
Master’s Thesis

Multi-modal emotion analysis in
textual and audio data

Matěj Zeman

PILSEN, CZECH REPUBLIC 2024





Master’s Thesis

Multi-modal emotion analysis in
textual and audio data

Bc. Matěj Zeman

Thesis advisor
Ing. Ladislav Lenc, Ph.D.

PILSEN, CZECH REPUBLIC 2024



© 2024 Matěj Zeman.

All rights reserved. No part of this document may be reproduced or transmitted in

any form by anymeans, electronic ormechanical including photocopying, recording

or by any information storage and retrieval system, without permission from the

copyright holder(s) in writing.

Citation in the bibliography/reference list:
ZEMAN,Matěj.Multi-modal emotion analysis in textual and audio data. Pilsen, Czech
Republic, 2024. Master’s Thesis. University of West Bohemia, Faculty of Applied

Sciences, Department of Computer Science and Engineering. Thesis advisor Ing.

Ladislav Lenc, Ph.D.



ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2023/2024

ZADÁNÍ DIPLOMOVÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Bc. Matěj ZEMAN
Osobní číslo: A21N0080P
Studijní program: N3902 Inženýrská informatika
Studijní obor: Softwarové inženýrství
Téma práce: Multi-modální analýza emocí z textových a zvukových dat
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Prostudujte dodanou datovou sadu pro automatickou multi-modální analýzu emocí.
2. Seznamte se s relevantními metodami pro extrakci příznaků z textu a audia vhodných pro analýzu

emocí.
3. Prostudujte stávající metody a algoritmy pro analýzu emocí založené na neuronových sítích.
4. Navrhněte a implementujte prototyp systému pro automatickou analýzu emocí s využitím textové

a audio modality.
5. Prototyp otestujte na dodané datové množině.
6. Zhodnoťte dosažené výsledky a navrhněte další možná rozšíření.



Rozsah diplomové práce: doporuč. 50 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování diplomové práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

dodá vedoucí diplomové práce

Vedoucí diplomové práce: Ing. Ladislav Lenc, Ph.D.
Nové technologie pro informační společnost

Datum zadání diplomové práce: 8. září 2023
Termín odevzdání diplomové práce: 16. května 2024

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 11. října 2023



Declaration

I hereby declare that this Master’s Thesis is completely my own work and that I

used only the cited sources, literature, and other resources. This thesis has not been

used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from

Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that

the University of West Bohemia has the right to conclude a licence agreement for

the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

In Pilsen, on 15 May 2024

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matěj Zeman

The names of products, technologies, services, applications, companies, etc. used in

the text may be trademarks or registered trademarks of their respective owners.

(i)



Abstract

Multimodal emotion recognition involves correctly classifying the emotion from

data involvingmultiplemodalities. There are several viablemodalitieswhen it comes

to emotion recognition. Facial movements, text, voice, and video of the speaker. This

thesis focuses on audio and textual modalities for emotion recognition. First, feature

extraction from audio data is performed. Subsequently, these features are used for

training several audio emotion recognition models, that are based on Artificial Neu-

ralNetworks. These audio emotion recognitionmodels are then used to create audio

feature extraction vectors. In the multimodal deep learning models, these audio fea-

ture vectors are combined with their textual counterparts for multimodal emotion

recognition. The performance of this system is evaluated on ECF, RAVDESS, and

IEMOCAP datasets.

Abstrakt

Multimodální klasifikace emocí zahrnuje rozpoznávání emocí z dat, která zahrnují

více modalit. Pro rozpoznání emocí se nabízí hned několik modalit. Pohyb obličeje,

text, záznam hlasu, nebo videa mluvčího. Tato práce se zaměřuje především na

zvukovou a textovou modalitu pro rozpoznávání emocí. Nejprve je provedena ex-

trakce příznaků ze zvukových dat.Následně jsou tyto příznaky použity pro trénování

několika modelů pro rozpoznávání emocí ze zvukových dat. Tyto modely jsou za-

ložené na umělých neuronových sítích. Modely jsou následně použity pro vytváření

příznaků ze zvukových dat. V multimodálních modelech jsou tyto příznaky spojeny

s jejich textovými protějšky a použity pro multimodální predikci emocí. Úspěšnost

tohoto systému je vyhodnocována na ECF, RAVDESS a IEMOCAP datasetech.

Keywords

Multimodal emotion recognition • Machine learning • BERT • CNN • Python •

Feature extraction
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Introduction 1
Emotions are a complex behavioral phenomenon. They often occur as a response

to a situation that we are involved in but can occur as an indirect response to a wide

range of external sources. It is difficult to define emotions since they are largely

subjective. Humans express emotions in various ways, but the most common ones

involve speech characteristics and facial expressions. Speech is a quite complex

signal, that contains a lot of information.We are able to identify the speaker, content,

language, and even emotion from this signal. A large amount of effort and research

is put into the speech-to-text task, where the model transcribes speech signals into

their textual representations. However, the performance of thesemodels is quite low

in the case of emotion recognition. This might be due to the difficulty in modeling

and characterization of emotions present in speech. Speaking comes more naturally

when emotions are present. Nonverbal cues in a conversation can convey essential

information, such as the speaker’s intention. Apart from the textual content, the way

the words are pronounced also transmits important non-linguistic information.

The way a sentence is said can change its meaning drastically and the incorpo-

rated emotion takes a big part in the way a sentence is said. For example, the word

’okay’ can express admiration, disinterest, consent, or even disbelief depending on

the emotion the word is expressed with. Therefore understanding the text alone

is insufficient if we want to understand the whole semantics of a sentence. It is

thus beneficial to incorporate non-linguistic information such as emotion with the

content of a sentence together. Humans do this subconsciously by perceiving the

underlying emotions in addition to phonetic information by using multimodal cues.

Humans process nearly everything from their surroundings multimodally without

really thinking about it. Every sense that we have adds one modality to our over-

all perception of the world and human interactions. This is why the multimodal

approach to emotion recognition might be beneficial since humans also use multi-

modal perception to recognize emotions.

From the standpoint of a machine, interpreting emotions can be seen as the

process of categorizing or distinguishing between different emotions. Sophisticated

speech systems should not be limited to only message processing, but they should
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1 Introduction

understand the underlying intentions of the speaker by detecting the expressions

in speech through speech emotion recognition. Speech emotion recognition could

have several applications in normal day-to-day life as well as some applications in

more specialized fields. It could be quite useful for enhancing the naturalness of

speech based human-machine interactions. Emotion recognition could prove to

be useful for example in car driving systems, where the underlying information

about emotion could identify the mental state of the driver and therefore provide

better guidance. Call center conversations could also benefit heavily where more

natural human-machine conversation could lead to better quality of service for their

customers. Interactive films or E-learning could be more practical if they can adapt

themselves to the listeners’ or students’ emotional state. It could generally improve

the overall naturalness and effectiveness of a human-machine interactive systems,

therefore achieving better results and widening their potential applications.

The aim of this thesis is to analyze relevant methods for emotion feature extrac-

tion from speech signals and implement a system for multimodal emotion recogni-

tion from textual and audio data.

6



Audio feature
extraction 2
The listening range of a human auditory system stretches between 20Hz and 20 kHz.

Figure 2.1 represents the behavior of our auditory system in this listening range. This

graph shows the absolute threshold of the sound pressure level (SPL) depending on

different frequencies. The lowest level of pure tone sound pressure that a normal ear

can detect in silence is known as the absolute threshold of hearing. It is noteworthy

that the most suitable frequency range for the human auditory system’s sensitivity is

between 2 kHz and 5 kHz, with a threshold as low as approximately 9 dB SPL [JJ04].

Our ears are generally responsive to sounds between 50 Hz and 15 kHz for music

and between 100 Hz and 4.5 kHz for speaking. Without exerting additional effort,

humans are able to distinguish between a wide range of sounds. For instance, we

are able to distinguish between speech and music, vehicle and truck sounds, baby

and adult speech quality, different speakers, noise etc. We want machines to be able

to distinguish between different noises just as easily as people can.

Figure 2.1: Audio hearing threshold for human auditory system [Jon17].

Regardless of the specific goal, a machine learning system needs strong and
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2 Audio feature extraction

discriminating features to enable fast and accurate machine learning. A smaller

approximation of the signals is typically utilized to train the machine instead of

feeding it the entire dataset in order to learn its attributes. A feature is a condensed

representation of a signal. The difficulty lies in extracting the features so that the

machine learning algorithm is able to learn and behave in the way it was designed

to. The features need to be small in size but nevertheless need to draw attention

to the signal’s qualities. The signal’s reduced version enhances the ML algorithms’

time and computational complexity, making it more appropriate for real-time ap-

plications. Thus, we can state that feature extraction is the process of reducing a

signal’s dimensions to make it more appropriate for machine learning algorithms

while still maintaining the signal’s qualities [GK11].

Methods mentioned in this thesis are focused on feature extraction from speech

audio data specifically. The speech audio signal has a vast application area. For exam-

ple, speech recognition for speech-to-text translation, speaker recognition, emotion

recognition, or human-computer interaction like Amazon’s Alexa.

The typical pipeline for any machine learning audio system is shown in Figure

2.2. Pre-processing of the audio signal is carried out in the first step. Pre-processing

techniques include normalization, noise reduction, and silence reduction. The sig-

nal windowing stage, which comes next, aids in our analysis of the potential non-

stationary signal as a quasi-stationary signal. Sliding the window over the entire

signal allows us to study and analyze the entire audio signal. Modern windowing

techniques allow the window’s size to be adjusted based on the signal’s character-

istics [SUK20]. The processes of feature extraction and feature selection are then

carried out. The classifier takes the chosen features for testing and training as input,

and a decision is made based on the classifier’s prediction.

Figure 2.2: Traditional audio signal classification pipeline

The main focus of this thesis revolves around speech audio signals. Humans

use a variety of organs, including the brain, mouth, nose, belly, and lungs, to make

speech. When producing speech, the vocal tract and vocal cords are crucial. Starting

at a frequency of 100 Hz, voice production can reach up to 17 kHz. Furthermore,

speech is continuous in nature and has a smooth envelope as can be seen in Figure

2.3.
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2.1 Evolution of extraction methods

Figure 2.3: Waveform of a short speech

2.1 Evolution of extraction methods

To put it simply, feature extraction is the process of emphasizing a signal’s most

distinctive and dominant qualities. A suitable feature more closely resembles a sig-

nal’s characteristics. The evolution of audio features can be sub-categorized into

frequency domain, time domain, joint time-frequency domain, and deep features.

The oldest one is the time domain feature extraction method. The time domain

properties continue to be crucial for audio analysis and categorization. Many fea-

tures, such as pitch and formants, were developed from the frequency domain to

examine the spectrum of an audio signal and are still in use today in a variety of

applications. The period of the vocal cord’s output for vowels is referred to as the

pitch or the fundamental frequency. The pitch of the speech signal can range from

50Hz for low-pitched male voices to 500Hz for children or high-pitched female

voices. The glottal excitation signal, when introduced as a quasi-periodic impulse

into the sound channel, has resonance characteristics resulting in a set of resonant

frequencies known as formant frequencies or formats [HGG19]. Later the joint time-

frequency feature extraction algorithms were developed. Since then, methods for

audio signal processing have made use of these qualities. Deep features have been

widely used in many different applications since deep learning’s inception. In audio

signal processing, for example, deep features have been applied since 2010 in the

areas of speaker recognition, audio-video analysis, and acoustic scene classification

[TGV17] [Li+18].

9



2 Audio feature extraction

2.1.1 Time domain features
It is crucial to talk about the idea of windowing in the time domain before moving

on to the features of the time domain. Analyzing a signal in its original form is the

easiestmethod of analysis. Every sound signalmentioned in this thesis is a time series

signal, meaning that it changes over time. A signal’s key properties can be analyzed

by viewing it in the time domain, and this knowledge can be applied to the analysis

and prediction of similar signals. This time domain analysis is straightforward up

until the signal is short or exhibits features that remain constant across time. Audio

signals in real-time are not stationary. The windowing technique is used to examine

such nonstationary signals, and the long non-stationary signal is broken down into

smaller quasistationary signal segments for analysis. When a signal is windowed, it

is multiplied by a window function that is zero outside of the region of interest. The

resultant windowed signal is the subset of the original signal that is passed through

the window, for the rest of the time the signal is zero.

Figure 2.4: Windowing in Time Domain

Figure 2.4 explains the concept of windowing a signal using a rectangular win-

dow as a function. The window is slid over time, moving from the leftmost corner

of the plot to the rightmost corner, in order to assess the entire signal. To transform

the lengthy non-stationary signal into a short quasi-stationary signal, the size of

the window is adjusted adaptively based on the properties of the original source

signal. Figure 2.5 shows the sliding process of an adaptive rectangular window over

a signal.

