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Abstract
Patients with neuromuscular paralysis have a difficult road to rehabilitation.
To make this rehabilitation more effective and faster, rehabilitation should
not only exercise the muscles but also engage the brain. To achieve that,
a Brain-computer interface (BCI) is used. The BCI tries to recognize and
translate brain signals into the output commands for devices. For this, we
use Motor Imagery (MI), where we imagine the movement without executing
it, as it has been proven that these two states are almost identical. In this
work, these signals represented by EEG are recognized by recent classifiers
such as MLP, CNN, LSTM, and Transformer. This work has shown a large
variation between people in the experiments. The most successful people
achieved up to 75 % accuracy in classifying their motion.

Abstrakt
Pacienti s paralýzou nervosvalového systému mají těžkou cestu k rehabilitaci.
K zefektivnění a zrychlení této rehabilitace je potřeba, aby při rehabilitaci
nebyly procvičovány jen svaly, ale i mozek. Pro lepší zapojení mozku se po-
užívá Brain-computer interface (BCI). BCI se snaží rozpoznávat mozkové
signály a převádět je do příkazů pro zařízení. Za tím účelem využíváme Mo-
tor Imagery (MI), kde si pohyb pouze představujeme bez jeho vykonání,
protože je dokázáno, že tyto dva stavy jsou téměř totožné. Tyto signály
reprezentované pomocí EEG jsou v této práci rozpoznávany aktuálními kla-
sifikátory, jako jsou MLP, CNN, LSTM a Transformer. Tato práce ukázala
velkou odlišnost mezi jednotlivými lidmi v experimentech. Nejvíce úspěšní
lidé dosáhli až 75 % přesnosti klasifikace jejich pohybu.
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1 Introduction

Movement is a daily matter for every healthy person. However, for patients
with paralysis of the neuromuscular system, the most common movement
of the arm is difficult to impossible. Because of this, the idea is to help
these patients with rehabilitation via a Brain-Computer Interface (BCI).
This technology allows them to interact with the outside world by inter-
preting their movement intentions based on brain activity. Thus, the main
goal of BCI is to recognize and interpret intended movement based on brain
signals.

There are two possible ways how to produce these brain signals. The first
way to really make the intended movement is the movement itself, which is,
for some patients, impossible. The second way is Motor Imagery (MI). MI
is a process that makes it possible to identify movement intentions based
on brain activity alone, without a need for an external stimulus. MI is as-
sociated with activity in the motor cortex that is similar to that produced
during actual physical movement. To work with brain signals, electroen-
cephalography (EEG) is in use.

The aim of this work is to be a continuation of previous works on this
topic at the University of West Bohemia. These works focused on the inter-
subject classification of arm movement on gathered data, where data from
each subject are merged together, thus creating one big dataset. This work
takes a different approach through an intra-subject way, where each sub-
ject´s data is processed separately. This strategy proves vital because some
subjects achieved results around 75 % accuracy of classification.

In Chapter 2, there are introduced principles of EEG. After that, in
Chapter 3, there are shown works that were done on this topic by the
neuroinformatics group at the University of West Bohemia. The overview
of available free datasets is described in Chapter 4. In Chapter 5, there
are described classification techniques. Chapters 6 and 7 describe analysis
of gathered data. The implementation of the proposed tests is shown in
Chapter 8. Accomplished results are presented in the Chapter 9.
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2 Principles of movement
recognition

This chapter explores the possibilities of movement recognition through
Brain-Computer Interface (BCI). To do this, we use electroencephalography
(EEG) signals. EEG signals can be represented in multiple ways. To get
those signals, we use Motor Imagery (MI). Lastly, there is information on
how all this can help people.

2.1 EEG
Recognition tasks require data. These data can vary from obvious images or
videos to more complicated EEG signals. An EEG is a test that measures
electrical activity in the brain. [1]. This activity is measured by electrodes
on the scalp. Localization and designation of electrodes are done by 10-
20 System [2]. They created a system of electrodes that measure signals in
these parts. For example, parts of the brain controlling the left or right-hand
movements are highlighted in Figure 2.1.

Figure 2.1: Electrode locations of International 10-20 system for EEG (elec-
troencephalography) recording. Image source: [3] Highlighted electrodes C3
and C4 are on parts for controlling movements of the right and left hand.

