation

for pthreads.

Introducing New Platforms
Once a SmartCGMS concept code has been successfully compiled for a new plat-

form, it can be introduced to the build system using the following steps.

Create a Build Environment for the Platform

In the Build Environments repository, create a new folder with the name of the

platform. In this folder, all the required drivers, Real-time operating system (RTOS),

build script, CMake files, and other necessary files are located.

Modify winapi_mapping.cpp

Using preprocessor macros, specify functions for allocating and freeing memory in

the winapi_mapping.cpp file.

Modify prepare_build.py script

Add the platform name to supported_archs variable in the prepare_build.py

script. Create a function to copy the SmartCGMS concept source code and the build

environment for the platform to a specified folder. Optionally, add a function to

create a script/CMake file to specify required toolchains. Finally, add these functions

to the main function in the script behind an elif statement. The functions to create

the build directory of the new platform should also be added to the elif statement

specifying all platforms.

https://emscripten.org/docs/porting/pthreads.html
https://emscripten.org/docs/porting/pthreads.html

List of Figures

2.1 Example of a SmartCGMS filter chain [27]. 10

2.2 Life cycle of a SmartCGMS filter [27]. 12

2.3 Operation of the SmartCGMS signal generation filter and a discrete

model [27]. 12

3.1 Steps to deploy the SmartCGMS concept to different platforms 18

4.1 Example of a SmartCGMS filter chain containing data reading filters at

the beginning and the end to calculate event statistics. 29

4.2 SmartCGMS WASM demo webpage: Filter chain configuration and

pseudo-randomly generated data processed by the filter chain displayed

in a Chart.js graph. 36

4.3 SmartCGMSWASM demo webpage: Additional output printed to the

Google Chrome developer console by the SmartCGMS WASMmodule 37

5.1 ESP32 . 41

5.2 The SmartCGMS webpage . 41

5.3 The event level values being collected on different platforms 41

5.4 Dynamic memory usage of SmartCGMS concept application executed

as a FreeRTOS native application on Raspberry Pi Zero W and ESP32.

Only the first four events are displayed since the allocated memory

remains constant afterward. 44

5.5 Dynamic memory usage of SmartCGMS concept application executed

on GNU/Linux as a native application, only the total memory con-

sumption is displayed. The time displayed on the x-axis is measured in

executed instructions. 45

5.6 Dynamic memory usage of SmartCGMS concept application executed

as a WASMmodule in WAMR on GNU/Linux. The time displayed on

the x-axis is measured in executed instructions. 46

5.7 Comparison of the SmartCGMS concept application execution times

on different platforms: NativeGNU/Linux,WAMR fast interpreter, and

WAMR JIT mode. The y-axis displays time on a logarithmic scale. . . . 49

List of Tables

5.1 Memory Footprint of the SmartCGMS Concept Application 46

5.2 Execution Times of the SmartCGMS concept application on different

platforms (in seconds). The top line refers to the number of processed

events by the filter chain. 49

1 Required Tools for the SmartCGMS Concept

List of Listings

4.1 Example implementation of the resolve_symbol_static() function . 24

4.2 Lambda function to replace do_get_filter_descriptors calls to

dynamic libraries . 25

4.3 Example implementation of the create_filter_body() function . . . 26

4.4 Exponential moving average calculation 30

4.5 Calling JavaScript to post event data to the web environment run-

ning the SmartCGMS WASMmodule. 31

4.6 An example of JavaScript code contained in the js_code string from

listing 4.5 . 31

4.7 An example of exporting symbols from WASMmodule using Em-

scripten . 35

6.1 Cloning the Build System repository

6.2 Building a Docker image for executing the Python build script . .

6.3 Running the Python build script inside using providedDocker script.

. .

6.4 Invokind Python build script directly.

6.5 Executing SmartCGMS concept application WASMmodule using

iwasm. .

Acronyms

AAPS AndroidAPS.

AOT Ahead-Of-Time.

API Application Programming Interface.

CGM Continuous Glucose Monitoring.

DIY Do-It-Yourself.

EMA Exponential Moving Average.

ESP-IDF Espressif IoT Development Framework.

FDA Food and Drug Administration.

GUID globally unique identifier.

HLA High Level Architecture.

IoT Internet of Things.

ISA Instruction Set Architecture.

JIT Just-In-Time.

LLVM Low Level Virtual Machine.

pthread POSIX thread.

RAM Random-access memory.

RTOS Real-time operating system.

SDK Software Development Kit.

WAMR WebAssembly Micro Runtime.

WASI WebAssembly System Interface.

WASM WebAssembly.

	Introduction
	State of the Art
	Diabetes Mellitus
	Insulin Therapy

	Continuous Glucose Monitoring
	OpenAPS
	AndroidAPS
	Loop
	Medtronic MiniMed 670G
	SmartCGMS

	Current Efforts to Execute SmartCGMS on Low-Power Devices
	WebAssembly

	Building Blocks of Proposed SmartCGMS Concept
	SmartCGMS
	FreeRTOS
	WebAssembly

	Proposed System
	System Design
	Static Linking
	Filter Preprocessor
	Preserving Modularity
	WebAssembly

	Target Architectures
	Low-Power Devices
	High Performance Computing

	Implementation
	SmartCGMS Codebase
	Functions Incompatible with Embedded Environments
	Resolving Symbols
	Managing Entities

	Filter Preprocessor
	SmartCGMS Concept API
	Filters
	Data Reading Filter
	Data Transformation Filter
	Data Visualization Filter
	Watchdog Filter

	Supported Platforms
	Raspberry Pi Zero W
	ESP32
	wasm Standalone Runtime
	wasm Targeted at The Web

	Evaluation
	Correctnes of Execution
	Experimental Setup
	Results and Discussion

	Memory Usage
	Experimental Setup
	Results and Discussion

	Execution Time
	Experimental Setup
	Results and Discussion

	Conclusion and Future Work
	Bibliography
	User Manual
	List of Figures
	List of Tables
	List of Listings
	Acronyms