The rapid form shift at the boundaries of the rectangular window is one of

its drawbacks since it might lead to distortion when the signal is being processed.

10



2.2 MFCC

Figure 2.5: Adaptive Windowing in Time Domain

The Gibbs phenomenon [Kel96] is what causes the distortion. We might employ a

window function with smooth curves, such as the Hanning or Hamming window

[SM15], to solve this issue. In themiddle of thewindow form, thesewindow functions

progressively grow from zero at the edges to one. These window functions lower

the signal’s edges and lessen the edge impact caused by the Gibbs phenomenon.

These days, a wide range of feature extraction methods are accessible depending

on the properties of the raw data in many different fields. Any pattern recognition

system must be able to identify the signals’ sidebands and harmonics in both the

frequency and time domains in the majority of fields. The Fast Fourier Transform

(FFT) power spectrum is used to record the signal’s sidebands and harmonics in the

time domain. While cepstrum, such as Gamma Tone Cepstrum Coefficient (GTCC)

and Mel Frequency Cepstrum Coefficient (MFCC), may extract sidebands and har-

monics from the signal’s spectrum version [LIZ13]

2.2 MFCC
Oneof the frequently employed features,Mel FrequencyCepstral Coefficient (MFCC)

has been used in many different areas, especially in audio signal processing, where

it is utilized for speaker identification, voice recognition, and gender identification

[LIZ13]. One way to compute the MFCC is by carrying out five sequential proce-

dures: signal framing, power spectrum computation, Mel filter bank application,

logarithm calculation for each filter bank, and DCT application. Figure 2.6 repre-

sents the computational pipeline of MFCC.

11



2 Audio feature extraction

Figure 2.6: MFCC computation pipeline

• Pre-emphasis - Very common pre-processing practices in the signal process-

ing area. Its purpose is to make up for the high frequency of the signal that

was suppressed during signal generation. Pre-emphasis is the initial stage of

the MFCC adaptation, and it may be implemented by simply setting a high-

pass filter at [1, 0.97]. The energy distribution across frequencies and the total

energy level are changed by the filtering process [ZW13].

• Signal Framing and windowing - Windowing was already introduced in

2.1.1. For stable acoustic characteristics, speech needs to be examined over a

short enough time frame. Given that the time interval between two glottal

closures is demonstrated to be around 20 ms, the speech signal’s 20–30 ms

time period is classified as a quasi-stationary segment. Vowel voices, how-

ever, are said to be recorded between 40 and 80 milliseconds [Ben+07]. As a

result, short-term spectrum measurements are usually carried out over a 20-

ms window, with a 10-ms overlap between each frame. 10-millisecond frame

overlaps enable tracking of the temporal features of the voice signal. When

speech frames overlap, the depiction of the sound would roughly center at

one of the frames.

Generally speaking, among the most well-known nominees are Hamming

and Hanning windows [Re17]. When doing a DFT on the signal, these win-

dows can reduce edge effect, smooth edges, and increase harmonics. Figure

2.7 illustrates the rectangular Hamming and Hanning windows in both time

and frequency domains.

• Power Spectrum - The distribution of the power of the frequency compo-

12



2.2 MFCC

Figure 2.7: Rectangular Hamming and Hanning window in both time and frequency

domain [Tim20]

nents that make up the signal is known as a power spectrum [FKP94]. Tradi-

tionally, the power spectrum is calculated using the Discrete Fourier Trans-

form (DFT). The power spectrum of each of the obtained frames must be

determined based on the below equation 2.1

𝑋 (𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛)𝑒−
2𝜋 𝑗𝑛𝐾

𝑁 𝑘 = 1, 2...𝑁 − 1 (2.1)

where x(n) is audio signal that is being processed and N is the length of the

signal.

• Mel-frequency Filter Bank - The Mel band-pass filter is a bank of filters,

which is constructed based on pitch perception. TheMel filterwas first created

for speech analysis, and it aims to extract non-linear representations of the

voice signal, much like how human ears perceive speech. The conventional

Mel filter-bank is constructed of 40 triangular filters [YHN11]. The transfer

function of each of the n-th filter can be computed via equation 2.2 [AA22].

𝐻𝑛(𝑘) =



0 𝑘 < 𝑓 (𝑛 − 1)
𝑘−𝑓 (𝑛−1)

𝑓 (𝑛)−𝑓 (𝑛−1) 𝑓 (𝑛 − 1) ≤ 𝑘 < 𝑓 (𝑛)
1 𝑘 = 𝑓 (𝑛)

𝑓 (𝑛+1)−𝑘
𝑓 (𝑛+1)−𝑓 (𝑛) 𝑓 (𝑛) < 𝑘 ≤ 𝑓 (𝑛 + 1)

0 𝑘 > 𝑓 (𝑛 + 1)

(2.2)

where f(n) is the center frequency of the triangular filter. The Mel scale to

the response frequency and vice versa is computed by equations 2.3 and 2.4

13



2 Audio feature extraction

[Mol+01].

𝑚 = 2595𝑙𝑜𝑔10

(
1 + 𝑓

700

)
(2.3)

𝑓 = 700

(
10

𝑚

2595

− 1

)
(2.4)

• Discrete Cosine Transform - Discrete Cosine Transform (DCT) expresses

a finite sequence of data points regarding a summation of cosine functions

pulsating at various frequencies. In 1972, Nasir Ahmed unveiled the DCT. To

choose the most accelerative coefficients or to isolate the relationship in the

log spectral magnitudes from the filter bank, the DCT is applied to the Mel

filter bank in the MFCC process [Str99]. The following formula 2.5 is used to

calculate the DCT.

𝑋 (𝑘) =
𝑁−1∑︁
𝑛=0

𝑥𝑛 ∗ 𝑐𝑜𝑠(
2𝜋 𝑗𝑛𝑘

𝑁
) 𝑘 = 1, 2...𝑁 − 1 (2.5)

where xn is the discrete signal and N is the length of the signal.

2.3 Chromagram
The chromagram, also known as the Harmonic Pitch Class Profile, represents the

distribution of energy across different pitches or pitch classes [LT07]. First, we estab-

lish the chroma spectrum 𝑋 (𝑛) as ametric for quantifying the intensity of a signal in

relation to a specific chroma value: c. According to Shepard’s pitch perception helix,

chroma 𝑐 can be defined as the fractional component of the logarithm of frequency,

using a base-2 logarithm as can be seen in formula 2.6.

𝑐 = 𝑙𝑜𝑔2𝑓 − ⌊𝑙𝑜𝑔2𝑓 ⌋ (2.6)

In the formula 2.6 ⌊⌋ symbolizes the greatest integer function, which is also known

as a floor function and rounds-off the real number to the integer less than the num-

ber. For example, 1.15 would be 1, and -3.1 would be -4. The chroma spectrum is

similar to the conventional Fourier power spectrum. If we perform frame segmen-

tation prior to it, we can generate a time-frequency distribution called 𝑋 (𝑡, 𝑓 ) and
establish a "timechroma" distribution called X (t, c). The distribution created from

these previous two distributions is called the "chromagram". It is a modified version

of a conventional time-frequency distribution, achieved by applying an aggregation

function F as can be seen in formula 2.7.

𝑋 (𝑡, 𝑐) = 𝐹 (𝑋 (𝑡, 𝑓 )) (2.7)
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2.4 Zero-Crossing rate

Where 𝑓 = 2
𝑐+ℎ

which can be obtained from formula 2.6 and the function used is

the summation function [Yu+10]. The elements of the chroma feature vector of the

𝑡 frame 𝑣(𝑡, 𝑘) can be calculated with the formula 2.8:

𝑣(𝑡, 𝑘) =
∑︁
𝑛∈𝑆𝑘

𝑋𝑡 (𝑛)
𝑁𝑘

𝑘 ∈ (0, 1...11) (2.8)

Where 𝑋𝑡 (𝑛) is the logarithmic magnitude of the Discrete Fourier Transform (DCT)

for the 𝑡 frame, 𝑁𝑘 is the number of elements in 𝑆𝑘 and 𝑆𝑘 specifies a subset of the

discrete frequency range for every pitch class. We take the arithmetic mean of all

log magnitude DFT bins within a given set 𝑆𝑘. Then, we normalize each feature

vector by subtracting the average value of the 12 features in that vector. The 12 sets

𝑆𝑘 are formed by associating each Discrete Fourier Transform (DFT) bin with one

of the 12 pitch classes. We determine the frequency associated with a DFT bin, and

subsequently compute the chroma value using formula 2.6. The bin is linked to

the pitch class that has the closest chroma value. Simply put, we need to reallocate

chroma values in such a way that the pitch class C is positioned at the chroma value

of 0 and the pitch class B is positioned at the chroma value of 1. The remaining pitch

classes should then be positioned at chroma values of 𝑘/12. Ultimately, the range of

the spectrum is limited. The lower limit is set at 20 Hz, while the highest limit is set

at 2000 Hz [BW05].

2.4 Zero-Crossing rate

Zero-Crossing rate (ZCR) is defined as the number of times a signal crosses the zero

line in the time domain, inside a specific region of the signal. This rate is calculated

by dividing the number of zero-crossings by the number of samples in that region.

The ZCR method was designed with a focus on effectively managing two types of

additional sounds. The signal we are working with has a very short duration, often

less than 100 milliseconds. As a result, a low-frequency note, performed by an in-

strument that overlaps with the signal, such as a bass, has a disruptive effect on the

overall volume. The second form of noise we aim to address is related to the high-

frequency components of other instruments. These components have amplitudes

that are lower than the amplitude of the percussive sound around the onset. Exam-

ples of such components include voices and cymbals. The presence of these two

attributes in signals is regarded as interference when calculating the Zero Crossing

Rate (ZCR) of percussive sounds [GPD02].
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2 Audio feature extraction

2.5 Additional feature extraction methods
There is a large amount of feature extraction methods that are viable for audio

feature extraction. Other methods that are used in the implementation part of this

thesis are:

• Spectral centroid - The spectral centroid (SC) is the weighted average fre-

quency of a specific subband. The weights used in this formula 2.9 are the

normalized energy of each frequency component within that subband. By

capturing the center of gravity of each subband, this measure is able to iden-

tify the rough position of formants, which are prominent peaks in a subband.

Nevertheless, the subband’s center of gravity is influenced by the harmonic

structure and pitch frequencies generated by the vocal source. Therefore, al-

terations in pitch and harmonic structure have an impact on the SC trait

[HK07].

𝑆𝐶𝑖,𝑏 =

∑𝑢𝑏
𝑓=𝑙𝑏

𝑓 |𝑆𝑖 [𝑓 ] |2∑𝑢𝑏
𝑓=𝑙𝑏

|𝑆𝑖 [𝑓 ] |2
(2.9)

• Mel spectrogram - Mel spectrogram is a transformation that provides a

detailed representation of the frequency distribution of a signal as it changes

over time. TheMel spectrogram is a visual representation of the audio data, it

serves as the input for machine learningmodels such as Convolutional Neural

Networks (CNNs) [ZLT19].

• Spectral flatness - Spectral Flatness shows howmuch the frequency is evenly

distributed in a power spectrum. It is determined by calculating the ratio

between the geometric mean and the arithmetic mean of a subband [ASS16].

• SpectralContrast - Also referred to asOctave-based Spectral Contrast (OSC).
OSC is defined as the difference between peaks, which generally corresponds

to harmonic content in music, and valleys, where non-harmonic or noise

components are more dominant, measured in subbands by octave-scale fil-

ters and using neighborhood criteria in its computation [Jia+02]. The spectral

contrast features of the entire music piece are determined by calculating the

mean and standard deviation of the spectral contrast and spectral peak values

for all frames.
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extraction 3
Text feature extraction is a procedure that captures relevant information from a

text message. It serves as the foundation for many text-processing tasks. It is the

process of selecting a group of features using many effective methods to decrease

the size of the feature space. During the process of feature extraction, any features

that are uncorrelated or unnecessary will be removed. Feature extraction is a data

preprocessing technique that can enhance the accuracy and reduce the time required

for learning algorithms [Lia+17]. Similarly to the audio feature extraction, we are

trying to extract the most important information from our raw data in a form that

can be used in our learning algorithm. Feature extraction comes hand in hand with

data pre-processing.

3.1 Text Pre-Processing
Most text and document data sets often include extraneous words, such as stop-

words, misspellings, and slang terms. Noise and superfluous characteristics can sig-

nificantly impair the performance of various algorithms, particularly those related

to statistical and probabilistic learning. This section presents techniques for clean-

ing text datasets, thereby eliminating inherent noise and enabling the extraction of

meaningful features.