EEG signals have great temporal resolution due to the speed of neural
activity. Thanks to that, EEG signals have the ability to distinguish activit-
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ies that are milliseconds away from each other. [4] Nowadays, EEG devices
have low purchase prices, and they promise great portability. [5]

However, EEG suffers from low spatial distinction. This is because the
acquisition values are affected by the bones and tissues of the head. [4]
The other limitation of EEG sampling is the high variability of the tested
subjects [4]. There are many other problems with the properties of the EEG
signal, like the great risk of outer noise, etc. [5]

EEG signals are divided into frequency bands. Each frequency band
owes rhythmic activity and transient phenomena. The most used frequency
bands are Delta (0.5-4 Hz), Theta (4-7 Hz), Alpha (8-12 Hz), Beta (13-30),
and Gamma (30-80 Hz) according to [6] and [7].

2.1.1 SMR
In the Alpha frequency band, there is a special rhythm called Sensory Motor
Rhythm (SMR), also known as Mu Rhythm or Mu wave. This rhythm occurs
in the central region of the head. There is a parallel with Figure 2.1 because
electrodes C3 and C4 are located there as well. When engaging in motor
activity or contemplating initiating it, Mu waves tend to diminish. [8]

2.1.2 ERP
Event-related potentials (ERPs) are small voltages generated in the brain
structures in response to specific stimuli or events. These are changes in
EEG that are time-locked to sensory, motor, or cognitive events. ERPs
provide a safe and noninvasive approach to studying psychophysiological
correlates of mental processes. They can be elicited by various sensory,
cognitive, or motor events and are thought to reflect the summed activity of
postsynaptic potentials produced when a large number of similarly oriented
cortical pyramidal neurons fire in synchrony while processing information.

ERPs in humans can be categorized into two types. The early waves
or components, which peak roughly within the first 100 milliseconds after
the stimulus, are called the "sensory" or "exogenous" as they depend mainly
on the physical parameters of the stimulus. In contrast, the later parts
of ERPs reflect the way the subject evaluates the stimulus and are called
"cognitive" or "endogenous" ERPs as they examine information processing.
The waveforms are described according to latency and amplitude. [9]
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2.1.3 ERD/ERS
Event-related desynchronization/synchronization (ERD/ERS) is a relative
power decrease/increase of EEG in a specific frequency band during physical
motor execution and mental motor imagery. Thus, it is widely used for the
purpose of brain-computer interface . [10]

2.2 Motor imagery
Movement is essential every day for all of us. Our body is directed by the
brain, which controls it via signals. These signals come from different parts
of the brain. Each part of the brain has control of one part of the body.
Localization and designation of these parts in the brain were done in [2].

It is a common fact that brain signals are produced right before move-
ment and during movement. The movement leads to changes in neuronal
rhythms and thus can be recognized in signals on electrodes. These changes
can be seen as a decrease in the case of ERD or an increase in the case
of ERS in amplitude in frequency bands Alpha and Beta (8-30 Hz). [11]
Motor imagery (MI) benefits from the fact that all things described above
are done during the imagining movement except movement itself. During
the imagining, movements are in action in very similar areas of the brain,
and it produces almost the same ERD or ERS as movement. [12] MI is one
of the Brain-computer Interface (BCI) paradigms.

2.3 BCI
A Brain-Computer Interface is a technology that translates brain activity
into signals that can control external devices. These signals can help restore,
replace, enhance, or supplement natural neural output, thereby changing the
interaction between the brain and its environment. BCIs can be invasive or
non-invasive, depending on how they measure brain activity.

In invasive systems, electrodes are positioned on the surface or implanted
in the cortex of the brain. In non-invasive systems, electrodes are placed on
the scalp or near-infrared spectroscopy.

A typical non-invasive BCI system uses electroencephalography (EEG)
to decode the user’s intention (e.g., motor imagery or execution) in real time.
The system extracts relevant features from the ongoing electrical activity of
the brain to detect the user’s movement intention. When the system de-
tects the intention, it triggers sensory feedback to the user. This feedback
can be delivered in an abstract form (e.g., a moving cursor on a computer
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screen) or as embodied feedback. Embodied feedback reproduces the in-
tended movement through visual or somatosensory representations. This
feedback is shown to enhance motor learning.