• Stop words - Text and document categorization sometimes involves words

that lack significant relevance for use in classification methods. Words that

would fall into this category are for example "a", "the", "an", and many others.

The most common technique to deal with these kinds of words would be to

simply remove them from the text.

• Capitalization - Sentences can be formed using text and document data

points with varying capitalization. Given that documents are comprised of

numerous phrases, the presence of varied capitalization might pose signif-

icant challenges when categorizing extensive texts. A widely used method
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3 Text feature extraction

for addressing irregular capitalization is to convert all letters to lowercase.

This method maps all words in the text to identical feature space. However, it

presents a notable challenge in interpreting certain terms, such as the distinc-

tion between "US" (United States of America) and "us" (pronoun). Utilizing
slang and abbreviation converters can assist in accommodating these devia-

tions [DZ11].

• Slang and Abbreviations - Slang and abbreviations are additional types

of text abnormalities that are addressed during the pre-processing stage. An

abbreviation is a condensed version of a word or phrase that mostly consists

of the initial letters of the phrases, such as UN, which is short for United

Nations. Slang refers to a certain category of vocabulary that is used in casual

conversations or writtenmessages and has alternativemeanings. For example,

the phrase "lost theirmarbles" is slang and it signifies that someone has become

mentally unstable or irrational. An effective approach to address these terms

is to transform them into formal language [DKB16].

• Spelling Correction - Spelling correction is a voluntary pre-processingmea-

sure. Typographical errors are frequently found in texts and documents, par-

ticularly in social media text data sets, such as the dataset created from the

Twitter platform. Researchers have access to several strategies and methods,

such as hashing-based and context-sensitive spelling correction techniques, as

well as spelling correction utilizing Trie and Damerau–Levenshtein distance

bigram [DHD17] [MRN18].

• Stemming - In the field of natural language processing (NLP), a single word

may occur in several forms, such as singular and plural noun forms, while

maintaining an identical semantic meaning. Stemming is a technique used to

merge various variants of a word into a unified feature space. Text stemming

modifies words to obtain variant word forms using different linguistic pro-

cesses such as affixation (addition of affixes). For instance, the base form of

the word "studying" is "study" [SG16] [Too07].

• Lemmatization - It is a natural language processing technique that modifies

the suffix of a word by either replacing it with a new suffix or removing it

entirely, in order to obtain the fundamental form of the word, known as the

lemma [PLM04].

• Tokenization - Tokenization is a preprocessing technique that divides a se-

quence of text into individual words, phrases, symbols, or other significant

units known as tokens. The primary objective of this stage is to examine the

words within a sentence. Both text categorization and text mining necessitate
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3.1 Text Pre-Processing

a parser that handles the tokenization of the documents, for example, the sen-

tence "Today is Monday" would be separated into tokens: {"Today","is","Monday"}.

Pre-processed text then needs to be converted into a numerical representation.

There are several techniques that can accomplish this task, but they differ in their ap-

propriate usage. We can for example represent words with their syntactic meaning

using Bag of Wordsmodel.

• Bag of Words - The Bag of Words model (BOW) is a concise and simplified

depiction of a text document that focuses on specific aspects of the text, such

as word frequency. In the BoW model, a body of text, such as a document

or a sentence, is conceptualized as a collection of individual words without

considering their order. The BoW procedure involves the creation of a list of

words and their occurrences in the processed data.

However, the bag-of-words model does not respect the semantics of the word. For

instance, the words "airplane", "aeroplane", "plane", and "aircraft" are frequently em-

ployed interchangeably. Nevertheless, the vectors associated with these words are

perpendicular in the bag-of-words model. This issue poses a significant challenge to

comprehending sentences within the model. Another issue with the bag-of-words

approach is that it does not consider the order of words in a phrase.

Another approach that is frequently deployed is the TF-IDF measure

• TF-IDF - The Term frequency-inverse document frequency (TF-IDF) approach
is commonly used to assign a weight to each word in our data based on

the uniqueness of the said word among other words in the data. Assuming

that a document 𝑑 is represented by a set of words (𝑡1, 𝑡2, ...𝑡𝑛) where each
word 𝑡𝑖 has its assigned weight calculated by the statistics TF(𝑤𝑖 , 𝑑𝑖) and
IDF(𝑤𝑖), document 𝑑 can be therefore represented by a n-dimensional vector

𝑑 = (𝑤1, 𝑤2, ...𝑤𝑛) where n is the total number of various words in the doc-

ument. Weight is a metric that signifies the statistical significance of related

words. Theweight of a word 𝑡𝑖, denoted as𝑤𝑖, can be calculated bymultiplying

the term frequency (TF) of the word in a document d with the inverse docu-
ment frequency (IDF) of the word. The term frequency (TF) value is directly

proportional to the frequency of a word in a document, while the inverse

document frequency (IDF) value is inversely proportional to its frequency in

the entire document corpus [YLY05].

TF-IDF usually performs better in machine learning models. But similarly to the

BOWmodel, TF-IDF is alsomissing the semantic value of the words and is therefore

not suited for a lot of natural language processing tasks.
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Since the semantics of our dataset is quite important, we use a feature learning

technique calledWord embeddings. Word embedding is a method of learning features

where each word or phrase in the vocabulary is associated with a vector of real num-

bers in N dimensions. Several word embedding techniques have been suggested to

convert individual words into interpretable input for machine learning algorithms.

The most commonly used deep learning algorithms for word embeddings include

Word2Vec, GloVe, and FastText.

3.2 Word2Vec
Word2vec is a method used in natural language processing (NLP) to acquire vector

representations of words. These vectors encode semantic information by analyzing

the context in which the word appears. The word2vec method produces these rep-

resentations by analyzing text in a vast corpus. Once the model is trained, it has the

ability to identify words that have the same meaning or propose alternative words

for an incomplete sentence. Tomáš Mikolov and his colleagues at Google developed

Word2vec, which was published in 2013 [Mik+13].

Word2vec encodes a word as a multi-dimensional vector of numerical values

that capture the connections between words. Specifically, words that occur in com-

parable contexts are assigned vectors that are close to each other in terms of cosine

similarity. This demonstrates the degree of semantic similarity between words. For

instance, the vectors representing "cat" and "dog" are close to each other, as are the

vectors for "furthermore" and "moreover," and "Paris" and "France."

Every word in the corpus is initially encoded as a high-dimensional vector with

randomly assigned values. These vectors act as the first reference for the training

process. The size of these vectors normally ranges from 100 to 300, and occasion-

ally reaches up to a thousand, depending on the size of the corpus and the specific

requirements of the work at hand. The process of randomly initializing the model’s

parameters serves the purpose of breaking symmetry and ensuring that the model

acquires meaningful information throughout the training phase. During the train-

ing process, these vectors are modified according to the objective function of the

Word2Vec model. This objective function aims to place vectors of words that appear

in comparable situations closer together in the vector space.

After obtaining the first word vectors, the subsequent step is to optimize these

vectors in order to more effectively represent the linguistic contexts of words. Op-

timization algorithms, such as gradient descent and its variants, are employed to

accomplish this task. The primary concept is to progressively modify the word vec-

tors in order to enhance the alignment between the model’s predictions and the

actual context words. The alignment is quantified by the objective function, and

the modification is performed using a technique called backpropagation. Backprop-
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agation is an algorithm employed in neural networks to compute the gradient of

the loss function in relation to the network’s weights. Within the framework of

Word2Vec, backpropagation modifies the word vectors by taking into account the

discrepancies in forecasting context words. With each iteration, the model improves

its accuracy in making predictions, resulting in optimized word vectors.

The selection of window size is another crucial factor in training Word2Vec

embeddings. The window size refers to a movable window that scans the text and

identifies the words that are examined in relation to a specific target word. Con-

text words are defined as the words that are within the window, whereas words

beyond the window are disregarded. The selection of window size directly affects

the quality of the acquiredword vectors. A reducedwindow size facilitates the acqui-

sition of knowledge regarding the word’s syntactic functions, whereas an increased

window size enhances the model’s comprehension of the wider semantic context.

Nevertheless, there is a compromise to take into account. The computational cost is

increased as the window size is higher, as it requires processing more context words

for each target word. Hence, the selection of window size must be conducted with

caution, considering both the computational resources and the specific demands of

the activity.

Another important part of the learning that improves overall performance is the

Negative Sampling. Negative sampling solves the problem of computing efficiency

by updating only a fraction of the model’s weights at each step, rather than updating

all of them. This is accomplished by selecting a limited number of "negative" words

(words that are not part of the context) to update for every target word. Conversely,

whenwe choose sample frequent words, it enhances the quality of word vectors. The

fundamental concept is tomitigate the influence of high-frequencywords during the

training process, as they often convey less significant information in comparison to

infrequent words. By selectively rejecting certain instances of commonly occurring

words, the model is compelled to prioritize the less common terms, resulting in

word vectors that are more evenly distributed and meaningful.

TheWord2vecmodel can be implemented through either the Continuous Bag of

Words model (CBOW) or the Continuous Skip Gram model. Both of these models

can create dense word vectors while reducing the dimensionality of the input data.

3.2.1 Continuous Bag of Words Model
Input to the CBOWmodel is a context of words surrounding the word we want to

predict and output is a single word. Depending on the context window size, we take

multiple surrounding words and feed them as input into the hidden layer of this

model. Matrice W is the weight matrices between the input layer and the hidden

layer and matriceW’ is the weight matrices between the hidden layer and output.
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3 Text feature extraction

CBOWmodel architecture is depicted in Figure 3.1.

Figure 3.1: CBOW architecture

3.2.2 Skip Grammodel
Similar to the CBOW model, the Skip Gram model has one hidden layer and two

weight matricesW andW’. A big difference between these models is the input and

output approach. Skip Grammodel takes oneword as input and predicts the context

of the given word. Context size that has to be predicted can vary, but the principle

remains the same. Simple Skip Gram model architecture can be seen in Figure 3.2.
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Figure 3.2: Simple Skip Gram model architecture

3.3 Contextual word vector representation

While word2vec has satisfactory accuracy in pre-training, its CBOWand Skip-Gram

models focus on extracting contextual information, but they are limited and do not

consider generic information. In 2014, Pennington [PSM14] introduced the GloVe
model, which utilized the co-occurrence matrix to simultaneously incorporate both

local and global information. Despite enhancements, both word2vec and GloVe

produce a static encoding for trained word vectors [PSM14]. Following the com-

pletion of training, the word vector remains constant and does not undergo any

changes. However, the meaning of a word can vary in different settings. In 2018,

Devlin [Dev+19] introduced a BERT pre-training model that utilizes a multilayer

two-way Transformer encoder. The model utilizes the contextual information from

both the left and right sides of all layers to extract a comprehensive two-way rep-

resentation of the text [Dev+18]. The pre-training model comprehensively extracts

words, sentences, and situations, and acquires dynamically encoded word vectors.

That is to say, the meaning of a term can vary depending on the context in which

it is used. Hence, this study presents a text sentiment categorization model that

relies on BERT. The network model initially acquires word vectors that encompass

contextual semantic information by utilizing the BERT pre-training model. Sub-

sequently, it employs the bi-directional long and short-term memory network to

extract context-related features for the purpose of deep learning. The attention tech-

nique is implemented to allocate weights to the retrieved information, emphasize

the crucial details, and determine the sentiment polarity of the text.
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3.3.1 Attention mechanism

Attention is a method that enables the model to focus on and assimilate significant

information. In the conventional sequence-to-sequence model, a text sequence is of-

ten encoded using mechanisms like Convolutional Neural Network (CNN) or Long

Short-Term Memory Network (LSTM). This encoding process involves reducing

the dimensionality of the sequence and transforming it into a fixed-length vector.

The resulting vector is then fed as input to the Fully connected layer. Nevertheless,

this gives rise to an issue. Traditional codingmethods are unable to accurately repre-

sent the level of focus on various morphemes in a sequence of sentences. Within the

realm of natural language, the components of a sentence possess distinct meanings

and varying levels of significance. The incorporation of the Attention mechanism

effectively resolves this issue. The conventional Seq2Seq model has an encoder layer

and a decoder layer. During the encoder phase, each node’s input consists of the

concealed state of the preceding node combined with the next word. Ultimately, the

encoder will generate a context and transmit it to the decoder layer. Within the at-

tention mechanism, the decoder layer will receive the hidden state from all encoder

levels and determine which hidden state is more closely associated with the text.

This will incorporate a weight parameter into the hidden state and subsequently

apply SoftMax computations to each weight value. As the value of the hidden state

increases, the correlation also increases, and conversely, as the value of the hidden

state decreases, the correlation decreases. The popular weight calculation functions

are multilayer perceptron, Bilinear, dot product, and scaled-dot product.

3.3.2 Transformer

The transformer model shares the same encoder-decoder architecture as the At-

tention model. Nevertheless, the architecture in the Transformer model is more

intricate than that in Attention. The article describes the encoder layer and decoder

layer as consisting of six stacks. Each Encoder in the set of Encoders has the same

structure, but they do not have shared weights. Encoders consist of two layers: a self-

attention layer and a feedforward neural network. By utilizing the self-attention

layer, the encoder examines the meaning of other words in the input sequence

and the surrounding context while encoding words. Following the entry of each

word into the Self-Attention layer, there will be a corresponding output. The Self-

Attention layer relies on the input and output being interdependent. Each word in

every location is initially processed by a self-attention layer, and then each word is

individually processed by a feedforward neural network that has the same structure

[Vas+17].
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3.3.3 BERT
TheBERTpre-trainingmodel, developed in 2018, is a large-scalemulti-task language

processing model that utilizes the attention mechanism algorithm [Dev+18]. The uti-

lization of Word2Vec for word vector representation is fundamentally flawed. The

words it acquires are inadequate to convey the shift in context, nor can they resolve

the issue of terms with multiple meanings. BERT is a neural network architecture

that consists of several bidirectional Transformer encoders. BERT is able to capture

both the preceding and following contextual information simultaneously. BERT is

a type of learning model that uses a multilayer Transformer as its primary archi-

tecture to extract linguistic information [Xu+19]. It operates in a semi-supervised

manner.

The BERT model exhibits robust compatibility, enabling its adaptation and uti-

lization across several domains, such as sentiment analysis. Akbar Karimi and his

team introduced a BERT Adversarial Training approach to simplify the sentiment

analysis work, which typically involves labeling words [KRP21]. They utilized BAT

(BERT Adversarial Training) to implement adversarial training for the two primary

objectives of sentiment analysis: Aspect Extraction and Aspect Sentiment Classifi-

cation, resulting in high accuracy.

The BERT model necessitates the utilization of token embedding, segment em-

bedding, and position embedding. Token embedding is the process of embedding

word vectors. Segment embedding refers to the specific application scenario of the

input sentence. Position embedding involves creating a position code based on the

position information of each added word. These enhance the text’s integrity by

providing the relative position of words and application situations for the model.

BERT uses MLM (Masked LanguageModel) to conceal certain parts of the language

model, enhancing its efficiency and brevity. A mask is employed to conceal some

variables throughout the calculation process, preventing them from being utilized

for parameter adjustments. Figure 3.3 shows BERTmodel architecture. BERT is bidi-

rectional, meaning it processes text in both directions simultaneously, as opposed

to for example OpenAIs GPT model.
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Figure 3.3: BERT model architecture
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Networks 4
Artificial Neural Networks (ANNs) are essentially massively parallel computational

models designed to mimic the way the human brain works. A vast number of basic

processors connected via weighted connections make up an ANN. The processing

nodes could be referred to as "neurons" in an analogy. Each node output depends

only on the information that is locally available at the node, whether it comes from

internal storage or weighted connections. Every unit gets input from numerous

other nodes and sends its output to further nodes. A single processing element

is not very strong on its own, it produces a scalar output, which is a simple non-

linear function of its inputs, with a single numerical value. The power of the system

emerges from the combination of many units in an appropriate way. The ANN

does not really solve the problem in a strictly mathematical sense. Instead, it shows

information processing properties. ANNs are extensively utilized in image process-

ing, pattern identification and classification, complex nonlinear function mapping,

and other fields. One popular kind of neural network is a feed-forward network. A

feed-forward network consists of an input layer that receives the problem’s inputs,

hidden layers that determine and reflect the relationship between the inputs and out-

puts using synaptic weights, and an output layer that outputs the problem’s outputs

[Kur04]. A feed-forward neural network is modeled with three main elements:

1. A set of synapses - Each synapsis is characterized by its synaptic weight.

2. Linear combiner - Used for summing the input weights of a signal.

3. Activation function - Limits the amplitude of the output of certain neurons to

some finite number. By utilizing a bias term, the activation function’s input

can be enhanced.

A typical artificial neuron can be seen in Figure 4.1.

The input values are determined by the synaptic connections leading into the

neuron (x1, x2 ... xn) and their according weights. Another input into the neuron is

the bias term. The following formula 4.1 is used to calculate the output value of this
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Figure 4.1: Typical artificial neuron

neuron.

𝑂 = 𝑓 (𝑋) = 𝑓 (
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) (4.1)

Where w is the weight factor of each synaptic connection leading into the neuron,

x refers to the actual value given by the connection from the previous layer, b is

the bias term corresponding to this neuron and f is the activation function of this

neuron. There are several viable options for the activation function for example,

Sigmoid, RELU, and so on.
Three different kinds of neuron layers make up the fundamental architecture:

input, hidden, and output layers. The signal flows from input to output units in

feed-forward networks, strictly in a feed-forward direction. There are no feedback

links, but the data processing can span several (layers of) units. There are feedback

links in recurrent networks. In contrast to feed-forward networks, the network’s

dynamic characteristics are significant. A typical Multilayered feed-forward neural

network can be seen in Figure 4.2.

Values from the input layer are fed into a hidden layer. Each input is forwarded

to every neuron in the hidden layer. Depending on the network’s architecture, there

can be more than one hidden layer. Outputs from the network are then interpreted

depending on the application.

Activation values of the units can relax in some instances, leading to the network

evolving toward a stable state where these activations remain constant. In other ap-

plications, the network’s output is determined by the dynamic behavior caused by

large variations in the activation values of the output neurons [Bis95]. A neural net-
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Figure 4.2: Multilayered ANN

work must be set up so that a given collection of inputs can be applied to generate

a desired set of outputs. There are several ways to determine the links’ strengths.

One approach is to use a priori information to explicitly set the weights. An alterna-

tive method involves training the neural network by providing it with instructional

patterns and allowing it to adjust its weights based on a specific learning algorithm.

The learning scenarios in neural networks can be categorized into three distinct

types. The three types of learning are supervised learning, unsupervised learning,

and reinforcement learning. In supervised learning, an input vector is provided at

the inputs along with a corresponding set of intended replies, one for each node, at

the output layer. During the forward pass, the disparities between the desired and

actual response for each node in the output layer are identified. These are subse-

quently utilized to calculate alterations in the weight of the network based on the

current learning rule. The word supervised is derived from the fact that the intended

signals on each individual output node are given by an external teacher. The most

widely recognized instances of this methodology are found in the backpropagation

algorithm, the delta rule, and the perceptron rule. In the field of unsupervised learn-

ing, often known as self-organization, a unit is trained to recognize and respond to

groups of patterns in the incoming data. In this paradigm, the system is expected to

identify statistically significant characteristics of the input population. In contrast

to the supervised learning approach, the system does not have a predefined set of

categories for classifying patterns. Instead, it must create its own representation

of the incoming stimuli. Reinforcement learning involves acquiring knowledge on

how to effectively associate different events with appropriate behaviors in order to

optimize a numerical reward signal. In this sort of machine learning, the learner is

not provided with instructions on which actions to do. Instead, the learner must
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determine which activities result in the highest reward through trial and error. In

complex and stimulating scenarios, actions might have an impact not only on the

immediate outcome, but also on the subsequent situation and, consequently, on

all future rewards. The differentiating features of reinforcement learning include

trial-and-error search and delayed reward.

4.1 Long Short-Term Memory Network
The LSTMmodel is a robust recurrent neural system specifically created to address

the issues of exploding or vanishing gradients that often occur when learning long-

term dependencies, evenwhen the time lags are extremely long. In general, this issue

can be avoided by implementing a constant error carousel (CEC) that keeps the error

signal contained within each unit’s cell. In reality, these cells are actually recurrent

networks that have a unique architecture. This architecture involves extending the

CEC with extra features, including the input gate and output gate, which together

comprise the memory cell. The self-recurrent connections signify the presence of

feedback with a delay of one-time step [HS97] [HS96]. A basic LSTM unit consists

of a cell, an input gate, an output gate, and a forget gate. The forget gate was not

originally included in the LSTM network, but it was suggested by Gers as a means

for the network to reset its state [GSC00]. The cell retains values for indefinite

time periods, and the three gates control the transmission of information within

the cell. In the next section, the term LSTM will be used to refer to the basic form,

which is the most widely used LSTM architecture [Gre+17]. However, this does not

necessarily mean that it is also the preferable option under all circumstances.

Essentially, the LSTM architecture comprises a collection of interconnected sub-

networks called memory blocks. The purpose of the memory block is to preserve

its state over time and control the flow of information through nonlinear gating

units. Figure 4.3 illustrates the structure of a basic LSTM block, which includes

gates, the input signal 𝑥𝑡 , the hidden state ℎ𝑡 , activation functions, and peephole

connections [GS00]. The output of the block (new hidden state) is connected in a

recurring manner to both the block input and all of the gates.

To provide a clearer understanding of the functioning of the LSTMmodel, let

us consider a network consisting of N processing blocks and M inputs. The process

of transmitting information in this recurrent neural system is outlined below.

1. Block input - This step focuses on updating the block input component,

which merges the current input 𝑥𝑡 , with the output of the LSTM unit ℎ𝑡−1

from the previous iteration. This can be calculated with equation 4.2.

𝑧𝑡 = 𝑔(𝑊𝑧𝑥
𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧) (4.2)
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Figure 4.3: An architecture of LSTM block

Where𝑊𝑧 and 𝑅𝑧 are weights associated with 𝑥
𝑡
and ℎ𝑡−1, respectively, while

𝑏𝑧 is the bias weight vector.

2. Input gate - During this phase, we modify the input gate, which merges the

current input 𝑥𝑡 , the output of the LSTMunit ℎ𝑡−1, and the cell value 𝑐𝑡−1 from

the previous iteration. This can be calculated with the following equation 4.3.

𝑖𝑡 = 𝜎 (𝑊𝑖𝑥
𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑝𝑖 ⊗ 𝑐𝑡−1 + 𝑏𝑖) (4.3)

Where𝑊𝑖, 𝑅𝑖 and 𝑝𝑖 are weights associated with 𝑥
𝑡
, ℎ𝑡−1 and 𝑐𝑡−1, respectively.

𝑏𝑖 represents the bias vector and lastly the ⊗ denotes the point-wise multi-

plication of the two vectors. During the preceding stages, the LSTM layer

identifies the specific information that has to be preserved in the network’s

cell states, denoted as 𝑐𝑡 . This involves the identification of the candidate val-

ues 𝑧𝑡 that may potentially be incorporated into the cell states, as well as the

determination of the activation values 𝑖𝑡 for the input gates.

3. Forget gate - During this stage, the LSTM unit identifies the specific infor-

mation that has to be eliminated from its prior cell states 𝑐𝑡−1. Hence, the

activation values 𝑓 𝑡 of the forget gates at time step t are determined by consid-

ering the current input 𝑥𝑡 , the outputs ℎ𝑡−1, the state 𝑐𝑡−1 of the memory cells

at the previous time step (t - 1), the peephole connections, and the bias terms
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𝑏𝑓 of the forget gates. This can be calculated with the following equation 4.4.

𝑓 𝑡 = 𝜎 (𝑊𝑓 𝑥
𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑝𝑓 ⊗ 𝑐𝑡−1 + 𝑏𝑓 ) (4.4)

Where𝑊𝑓 , 𝑅𝑓 and 𝑝𝑓 are the weights associated with 𝑥
𝑡
, ℎ𝑡−1 and 𝑐𝑡−1, respec-

tively, while 𝑏𝑓 denotes for the bias weight vector.

4. Cell - This step calculates the cell value by combining the block input 𝑧𝑡 , the

input gate 𝑖𝑡 , and the forget gate 𝑓 𝑡 values with the previous cell value. This

can be calculated with equation 4.5.

𝑐𝑡 = 𝑧𝑡 ⊗ 𝑖𝑡 + 𝑐𝑡−1 ⊗ 𝑓 𝑡 (4.5)

5. Output gate - This phase computes the output gate by combining the current

input 𝑥𝑡 , the output of the previous LSTM unit ℎ𝑡−1, and the cell value 𝑐𝑡−1

from the last iteration. This can be calculated with the following equation 4.6.

𝑜𝑡 = 𝜎 (𝑊𝑜𝑥
𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑝𝑜 ⊗ 𝑐𝑡 + 𝑏𝑜) (4.6)

Where𝑊𝑜, 𝑅𝑜 and 𝑝𝑜 are the weights associated with 𝑥
𝑡
, ℎ𝑡−1 and 𝑐𝑡−1, respec-

tively, while 𝑏𝑜 denotes for the bias weight vector.