Brain-computer interfaces (BCIs) are currently being explored in two
clinical applications. The first application is assistive technologies that aim
to restore lost functions, such as communication in locked-in syndrome or
movements in paralysis, such as eating and drinking despite quadriplegia,
using robotic actuators or functional electrical stimulation systems. The
second application is rehabilitation technologies, also known as neurofeed-
back or rehabilitative BCIs, that foster neuroplasticity by manipulating or
self-regulating neurophysiological activity to facilitate motor recovery. [13]

2.4 Rehabilitation
According to WHO [14], Rehabilitation is “a set of interventions designed to
optimize functioning and reduce disability in individuals with health condi-
tions in interaction with their environment.” From the previous sections, we
can derive that BCI, alongside EEG, has great importance in rehabilitation.

So rehabilitation means a learning process where the patient tries to
regain old and new skills based on practice. Actively exercising again creates
a flow of afferent (i.e., centripetal, i.e., leading from peripheral nerves to the
central nervous system) information. Additional mental exercise, such as
MI, is crucial in improving motor performance, not just physical exercise..
[15], [16], [17]

There have been several studies using MI that have shown improvements
in the speed, strength, and accuracy of performing a motor task. In the
learning phase, a similar asymptotic learning curve was found for both MI
and physical performance of movements. This therefore further supports the
fact that MI is not only epiphenomenal (incidental and indirect) but plays a
vital role in cortical plasticity related to the execution of movements. [17],
[15]

2.5 Summary
This chapter shows some examples of the representation of EEG signals and
how these signals are gathered. Alongside this, there is a description of MI
and how it can be used for BCI. Lastly, it is shown how MI and BCI can
help people with rehabilitation.
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3 Previous experiments on
DCSE

This chapter summarizes previous works on this topic at the Department
of Computer Science and Engineering (DCSE) of the University of West
Bohemia (UWB). The first work was from Pavel Mochura, named Movement
Detection from EEG Signals during Exercise on a Rehabilitation Robot [18]
in the year 2021. Next year, Josef Yassin Saleh published a work named
Design of Movement Detector of measured EEG data [19], which was a
continuation of the work from P. Mochura. The last addition to this topic
was Jakud Kodera with the work Motion Detection from EEG Data [20].

3.1 Pavel Mochura thesis
Pavel Mochura designed and created the first EEG data set on arm move-
ments. This data set contains data from 14 people; nine of them were women,
and five were men. In his thesis, chapter 8 fully describes the entire process.

When he had data, he moved to create feature vectors from it. His idea
was to use ERD and ERS to create these vectors. There were created seven
feature vectors. The first two were raw ERD and ERS in different setups.
The other five vectors were filled with statistical metrics computed from
ERD/ERS. The computation of ERD and ERS is in Chapter 9. Statistical
metrics are depicted in Chapter 10.

In the classification part of his work, he tried to find the right setting for
MLP for the best results. He was tuning the number of neurons or layers
in MLP and activation function in neurons. Each test run was done 100
times for some reliability to get enough statistical data about the setting.
From the results, the activation function Sigmoid is more reliable than the
Tanh function. It has better performance across results. The most successful
setting is with three hidden layers and Sigmoid. Layers have a composition
of 400 neurons in the first, 200 neurons in the second, and 100 neurons in
the last layer. This setting has achieved 90.05%, which is excellent. This
result comes from Table 13.3 on page 64 in [18].

Accuracy was not the only goal in the thesis scope. The other goals
are the time of classification and the fact that rehabilitation robots could
classify only from ERD. In the previously mentioned setting, the time of
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classification was 2.74s. Compared to other results, which can go up to 10s,
this is alright, but it was from a feature vector composed of both ERD and
ERS. The right vector composed from ERD only has an accuracy of 86.30%
and a classification time of 1.96s. This result comes from Table 13.7 on page
66 in [18].

There are many more results in this thesis, but these two findings are
the main results of this work.

3.2 Josef Yassin Saleh thesis
The second is the thesis from Josef Yassin Saleh. This work aimed to classify
movement as a thesis before but from a different approach. Mochura used
ERD/ERS from 2.1.3. Saleh chose to work with SMR from 2.1.1.