6. Block output - Lastly, we can calculate the output from this LSTM block,

which combines the current cell state 𝑐𝑡 with output gate value through fol-

lowing equation 4.7.

𝑦𝑡 = 𝑔(𝑐𝑡) ⊗ 𝑜𝑡 (4.7)

In the previous stages, 𝜎represents the point-wise non-linear activation func-

tion. The logistic sigmoid function 𝜎 (𝑥) = 1

1+𝑒1−𝑥 is commonly employed as a gate

activation function. On the other hand, the hyperbolic tangent function tanh is fre-
quently utilized as the activation function for both the input and output of a block.

Despite the already impressive performance of vanilla LSTM, multiple studies have

explored ways to enhance its capabilities. For instance, Su and Kuo devised the

Extended LSTMmodel, which enhanced the accuracy of predictions in several ap-

plication domains by augmenting the memory capacity [SK19]. This demonstrates

that there is still room for theoretical enhancements to be made to an architecture

that is already performing at a high level. In the study conducted by Bayer, efforts

to enhance the model were made. The authors sought an architectural alternative

to LSTM in order to enhance the capabilities of sequence learning. They achieved

the development of memory cell structures that can learn context-sensitive formal

languages by gradient descent, exhibiting similar performance to LSTM models

[Bay+09]. The researchers in reference [Bel+18] expanded upon recurrent networks
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composed of spiking neurons by creating Long short-term memory Spiking Neu-

ral Networks (LSNN) that incorporate adaptive neurons. In experiments when the

LSNN sizewas similar to that of LSTM, it was demonstrated that the performance of

LSNN is highly comparable to that of LSTM. This serves as another demonstration

of the precision and consistency of LSTM.

4.2 Convolutional Neural Networks
CNNs typically operate under the assumption that the input will consist predomi-

nantly of the images. This directs the design of the architecture to be arranged in a

manner that is most suitable for handling the particular kind of data. A significant

distinction lies in the composition of neurons inside the layers of the CNN, which

are organized into three dimensions: the spatial dimensions of the input (height and

width) and the depth. The term "depth" in this context does not pertain to the overall

number of layers in the ANN, but rather to the third dimension of an activation

volume. In contrast to typical ANNS, the neurons in each layer of this network only

establish connections with a limited area of the preceding layer.

CNNs consist of three types of layers. The three types of layers used in this

context are convolutional layers, pooling layers, and fully-connected layers. Once

these layers are arranged in a specific order, a Convolutional Neural Network (CNN)

architecture is created. Figure 4.4 depicts a simple Convolutional Neural Network

(CNN) structure designed for the purpose of classifying MNIST data.

Figure 4.4: A CNN architecture [AM17]

The main functionality of CNN can be broken down into four key layers.

• Input layer - Same as in typical ANN, this layer hold the real values that are

passed down into the architecture. In the MNIST example, it would be the

actual pixel values of an input image.
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• Convolutional layer - The output of neurons is determined by the scalar

product between their weights and the local regions of the input volume to

which they are connected.

• Pooling layer - Downsampling is applied to the input, which reduces the

number of parameters in the activation by reducing its spatial dimensionality.

• Fully-connected layer - Performs equivalent tasks as those found in con-

ventional ANNs and aims to generate class scores based on the activations,

which are then utilized for classification.

CNNs utilize a straightforward methodology of transformation to process the orig-

inal input layer by layer. This is achieved through the application of convolutional

and downsampling techniques, resulting in the generation of class scores for the

purposes of classification and regression.

4.2.1 Convolutional layer
The convolutional layer is essential for the functioning ofCNNs, as its name suggests.

The parameters of the layers revolve around the utilization of trainable kernels.

Typically, these kernels have a tiny size in terms of spatial dimensions, but they

extend across the entire depth of the input. When the data reaches a convolutional

layer, the layer applies convolution with each filter across the spatial dimension of

the input, resulting in a 2D activation map. The convolution operation can be seen

in Figure 4.5. As we iterate through the input, the scalar product is computed for

each value in the kernel. The network will acquire knowledge about kernels that

activate when they detect a certain feature at a specified spatial location in the input.

These are frequently referred to as activations.

Figure 4.5: A visual representation of convolutional layer

Each kernel will generate an activation map, which will be arranged in a stack

along the depth dimension to create the complete output volume of the convolu-

tional layer. As previously said, training ANNs on inputs like photos leads to models
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that are excessively large to be trained efficiently. The reason for this is the com-

pletely linked nature of standard ANN neurons. To address this issue, each neuron

in a convolutional layer is only connected to a limited part of the input volume. The

dimensionality of this region is sometimes denoted as the receptive field size of the

neuron. The level of connection throughout the depth is consistently proportional

to the depth of the input.

For instance, if the network receives an image with dimensions of 28×28×3 (rep-

resenting an RGB-colored image with a size of 28×28), and we define the receptive

field as 3 × 3, each neuron within the convolutional layer would have a total of 27

weights. The volume has dimensions of 3 units in length, 3 units in width, and 3 units

in depth, with a connectivity magnitude of 3 throughout the depth. For compari-

son, a typical neuron seen in other types of ANN would consist of 2,352 individual

weights.

Convolutional layers can effectively decrease themodel’s complexity by optimiz-

ing its output. Optimization of these is achieved by adjusting three hyperparameters:

depth, stride, and zero-padding configuration. The output volume’s depth generated

by the convolutional layers can be manually adjusted by specifying the number of

neurons within the layer to match the input’s region. This phenomenon is seen in

other types of ANNs, where each neuron in the hidden layer is directly linked to

every neuron in the preceding layer. Decreasing this hyperparameter can greatly

lower the overall number of neurons in the network, but it can also drastically di-

minish the model’s ability to recognize patterns. We can also specify the stride at

which we establish the depth around the spatial dimensions of the input to position

the receptive field. For instance, if we were to establish a stride of 1, the receptive

field would be extensively overlapped, resulting in significantly massive activations.

Alternatively, increasing the stride value will decrease the amount of overlap and

result in an output with smaller spatial dimensions.

An inherent limitation of the convolution stage is the potential loss of informa-

tion located at the edges of the image. Since they are exclusively collected during

the sliding of the filter, they never get the opportunity to be observed. An effective

approach to address the problem is to employ zero-padding. Another advantage

of zero padding is its ability to control the size of the output. Suppose we have an

input size of 10x10 and kernel 3x3 with stride 1. The output size after the convolu-

tion would be 8x8. However, by adding the zero padding, the output size will be the

original 10x10. The following formula 4.8 is used for calculating the output size of

convolution

𝑂 = 1 + 𝐼 + 2𝑃 + 𝐾
𝑆

(4.8)

Where I is the input size, P is the padding, K is the filter kernel size, and S is the
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stride. The concept of padding assists in maintaining the size of the network output

as the depth increases, preventing it from decreasing. Consequently, it is feasible to

possess an unlimited number of deep convolutional networks [ON15].

4.2.2 Pooling layer

The primary concept of pooling is to do down-sampling in order to decrease the

complexity for subsequent layers. In the field of image processing, it might be re-

garded as analogous to decreasing the resolution. Pooling has no impact on the

quantity of filters. Max-pooling is a widely used form of pooling procedure. The

image is divided into sub-region rectangles, and only the highest value inside each

sub-region is returned. A frequently employed dimension for max-pooling is 2×2.

As depicted in Figure 4.6, when pooling is applied to the 2×2 blocks in the top-left

region (indicated by the pink area), it shifts by 2 units and emphasizes the top-right

portion. Pooling is performed using a stride of 2. To prevent down-sampling, an

uncommon technique is to utilize a stride of 1. It is important to note that down-

sampling does not maintain the positional integrity of the information. Thus, it

should be utilized exclusively when the significance of information is paramount,

as opposed to geographical information. Furthermore, pooling can be employed

with filters and strides that are not of equal size in order to enhance efficiency. For

instance, when using a 3x3 max-pooling operation with a stride of 2, there will be

some overlapping regions between the areas being pooled.

Figure 4.6: A visual representation of max and average pooling
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4.2.3 Fully-connected layer
The fully-connected layermimics the arrangement of neurons in a conventional neu-

ral network. Thus, every node in a fully connected layer is directly linked to every

node in both the preceding and subsequent layers. A significant limitation of a fully

connected layer is the high number of parameters it contains, which necessitates

sophisticated computational operations during training. Hence, our objective is to

reduce the number of nodes and connections. The eliminated nodes and connec-

tions can be addressed by implementing the dropout approach. For instance, LeNet

and AlexNet developed a network that is both deep and wide, while maintaining a

consistent level of computational complexity [Guo+15].
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Datasets 5
5.1 ECF
ECF dataset [Wan+23; Wan+24] contains 7 classification classes for emotions includ-

ing Anger, Disgust, Fear, Joy, Sadness, Surprise and Neutral. The distribution of these

classes can be seen in table 5.1.

Emotion Representation
Joy 16.89

Surprise 13.51

Anger 11.85

Sadness 8.42

Disgust 3.03

Fear 2.73

Neutral 43.53

Table 5.1: Distribution of emotion classification classes in ECF dataset (in %)

This Dataset contains 13619 utterances in 1374 conversations.

ECF dataset summarizes emotion causes into four main types:

• Event: This type of emotion-cause is evoked by something that happened

in a particular situation. For example utterance "You broke my vase?" would
evoke Anger.

• Greeting: Giving a sign of welcome. Greeting is a cause for Joy. So emotion

in a simple utterance like "Oh hi Joey." would be Joy.

• Opinion: Emotion is caused by someone’s feelings or thoughts about some-

thing. For example, a sentence "I can’t be mad at you" would evoke Joy in its

conversation counterpart.
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• Emotional Influence:Emotion caused by the emotion of conversation coun-

terpart. For example, when Joey is angry at Chandler, it induces sadness in

Chandler

Each utterance has its text translation and corresponding video file. These files are

cut from the Friends sitcom without any post-processing so there is a considerable

amount of noise coming frombackground actors,music, or laughing from the studio

audience. All of the video clips are provided in good quality with a 44100 Hz audio

sample rate and their average length is 3.2 seconds.

5.2 RAVDESS dataset
Ryerson Audio-Visual Database of Emotional Speech and Song Dataset (RAVDESS)

dataset [LR19] consists of 7356 files. These files are created with 24 actors (12 male and

12 female), vocalizing two lexically-matched statements in a neutral North Ameri-

can accent. Actors perform these statements with angry, fearful, calm, happy, sad,

surprise, and disgust facial expressions and say them with calm, happy, sad, angry,

and fearful vocal emotions. Each emotion is performed with two levels of intensity

(normal and strong), with additional neutral expression. There are three possible

modalities available:

• Audio only - files containing all actors speaking. They are further divided

into speech files and song files. For our purpose, only speech files are relevant.

There are 1440 speech files. 60 per actor. The audio signal is recorded in a

16-bit bitrate with 48kHz frequency.

• Audio visual - same as the audio only files. This part of the dataset consists of

1440 files of recorded actors speaking in certain emotions with certain facial

expressions. These files have audio with the same bitrate and frequency and

have 720p video quality.

• Video only - These files are the audiovisual files without the audio track and

with the same video quality.

Asmentioned before, there are 8 emotions depicted in this dataset. Their distribution

in the dataset can be seen in table 5.2.
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Emotion Representation
Happy 13.33

Surprised 13.33

Angry 13.33

Sad 13.33

Disgust 13.33

Fearful 13.33

Neutral 6.66

Calm 13.33

Table 5.2: Distribution of emotion classification classes in RAVDESS dataset (in %)

As we can see, the dataset is very balanced in terms of its audio files emotion

distribution. Furthermore, the length of each audio file is between 3 and 5 seconds

making this dataset very uniform from the data length view.

5.3 IEMOCAP
The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [Bus+08]

was created at the SAIL lab at the University of South California. It is an acting, mul-

timodal, and multispeaker database. The dataset comprises almost 12 hours of au-

diovisual data, encompassing video footage, spoken language, facial motion capture,

and text transcriptions. The program comprises of one-on-one sessions in which

actors engage in improvisations or scripted scenarios that are carefully chosen to

evoke emotional expressions. The IEMOCAP database is annotated by numerous

annotators using categorical labels, including 9 emotion classification categories

(angry, excited, fear, sad, surprised, frustrated, happy, disappointed and neutral), as

well as dimensional labels such as valence, activation, and dominance. The dataset

consists of 4490 dialogues. Audio files, same as with RAVDESS, are recorded with 48

kHz sample rate and 16-bit bitrate. Their length is also comparable to the RAVDESS

with audio file lengths between 3 and 5 seconds.

Distribution of the above-mentioned emotions can be seen in table 5.3.
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Emotion Representation
Happy 7.9

Angry 14.65

Sad 14.4

Neutral 22.69

Excited 13.83

Frustrated 24.56

Fear 0.53

Surprised 1.42

Disappointed 0.02

Table 5.3: Distribution of emotion classification classes in IEMOCAP dataset (in %)

There are a total of 7527 sentences annotated with one of the emotions men-

tioned above. Since emotion categories Happy, Fear, Disapointed have a small repre-

sentation in the dataset, shown in Table 5.3, I chose not to include them resulting in

total of 6785 annotated sentences with a new emotion class distribution, shown in

Table 5.4.

Emotion Representation
Angry 16.25

Sad 15.97

Neutral 25.17

Excited 15.34

Frustrated 27.25

Table 5.4: Distribution of emotion classification classes in IEMOCAPdataset without

Happy, Fear and Disapointed (in %)
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Implemented Models
and Methods 6
The goal of this thesis is to implement a system for multimodal emotion recognition.

To accomplish that, 3 audio emotion recognition models and 2 textual emotion

recognition models have been implemented. The multimodal models combine the

textual emotion recognition models with the audio emotion recognition models by

taking the audio feature vector from the trained audio emotion recognition model

and concatenating it with the textual representation of the sentence taken from the

textual emotion recognition model. Furthermore, 2 audio feature extraction and 2

text feature extraction methods have been implemented.

6.1 Audio feature extraction
Before the training of the model itself, feature extraction from the audio signal has

to be performed. There are two main feature extraction methods implemented for

this system:

• MFCC only - This feature extraction method uses only the Mel Frequency

Cepstral Coefficients. For this purpose, the librosa library is used. There are
two variations of this method. One that takes the average of every coefficient

over a time series and one that includes the time series in the output feature

vector. So for example, if the audio signal is 3 seconds long, the number of

MFCCs would be set to 50 and the sample rate would be 22050Hz, the time

series variation of this method would output a feature vector of size (50,129).

The second dimension comes from the windowing of the audio signal. By

default the window size is set to 2048 and the overlap to 512. So the second

dimension can be calculated with equation 6.1.

𝑚𝑓 𝑐𝑐𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) ∗ (𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒)/(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑙𝑒𝑛𝑔𝑡ℎ) (6.1)

The variation that takes the average over time series would output a 1D vector

of size (50) if the number of MFCCs was set to 50.
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• Collective features - This method, similarly to the previous one, has two

variations. One that works with the time series dimension and one that takes

maxima, minima, average, and standard deviations over the time of the au-

dio signal. This method is called collective features because there are several

feature extractionmethods that collectively create the feature vector. The vec-

tors or scalars from these feature extraction methods are then concatenated

and used as the feature vector, the methods used in the collective features

function are:

– Spectral centroid

– Spectral flatness

– MFCC

– Chromagaram

– Zero Crossing rate

– Spectral Contrast

– Mel spectrogram

Similarly to the previous method the variation that takes the average, mean,

maximum and standard deviations over the time series outputs a 1D vector

and the one that works with time series outputs a 2D vector.

6.2 Text feature extraction
Similarly to the audio signal, the text data also has to be transformed into feature

vectors. There are two text feature extraction methods used by the multimodal and

text emotion recognition models.

• w2v - This method takes pretrained word vectors from the Gigaword 5th

Edition Corpus and uses them as feature vectors for words in the above-

mentioned datasets. During the loading of the dataset, each word gets a corre-

sponding vector that is searched in the w2v pretrained file. Simply put, each

word gets a vector of size 300 which is the word feature vector. These vec-

tors are then concatenated and this creates the representation of the whole

sentence.

• BERT - This method creates contextualized feature vectors for each word

depending on their surroundings. Text is firstly tokenized through the BERT

tokenizer and then fed into the BERT model. The word embeddings are re-

trieved from the last hidden state of the BERT model.
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6.3 Noise reduction
Noise can be described as unwanted additional data. Noise can be caused by a faulty

microphone, rough wind conditions when recording, bad quality camera and so

on. Noise does not add any beneficial information and usually worsens the overall

performance of the classifier.

As stated in the ECF dataset analysis in section 5.1, the ECF dataset contains

a lot of noise from environmental sounds (for example the kitchenware in cafete-

ria scenes) as well as the laughter from the studio audience. There are two noise

reduction methods used to separate the main speaker from the background noise.

6.3.1 FT2D
This method is based on the 2D Fourier transformation (2DFT). It takes advantage of

the periodicity that often occurs in audio signals. The audio signal is represented by

its spectrogram as an image. The 2DFT breaks down the image into a combination

of 2D sinusoids that are weighted and have their phase changed[SPP17].

6.3.2 REPET-SIM
REPET-SIM is an extension of the REpeating Pattern Extraction Technique (REPET)

that employs a similarity matrix to distinguish the recurring background from the

non-recurring foreground in a combination. Themethod presupposes that the back-

ground, usually the musical accompaniment, is thick and subordinate, while the

front, often the singing voice, is sparse and diverse. While this assumption is fre-

quently valid for the background music and prominent vocals in musical blends,

it also commonly applies to the background noise and prominent speech in noisy

blends [RP12].

6.4 Audio emotion recognition models
Audio models use only the audio signal to determine the correct emotion that’s

being expressed in the signal.

6.4.1 CNN1D
Thismodel is based onConvolutionalNeuralNetworks and has only one-dimensional

kernels used for its convolution operation, there are a total of 4 convolution layers

with a maximum over-time pooling between each layer. Since the convolution is

only one dimensional, first and second layer outputs 256 kernels, the third layer re-

duces this number to 128, and the last one to 64. After these convolution layers, there
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are 3 linear layers. The first one takes the output from the last convolution layer and

has an output size of 512. The second linear layer is also the one that outputs the

audio feature vector for which are these models trained. The third and last linear

layer serves as a classifier for the emotion recognition task. The activation function

used in this model is Relu. The architecture of this model is shown in Figure 6.1

Figure 6.1: Architecture of the CNN1D audio emotion recognition model

6.4.2 CNN2D
This model resembles more conventional convolutional models. There are two con-

volution layers first that outputs 2 kernels and second that outputs 4. Maximum

over-time pooling is deployed before the first linear layer. This layer also serves as

an output of the model for the multimodal task, where the output of this layer is the

audio feature vector for the multimodal model. The second and also the last linear

layer of this model is used for classification in the audio emotion recognition task.

The activation function used in this model is Relu.

6.4.3 MLP
This model is the least complicated one and consists of only 3 linear layers. The

output of the first linear layer has a size of 512. The output of the second layer is

used as the audio feature vector in the multimodal task. The last layer serves as the

classifier for the audio emotion recognition task. The Relu activation function is

used between the layers.

6.5 Textual emotion recognition models
There are two models implemented for the emotion recognition task from text. The

first is the LSTMmodel that utilizes the Attentionmechanism after the LSTM layer,

and the second model is pretrained BERT model.
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6.5.1 LSTM
This model consists of two LSTM layers and one linear layer for classification pur-

poses. Both of the LSTM layers are bidirectional and the output from the first one

is then passed through the Attention layer.

• Attention - Attention mechanism is explained in the section 3.3.1. There are

two linear layers. The output of the first layer goes through the tanh function
before being used as input into the second layer. The output of the second

layer is then multiplied with the input into the Attention layer and the result

is returned.

The output of the Attention layer is then passed into the second bidirectional LSTM

layer and lastly, the output goes through the linear layer for classification.

6.5.2 BERT
The second text emotion recognition model is the pretrained transformer-based

model BERT. For the purpose of this thesis, a pretrained bert-base-uncasedmodel is

finetuned on the emotion recognition task with the IEMOCAP and ECF datasets.

BERT has undergone pretraining on a substantial collection of English data using a

self-supervised approach. This indicates that the model was trained solely on raw

texts, without any human annotation. The training procedure involves an automated

method to produce inputs and labels from the texts. To be more explicit, it was pre-

trained with two learning objectives:

• Masked Language Modeling - Masked language modeling (MLM) involves

randomly masking 15% of the words in a sentence and then running the entire

masked text through amodel. Themodel’s task is to predict themaskedwords.

Contrary to conventional recurrent neural networks (RNNs) that typically

process words sequentially, or autoregressive models such as GPT that hide

future tokens internally, this approach is different. Themodel is able to acquire

a bidirectional representation of the sentence through this process.

• Next Sentence Prediction - The model combines two masked words as

inputs during pretraining. Occasionally, they align with adjacent sentences in

the original text, although this is not always the case. The model must then

predict whether the two sentences were consecutive or not.

This way, the model acquires an internal representation of the English language,

which may subsequently be employed to extract valuable characteristics for down-

stream tasks. For instance, if you possess a collection of labeled sentences, you can

train a conventional classifier by utilizing the features generated by the BERTmodel
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as inputs. After the BERT model, there is one linear layer used as the classifier for

our specific task.

6.6 Multimodal emotion recognition models
Tomake use of the secondmodality (the audio modality) every audio emotion recog-

nition model has one linear layer that has the same output size and is returned from

the forward function of each model together with the classification vector. Each of

the above-named audio models outputs a feature vector of size 50. This audio fea-

ture vector is then used in the text emotion recognition models to provide further

information about the sentence the model is currently processing and improve the

overall accuracy and F1 score of the model as can be seen in Figure 6.2.

Figure 6.2: Multimodal emotion recognition pipeline

6.6.1 LSTMmultimodal
The multimodal LSTMmodel is very similar to the textual one with the change to

the input size of the second LSTM layer. The output from the Attention layer is

concatenated with the audio feature vector provided by one of the audio emotion

recognition models and used as input into the second LSTM layer of the model. The

last linear layer stays the same.

6.6.2 BERT multimodal
The Multimodal BERT model is also very similar to the text emotion recognition

model with the change in the input size of the last linear layer that serves as the

classifier. When we want to use the model with the audio signals, the BERT part

of the model processes the text, and the feature vector from the audio emotion

recognition model is then concatenated with the output vector from the BERT

model.
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Experiments 7
The experiments are divided into 3 sections: emotion recognition from audio, text,

and lastly emotion recognition from multimodal data. In each of these sections,

the implemented models are tested on the above-mentioned datasets with relevant

feature extraction methods based on the utilized data. All the results in the tables

below are listed in %.

7.1 Evaluation methods
To determine if the model behaves better or worse we have to have a method to

evaluate its performance. There are several evaluation methods and to evaluate

models implemented for this task, Accuracy and F1 score are used.

7.1.1 Accuracy
This metric takes all correctly identified cases and divides them by the size of the

dataset. It is a suitable evaluation method when working with evenly distributed

datasets, but if the dataset is imbalanced it can be quite misleading. For example, if

one classification class would make up 60% of the dataset, the classifier only needs

to classify every input as this class and will achieve a minimal accuracy of 60%. For

this reason, a second evaluation metric is used.

7.1.2 F1 score
- This metric is a harmonic mean of Precision and Recall. Both of these metrics use:

• True Positives - TP are instances where the classifier identifies the right class
as positive.

• True Negatives - TN are instances where the classifier identifies wrong

classes as negative.
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• False Positives - FP are instances where the classifier identifies wrong class

as positive.

• False Negatives - FN are instances where the classifier identifies right class

as negative.

For example, if we would have 3 classification classes, the true value would be

[0, 0, 1] and our classifier would classify [0, 0, 1] it would count as 1 True positive and

2 True negatives. If the true value would be [1, 0, 0] and our classifier would classify

[0, 1, 0], it would count as 1 False negative, 1 False positive, and 1 True negative.

With these instances, we then calculate the Precision, Recall, and subsequently

the F1 score.

7.1.2.1 Precision

Precision is ameasure of the correctly identified positive cases from all the predicted

positive cases. It can be calculated with equation 7.1.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (7.1)

7.1.2.2 Recall

Recall is the measure of the correctly identified positive cases from all the actual

positive cases. It can be calculated with equation 7.2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (7.2)

F1 score can be calculated with equation 7.3.

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (7.3)

The F1 score is a useful evaluationmetricwhen the classification classes in the dataset

are unbalanced.

7.2 Audio emotion recognition
There are 3 audio emotion recognition models (CNN1D, CNN2D, MLP) described

in section 6.4. These models utilize 2 feature extraction methods (mfcc_only, collec-
tive_features) described in section 6.1. The noise reduction methods mentioned in

section 6.3 are deployed on the ECF dataset. Since the datasets are very different

and their results vary a lot, the results are grouped by the used dataset.
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7.2.1 ECF
The results on the ECF dataset are in Table 7.1. The first column refers to the noise

reduction methods, the second column to the audio recognition models, and the

third column to the audio feature extraction methods.