This was one of many goals of this work. The second goal was to add
more data for testing. In that manner, other measurements of EEG were
performed. The scenario was pretty much similar to the previous one. In
this case, the task was performed by 10 people; 6 of them were women, and
4 were men. The process of measurement is described in Chapter 2, Section
4 in [19]. With data from his work and Mochura’s work, Saleh has data
about 24 people.

For the classification of movement, Saleh chose Support Vector Machine
(SVM) and Linear Discriminant Analysis (LDA) (for more information on
SVM and LDA: [21]). These classifiers were used with and without Common
Spatial Patterns (CSP). So overall, tests were performed on four classifiers.

The results of this work could be more transparent. The first thing that
makes me suspicious is that he did not show all the gathered data but only
fragments of them. Then, he makes the point that it depends on the proper
split of data in training and testing. This is a big problem because primary
conditions can not be guaranteed. Lastly, he stated that accuracies are in
the range of 20% to 90%, which is interesting. From all that, this work
proves nothing. It shows that the process needs to be more general and thus
can not be used in everyday practice.

3.3 Jakud Kodera thesis
The last work on this topic was from Kodera. The aim was to try different
classifiers on movement EEG alongside data augmentation and various kinds
of data representation.
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Firstly, he performed the exact measurement of EEG as Mochura to
gather more data. In this case, data from five people was collected through
EEG. All of them were men. So, in total, EEG data about movement are
composed of 29 people.

The data were represented in three ways. The first is basic time series.
This is a standard representation of data that came in some sequences. The
second representation is the Frequency spectrum. This method promises
that there could be some patterns that time series representation can not
express. So, by Discrete Fourier Transformation, the signal can be trans-
formed from a time domain to a frequency domain. On the other hand,
this signal lost information about time. Because of this, there is the third
option, the Time-frequency spectrum. This is a combination of two previ-
ous approaches together. Several methods, such as the short-time Fourier
transform, wavelet transform, or Hilbert transform, can do it.

Three different methods were used to augment the data. The first method
was Noise adding, which simply adds some noise (Gaussian) to the base
signal. The second method was Conditional Variational Autoencoders. This
method is composed of an encoder and a decoder. Both of these parts are
simple MLPs with only one hidden layer. This method generates samples
from some conditions in the input. The last method was a Conditional
generative adversarial network with a Wasserstein cost function and penalty
gradient. This method is composed of two MLPs: one is a generator, and
the other one is a discriminator. The generator generates samples from a
noise. These samples are evaluated by the discriminator if they are original
or artificial. This setup requires more work to configure properly. This
method had poor results in this work. The amount of generated samples is
equal to 80 % of the original size of the dataset. There are metrics to depict
the resemblance of original data and artificial data.

The classification uses five different methods. The first two were the
Support Vector Machine and the LDA, as mentioned before. The third
was MLP. The fourth was the Convolutional neural network (CNN). The
last method was the Long short-term memory (LSTM) type of ANN. The
training of these methods used cross-validation tenfold.

The results are shown for all tested setups of augmented data, data rep-
resentation, and classifiers. Each data representation has its table of results
of the classification and a table about metrics, and all are supported by the
graph. For each setup, two tests were performed. The first is binary clas-
sification, which represents the arm movement state and the state without
movement. The second test with multi-class classification represents move-
ment with the left or the right arm and state without movement. Overall,
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120 tests were performed. For each test run, classic metrics such as accuracy,
precision, recall, and F1 score were computed. The time of learning and the
time of classification of one sample was also measured. In terms of overall
accuracy, the CNN classifier has the best result of 76% on data without aug-
mentation and using time series representation. The time of classification
was hundreds of ms, which can be used for online classification. There is a
vast difference in the accuracy of binary and multi-class classification. The
best multi-class classification got only 58.57% accuracy, which is nearly a
20% difference. From the results, it can be derived that CNN is suitable for
this classification task. It has two reasons. CNN had the best overall result
and achieved the best results in 4 out of 6 groups of tests.