Noise reduction
method Model Feature extraction

method Train acc Train F1 Test acc Test F1

CNN1D mfcc_only 76.2 54.8 34.6 17.3

CNN1D collective_features 70.5 45.6 40.8 18.7
CNN2D mfcc_only 47.5 16.7 45.8 15.5

CNN2D collective_features 46.8 16.1 45.6 14.8

MLP mfcc_only 50.1 24.7 42.1 15.2

MLP collective_features 68.3 39.6 41.6 17.3

CNN1D mfcc_only 82.5 55.8 32.9 16.6

CNN1D collective_features 60.4 34.1 40.5 18.4

FT2𝐷 CNN2D mfcc_only 41.3 8.4 43.6 8.6

CNN2D collective_features 45.1 12.9 44.4 11.2

MLP mfcc_only 49.9 23.7 44 13

MLP collective_features 66.2 34.5 37 17.9

CNN1D mfcc_only 78.1 52.8 33.1 16.2

CNN1D collective_features 14.6 3.6 11.6 3.2

REPETSIM CNN2D mfcc_only 46.4 13.3 44 13.7

CNN2D collective_features 12.5 3.1 11.1 3.1

MLP mfcc_only 49.4 19.9 39.9 17.2

MLP collective_features 14.1 3.5 11.8 3.6

Table 7.1: Comparison of different model configurations and their results on the

ECF dataset

The best-performing configuration was the CNN1D audio recognition model

with the collective_features audio feature extractionmethodwith average F1 score

18.7% and average accuracy 45.6%. The noise reduction methods overall worsened

the performance of all the configurations especially the REPETSIMmethod with

collective_features extraction method.

7.2.2 RAVDESS
There are several configurations for the RAVDESS dataset as well, with the excep-
tion of noise reduction methods. Since the dataset was recorded in a studio with

little to no noise, there is no reason to use any of the implemented noise reduction

methods. The results are in Table 7.2.
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Model Feature extraction
method Train acc Train F1 Test acc Test F1

CNN1D mfcc_only 83.5 74.9 58.7 51.2

CNN1D collective_features 68.3 63.2 53.2 47.4

CNN2D mfcc_only 36.1 33 25.4 19.4

CNN2D collective_features 25 17.2 16.5 11.3

MLP mfcc_only 56.3 48.7 41.5 38.5

MLP collective_features 86.8 84.4 55.3 51.6

Table 7.2: Comparison of different model configurations and their results on the

RAVDESS dataset

CNN1D andMLP audiomodels were quite similar from the performance stand-

point and both worked much better than the CNN2Dmodel.MLP worked better

with the collective_features extraction method and CNN1D worked better with

the mfcc_only extraction method. Both of the models had an average F1 score

around 51%. CNN1D reached better average accuracy of 58.7%.

7.2.3 IEMOCAP

IEMOCAP dataset has a similar quality of audio recording as theRAVDESS dataset.
The columns in the result table also refer to the same attributes of the used configu-

rations. The results are in Table 7.3

Model Feature extraction
method Train acc Train F1 Test acc Test F1

CNN1D mfcc_only 97.3 97.2 45.2 45.1

CNN1D collective_features 89.6 89.4 51.4 51.5
CNN2D mfcc_only 42.8 38.2 42.6 38

CNN2D collective_features 44.2 38.3 43.6 38.1

MLP mfcc_only 58.6 56.3 44.9 44.3

MLP collective_features 80.4 81 46.2 45.3

Table 7.3: Comparison of different model configurations and their results on the

IEMOCAP dataset

The best-performing configuration for the IEMOCAP dataset proved to be

CNN1D audiomodelwith the collective_features audio feature extractionmethod

achieving 51.5% average F1 score and 51.4% average accuracy.
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7.3 Text emotion recognition
There are two text emotion recognition models implemented, that are described

in the section 6.5. These models use two text feature extraction methods described

in section 6.2. RAVDESS dataset does not have text transcription, so text emotion

recognition models are trained on ECF and IEMOCAP datasets. The BERTmodel

uses its own text feature extraction.

7.3.1 ECF

Results on the ECF dataset are in Table 7.4. The first column refers to the text

emotion recognition model described in section 6.5 and the second column to the

text feature extraction method described in section 6.2. Since the BERTmodel uses

its own text feature extraction, the column is left blank.

Model Feature extraction
method Train acc Train F1 Test acc Test F1

LSTM w2v 64.2 40.8 56.8 33.8

LSTM BERT_embeddings 95.5 94 56 40.9

BERT 81.2 71.2 62.3 43.8

Table 7.4: Comparison of different model configurations and their results on the

ECF dataset

The pretrained BERT model achieved the best average F1 score of 62.3% and

average accuracy of 43.8%. The LSTM model achieved worse results but worked

better with the BERT_embedding feature extraction.

7.3.2 IEMOCAP

The result Table 7.5 of the IEMOCAP dataset has the same columns as the ECF
dataset.

Model Feature extraction
method Train acc Train F1 Test acc Test F1

LSTM w2v 55.3 52.4 42.3 40.2

LSTM BERT_embeddings 92.1 91.9 54.7 55

BERT 93.7 92.7 60.5 55.8

Table 7.5: Comparison of different model configurations and their results on the

IEMOCAP dataset
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The pretrained BERTmodel achieved better results again, with the average F1

score of 55.8% and average accuracy of 60.5%. The LSTM model achieved lower

scores and worked better with the BERT_embedding feature extraction method.

7.4 Multimodal emotion recognition
Multimodal emotion recognition models combine the audio and text models de-

scribed in sections 6.4 and 6.5. They are similar to the text emotion recognition

models, but take additional information in the form of an audio feature vector.

There are two methods of using the audio feature vectors. The first one uses the

output of the trained audio emotion recognition model described in 6.4. The second

one bypasses this extra step and uses the feature vector from one of the audio feature

extraction methods (mfcc_only and collective_features) described in section 6.1.

7.4.1 ECF
The results of the multimodal models with audio feature vectors from the audio

emotion recognition models are in Table 7.6. The results of multimodal models

where the model uses one of the audio feature extraction methods as an input audio

feature vector for its learning are in table 7.7. The multimodal BERT model, the

same as the text emotion recognition one, has its own text feature extraction, so the

column for the text feature extraction method is left blank.

Model Audio model Text feature
extraction method

Audio feature
extraction method Train acc Train F1 Test acc Test F1

LSTM CNN1D w2v mfcc_only 85.1 61.6 39 24.9

LSTM CNN1D w2v collective_features 78.3 53.8 47.6 28.4

LSTM CNN1D BERT_embeddings mfcc_only 98.7 98.1 43.3 32.7

LSTM CNN1D BERT_embeddings collective_features 97.9 94.6 52.9 38.8

LSTM CNN2D w2v mfcc_only 63.3 41.2 56.7 34.2

LSTM CNN2D w2v collective_features 65.8 43.2 56.9 33.8

LSTM CNN2D BERT_embeddings mfcc_only 96.1 94.6 54.8 40

LSTM CNN2D BERT_embeddings collective_features 96 94.3 53.2 38.9

LSTM MLP w2v mfcc_only 67.6 43.1 54.2 31.3

LSTM MLP w2v collective_features 79.1 57 48.9 28.9

LSTM MLP BERT_embeddings mfcc_only 96 91.5 53.9 32.7

LSTM MLP BERT_embeddings collective_features 98 96.6 51.1 36.9

BERT CNN1D mfcc_only 82.8 69.7 62.4 44.5

BERT CNN1D collective_features 73.4 51.8 62.4 44.8
BERT CNN2D mfcc_only 79.6 65.2 61.7 45

BERT CNN2D collective_features 70.3 51.4 60.6 41

BERT MLP mfcc_only 59.3 47.8 55.8 37.5

BERT MLP collective_features 59.3 32.7 53.6 35.4

Table 7.6: Comparison of different model configurations and their results on the

ECF dataset

The multimodal LSTMmodel does not have better performance than the tex-

tual LSTM model on the ECF dataset. CNN2D feature extraction model with
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mfcc_only audio features and BERT_embeddings seem to be performing the

best among other audio feature extraction models, but the overall performance is

not better than the purely textual one. The multimodal BERTmodel achieves better

results than the multimodal LSTM model. The best-performing configuration is

with CNN1D audio model with collective_features feature extraction method.

This configuration achieves an average F1 score of 44.8% and an average accuracy

of 62.4%.

Model Text feature
extraction method

Audio feature
extraction method Train acc Train F1 Test acc Test F1

LSTM w2v mfcc_only 66.7 41.9 53.6 29.9

LSTM w2v collective_features 67.2 41.3 51.2 26

LSTM BERT_embeddings mfcc_only 92.5 86.2 55.2 38.9
LSTM BERT_embeddings collective_features 91.4 76 55.3 38

BERT mfcc_only 15.6 8.9 19 11.8

BERT collective_features 18.7 10.2 20.1 11.4

Table 7.7: Comparison of different model configurations without the audio model

feature extraction and their results on the ECF dataset

The performance of themultimodal models with audio features from the feature

extraction methods (without the audio mode) overall worsened. The multimodal

LSTMmodel works with the audio feature extractionmethod feature vectors better

than the multimodal BERT, but the performance with the audio models is better.

7.4.2 IEMOCAP
The results of the multimodal models with audio feature vectors from the audio

emotion recognition models are in Table 7.8. The results of multimodal models

where the model uses the additional audio feature vector from one of the audio

feature extraction methods for its learning are in table 7.9. The text feature column

for the BERTmodel is left blank since the model uses its own feature extraction.
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Model Audio model Text feature
extraction method

Audio feature
extraction method Train acc Train F1 Test acc Test F1

LSTM CNN1D w2v mfcc_only 90.4 90.4 79.6 79.5
LSTM CNN1D w2v collective_features 82.4 82.3 74.6 74.7

LSTM CNN1D BERT_embeddings mfcc_only 98.7 98.9 78.6 79.2

LSTM CNN1D BERT_embeddings collective_features 98.8 98.2 74.6 75.6

LSTM CNN2D w2v mfcc_only 75.3 76.2 52.1 52.4

LSTM CNN2D w2v collective_features 63.7 62 50.8 50.3

LSTM CNN2D BERT_embeddings mfcc_only 96.5 96.5 60.4 61.3

LSTM CNN2D BERT_embeddings collective_features 96 96.1 60.4 61

LSTM MLP w2v mfcc_only 69.4 70.2 54.5 55.4

LSTM MLP w2v collective_features 84.5 84.2 68.7 68.9

LSTM MLP BERT_embeddings mfcc_only 95.6 95.8 62.4 63.2

LSTM MLP BERT_embeddings collective_features 96.8 87.2 64.9 65.9

BERT CNN1D mfcc_only 75.9 76 66.9 61.6

BERT CNN1D collective_features 81.2 77.6 61.6 58.1

BERT CNN2D mfcc_only 71.8 70.7 55.8 52.2

BERT CNN2D collective_features 65.6 54.7 41.7 35.5

BERT MLP mfcc_only 68.7 64.6 54.4 51.1

BERT MLP collective_features 75 60.7 49.9 46.5

Table 7.8: Comparison of different model configurations and their results on the

IEMOCAP dataset

The performance of the multimodal LSTM model on the IEMOCAP dataset

is far better than the purely textual one. The highest average accuracy without the

audio modality was 54.7% and the average F1 score was 55.5%. With the additional

information provided by the audio feature vector from the audio emotion recog-

nition model, the LSTMmultimodal model achieves up to 79.5% average F1 score

and 79.5% average accuracy. The performance of the multimodal BERTmodel on

the dataset is again improved with the additional information from the audio emo-

tion recognition models. The maximum accuracy of the text BERT model for the

IEMOCAP dataset was 60% average accuracy and average F1 score was 55%. The
multimodal BERT model with the CNN1D audio model withmfcc_only feature

extraction achieves an average F1 score of 58.1% and average accuracy of 66.9%.
Similarly to the ECF dataset, the performance on IEMOCAP dataset also wersened

Model Text feature
extraction method

Audio feature
extraction method Train acc Train F1 Test acc Test F1

LSTM w2v mfcc_only 68 68.4 54.6 54.4

LSTM w2v collective_features 72.2 71.8 52.9 53.3

LSTM BERT_embeddings mfcc_only 94.9 95 59.2 60.7

LSTM BERT_embeddings collective_features 96.7 96.7 62.1 63.3
BERT mfcc_only 31.2 22.6 27.1 21.2

BERT collective_features 25 16.7 25.3 18.5

Table 7.9: Comparison of different model configurations and their results on the

IEMOCAP dataset

without the feature vectors from the audio models. The multimodal LSTM again
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worked better than the multimodal BERT but both showed worse results when the

feature vector is taken from the audio feature extraction methods directly.

7.5 Discussion
Emotion recognition from only audio signals proved to be more difficult than

from text data. Depending on the feature extraction method the best overall results

climbed up to 18% F1 test score and around 40% test accuracy on the ECF dataset.

The best performing was the CNN1D model that uses the 1D feature vector from

the audio signal, meaning that the time-specific information might not be very im-

portant when it comes to emotion recognition tasks. There were a few performance

differences between themfcc_only and collective_feature_extractionmethods,

but the collective features worked slightly better (around 1% to 2% F1 and accuracy

score). The noise reduction for the ECF dataset overall worsened the model perfor-

mance. That might be due to the fact that we lose a lot of information about pitch,

which is an important part of the collective feature extraction method.

As said above, the text emotion recognition showed better results. The LSTM
model worked better with the BERT word embeddings and was able to achieve a

maximum of 56% test accuracy and 40% F1 score. Contextualized word embeddings

worked better for this particular task, which might be due to the fact that a lot of

emotions are bound by the context of the sentence. The BERT pretrained model

worked better for both of the datasets, but not by a large margin (around 2% to 3%
for both accuracy and F1 score).

Multimodal emotion recognition had a lot of different configurations in which

the classification could be performed. Since there are 3 audiomodels, that workwith

2 audio feature extraction methods, and there are 2 multimodal models that also

work with 2 text feature extraction methods on 2 possible datasets, the overall num-

ber of configurations climbed up to 36 (BERTmodel does not work with Word2Vec

text features). The LSTM multimodal model had worse performance on the ECF
dataset than the purely textual one. Only the BERTmodel achieved a slightly better

F1 score (around 1% better) when used multimodally with CNN1D audio model and

collective audio feature extraction. However, the IEMOCAP dataset benefited from

the additional audio features, since both the BERT and LSTMmultimodal models

achieved better results than the purely textual ones. The BERT model performed

better with the CNN1D audio model and both of the audio feature extraction meth-

ods. The highest test accuracy was 66% and the F1 score was about 61% (around 6%
more than the purely textual BERTmodel). Nearly all of the configurations of the

multimodal LSTM model performed better than the purely textual LSTM model

with the exception of:

57



7 Experiments

• Word2Vec text features | CNN2D audio model | mfcc only audio features

• Word2Vec text features | CNN2D audio model | collective audio features

• Word2Vec text features | MLP audio model | mfcc only audio features

The best-performing configurations even surpassed the BERTmultimodal model.

The bestworking configurationswerewith theCNN1D audiomodel andmfcc_only
audio feature extraction method. The best configuration of the multimodal LSTM
model achieved 79% test F1 score and 79% test accuracy. Around 13% better accuracy

and 18% better F1 score than the BERT model.

Furthermore, the configurations with audio feature vectors from the audiomod-

els worked better than the feature vectors from audio feature extraction methods.

The multimodal LSTMmodel was able to work with these feature vectors, but its

accuracy and F1 score lowered. The multimodal BERTmodel worked significantly

worse. The extra step of training audio emotion recognition models to get better

audio feature vectors from them proved to be beneficial for both the BERT and

LSTM multimodal models. The best-performing configurations on each dataset

and their results are in Table 7.10.

Model Text feature
extraction method

Audio feature
extraction method Train acc Train F1 Test acc Test F1

audio CNN1D + collective_features 70.5 45.6 40.8 18.7

ECF text BERT 81.2 71.2 62.3 43.8

audio + text BERT + CNN1D + collective_features 73.4 51.8 62.4 44.8
RAVDESS audio MLP + collective_features 86.8 84.4 55.3 51.6

audio CNN1D + collective_features 89.6 89.4 51.4 51.5

IEMOCAP text BERT 93.7 92.7 60.5 55.8

audio + text LSTM + w2v + CNN1D + mfcc_only 90.4 90.4 79.6 79.5

Table 7.10: Best performing configurations for each modality and on each dataset

7.5.1 Possible extensions
Since the audio emotion recognition models performed better on both RAVDESS
and IEMOCAP datasets, further research into the noise reductionmethodsmight be

beneficial. Real audio from normal human conversation will have some noise levels

so implementing a noise reduction systemwhere the pitch information remains and

the background noise is reduced might help the overall performance.

Another possible extension would be to introduce additional modalities to the

system. The audio modality improved the performance so other modalities like

video or facialmotion informationmight also improve the performance. The IEMO-
CAP dataset offers these modalities.
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Conclusion 8
The aim of this thesis was to analyze relevant feature extraction methods for textual

and audio data and implement a system for multimodal emotion recognition.

The analyzed audio feature extraction methods focus on the time domain fea-

tures as well as the spectral features of an audio signal. Based on the experiments

the spectral features proved to be more important since the CNN2D audio emo-

tion recognition model did not outperform the CNN1D or MLP audio emotion

recognition models, that use feature vectors with time domain information reduced,

since the feature vectors used for training of these models take maxima, minima

and average values over the time domain. The maximum average F1 score for audio

emotion recognition was achieved by the CNN1Dmodel reaching up to 18.7% on

the ECF dataset and 51.5% on the IEMOCAP dataset. The maximum average F1

score on the RAVDESS dataset was achieved by theMLPmodel with F1 score of

51.6%.
The amount of noise in the dataset also proved to be very important, because

the models achieved better results on RAVDESS and IEMOCAP datasets. These

datasets were recorded in a studio environment with little to no additional noise.

The ECF dataset consists of snippets taken from the sitcom Friends and contains en-

vironmental sounds. For this reason FT2D and REPETSIM noise reduction meth-

ods were deployed on the ECF dataset, but they only worsened the overall perfor-

mance of the audio emotion recognition models. This might be due to the fact, that

by using these methods the pitch information was partly lost and since both of the

audio feature extraction methods rely to some extent on the pitch information, the

overall performance worsened.

Contextualized word embeddings from the pretrained BERTmodel proved to

work better for this particular task. But even with the BERT word embeddings

the LSTMmodel was outperformed on the text emotion recognition tasks by the

pretrained BERT model, where the BERT model achieved an average F1 score of

43.8% on the ECF dataset and 55.8% on the IEMOCAP dataset. The LSTMmodel

with BERT word embeddings achieved 40.9% average F1 score on the ECF dataset

and 55% on the IEMOCAP dataset.
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The additional information added by the audio feature vector proved to be ben-

eficial for emotion recognition since both the multimodal BERT and LSTMmodels

achieved better results with the audio feature vectors. Especially the LSTMmodel

improved by over 15% on accuracy and over 20% on F1 score on the IEMOCAP
dataset. Furthermore, the audio feature vectors taken from the audiomodels worked

better than the audio feature vectors taken from the audio feature extraction meth-

ods directly. With the audio feature vectors taken directly from the audio feature

extraction methods the multimodal BERT model achieved an average F1 score of

11% on the ECF dataset and 21% on the IEMOCAP dataset, which is significantly

less than with the audio feature vectors taken from the trained audio emotion recog-

nition models. The multimodal LSTMmodel was able to achieve better results with

the audio vectors taken directly from the audio feature extraction methods than the

multimodal BERT model. The results on the ECF dataset were comparable with

the LSTMmodel that used audio feature vectors from trained audio emotion recog-

nition models but had around 17% lower F1 score and accuracy on the IEMOCAP
dataset.
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List of Abbreviations A
SPL - Sound Pressure Level

ML - Machine Learning

FFT - Fast Fourier Transform

GTCC - Gamma Tone Cepstrum Coefficient

MFCC - Mel Frequency Cepstrum Coefficient

DCT - Discrete Cosine Transform

DFT - Discrete Fourier Transform

ZCR - Zero Crossing Rate

SC - Spectral Centroid

OSC - Octave-based Spectral Contrast

NLP - Natural Language Processing

BOW - Bag of Words

TF-IDF - Term Frequency - Inverse Document Frequency

CBOW - Continuous Bag of Words

BERT - Bidirectional Encoder Representations from Transformer

CNN - Convolutional Neural Network

LSTM - Long Short-Term Memory Network

MLP - Multilayer Perceptron

MLM - Masked Language Model

GPT - Generative Pre-training Transformer

ANN - Artificial Neural Network

CEC - Constant Error Carousel

LSNN - Long Short-Term Memory Spiking Neural Network

ECF - Emotion Cause in Friends

RAVDESS - Ryerson Audio-Visual Database of Emotional Speech and Song

IEMOCAP - Interactive Emotional Dyadic Motion Capture

TP - True Positive

TN - True Negative

FP - False Positive

FN - False Negative
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User Manual B
Link to the github repository: git repository

Before installing the requirements, there are two prerequisites. ffmpeg framework

and sox sond processing tool is required for this project to run. Installation is dif-

ferent for Linux and Windows operation systems:

• Windows

– ffmpeg - Detailed instructions to install ffmpeg on Windows can be

found here: ffmpeg installation guide. You have to download the ffmpeg

from their official webpage, extract it, move it to your root disk folder

and rename it to ffmpeg. After that, you need to add the bin folder of

this ffmpeg folder into you PATH.

– sox - This processing tool can be downloaded from their forge page:

sox download page. After the installation is complete, you need to add

the path of the installed target folder to your PATH variable.

• Linux

– ffmpeg - This framework can be installed on Linux with the following

command

1 sudo apt install ffmpeg

– sox - This processing tool can be installed on Linux with the following

command

1 sudo apt −get install sox libsox −dev

The main entry point of the code is the main.py script. The first input argument

determines which modality should be used. There are 7 input arguments. Usage of

these arguments depends on the chosen modality

• -modality - determines which modality should be used. Is required for the

script to start. There are 3 possible modalities: audio, text,multimodal.

63

https://github.com/zemanm98/DP
https://phoenixnap.com/kb/ffmpeg-windows
https://sourceforge.net/projects/sox/


B User Manual

• -text_model - determines which multimodal or textual model is supposed

to be used. Either LSTM or BERT. This argument is not required if audio
modality was chosen, but is required if text or multimodal modality was

chosen in the -modality argument.

• -text_feature_extraction - determineswhich text feature extractionmethod

is supposed to be used. Eitherw2v or bert. This argument is not required if

audiomodality was chosen, but is required if text ormultimodalmodality

was chosen in the -modality argument.

• -audio_model - determines which audio emotion recognition model is sup-

posed to be used. Either CNN1D or CNN2D orMLP. This argument is not

required if text modality was chosen or multimodal modality with argu-

ment -use_audio_model set to false was chosen , but is required if audio
modality ormultimodalmodality with argument -use_audio_model set to

true was chosen in the -modality argument.

• -audio_feature_extraction - determines which audio feature extraction

method is supposed to be used. Either mfcc_only or collective_features.
This argument is not required if text , but is required if audio modality or

multimodalmodality was chosen in the -modality argument.

• -dataset - determines which dataset is supposed to be used. There are 3

datasets for audio emotion recognition: ECF, RAVDESS and IEMOCAP.
When RAVDESS is chosen, only the audio model learning will be deployed,

because it does not have text transcriptions.WhenECF or IEMOCAP dataset

is chosen, the whole learning process is deployed. The ECF dataset can be

also run with noise reduction method FT2D or REPETSIM. If you want use

one of these methods, the input parameter should be ECF_FT2D for FT2D
noise reduction method and ECF_REPETSIM for the REPETSIM noise

reduction method. This argument is always required.

• -use_audio_model - determines if the audio feature vectors should be taken

from the indicated audio emotion recognition model from parameter

-audio_model (if set to true) or if the audio feature vectors should be taken
from the indicated audio feature extraction method from the parameter

-audio_feature_extraction (if set to false).

So for example if the system should be used multimodally with LSTMmultimodal

model,w2v text featuremethod,CNN1D audiomodel,mfcc_only audio feature ex-
traction on the ECF dataset with FT2D noise reduction method, the run command

would look like this:
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1 python main.py −modality multimodal −text_model LSTM

2 −text_feature_extraction w2v −audio_model CNN1D

3 −audio_feature_extraction mfcc_only −dataset ECF_FT2D

4 −use_audio_model true

If we want to run audio emotion recognition learning only withMLP audio model

and collective_features audio feature extractionmethod on the IEMOCAPdataset,
the run command would look like this:

1 python main.py −modality audio −audio_model MLP

2 −audio_feature_extraction collective_features

3 −dataset IEMOCAP

Python version used in this project is python3.10
There is also the requirements.txt file that includes all the necessary libraries

to run the project. Libraries in use:

1 librosa ==0.10.2

2 torch ==2.3.0

3 torchmetrics ==1.3.2

4 torcheval ==0.0.7

5 nussl ==1.1.9

6 transformers ==4.40.1

7 scipy ==1.11.3

8 numpy ==1.23.1

In the config folder, there is config.py script with hyperparameters for each

model, systempath tow2v embedding file andwith systempaths to theECF,RAVDESS
and IEMOCAP datasets.
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