3.4 Summary
All previous works have done a good job describing the topic and their
method and creating useful information for future works. Table 3.1 shows
the summary of results, used methods, and size of the dataset from the works
mentioned previously. Across these works, EEG data about arm movement
was created from 29 people. There were 15 women and 14 men. From
this data, feature vectors such as ERD/ERS, SMR, Time series, Frequency
spectrum, and time-frequency spectrum were created. These vectors were
put into multiple setups of MLPs, SVMs, LDAs, CNN, and LSTM to train
these classifiers. The accuracies range from the worst 20% from Saleh [19]
to the best 90.05% in Mochura [18]. This dataset is for further work called
with alias Kodera-29. This dataset can be downloaded at [22].

Each of those works tries its best to portray its solution and results.
Although work from Saleh [19] had several drawbacks described before, it
did its job of exploring one possible way of classifying EEG data. The other
two works from Mochura [18] and Kodera [20] were more successful.

Author Number of people Classification method Best accuracy
Mochura 14 MLP 90.05%

Saleh 24 SVM, LDA 90%
Kodera 29 SVM, LDA, MLP, 76%

CNN, LSTM

Table 3.1: Overview of information from individual works. It contains the
name of the author, the number of people in the dataset, the method of
classification used, and the best-achieved result.

From these works, several thoughts can be derived. The best feature
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vectors represented the whole EEG signal. The performance of classifiers
on aggregated feature vectors is worse. The worst classification technique
in nearly all cases was LDA. The performance of SVM is stable across all
test runs. Different kinds of ANN performed well in all cases, such as SVM.
In most cases, SVM was even outperformed by ANNs despite the fact that
ANNs usually need huge amounts of data to work properly.
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4 Public MI datasets

For each dataset, aliases were created, which can be seen in Table 4.1. Alias
comprises the name of one author and the number of people included in the
data set.

Name Alias Reference
Supporting data for "Multimodal signal data-
set for 11 intuitive movement tasks from single
upper extremity during multiple recording ses-
sions"

Jeong-25 [23]

U-Limb Averta-156 [24]
EEG datasets of stroke patients Liu-50 [25]
Motor-Imagery EEG Dataset During Robot
Arm Control

Farabbi-12 [26]

A large EEG dataset for studying cross-session
variability in motor imagery brain-computer in-
terface

Jun-25 [27]

A large EEG database with users’ profile in-
formation for motor imagery Brain-Computer
Interface research

Dreyer-87 [28]

Motor Imagery vs Rest - Low-Cost EEG System Peterson-10 [29]
Human EEG Dataset for Brain-Computer In-
terface and Meditation

Stieger-62 [30]

Table 4.1: Assigning the aliases of obtained data sets.

4.1 Jeong-25
The name of the dataset is Supporting data for "Multimodal signal dataset
for 11 intuitive movement tasks from single upper extremity during mul-
tiple recording sessions". This dataset includes data about 25 healthy sub-
jects. The data are about 11 different movement tasks of the upper limbs.
60-channel EEG, 7-channel electromyography (EMG), and 4-channel elec-
trooculography (EOG) were recorded during 3-day of measurement. For
each subject, 85,500 trials were done. This dataset was released in Septem-
ber 2020. [23]
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There is a study [31] from which this dataset originates. The researchers
assert that the dataset is appropriate for three main purposes: (i) comparing
brain activities linked with actual movement and imagination, (ii) enhancing
the decoding accuracy, and (iii) examining variations among recording ses-
sions. Consequently, this study has concentrated on gathering data required
for future developments in BCI technology.

On Google Scholar, this study has 46 citations.

4.2 Averta-156
The name of the dataset is U-Limb. The dataset contains information from
a total of 156 participants, 91 of them being able-bodied and 65 of them
having suffered a stroke. This dataset was released in July 2020. The data
is organized into three categories [24]:

(i) Daily living activities of the upper limb, where physiological signals
(such as EMG, EEG, and electro-cardiography (ECG)) and kinematic data
were recorded.

(ii) Force-kinematic behavior during precise manipulation tasks, where a
haptic device was used to record the data.

(iii) Neural hand control, which was measured using functional magnetic
resonance imaging.

This study has 17 citations on Google Scholar. The number of downloads
is 1800. [24]

4.3 Liu-50
The name of the dataset is EEG datasets of stroke patients. This dataset
contains Electroencephalography (EEG) data from 50 individuals who ex-
perienced acute ischemic stroke. The participants ranged in age from 30 to
77 years, with 39 males and 11 females included in the study. The time
elapsed after a stroke ranged from 1 day to 30 days. Among the parti-
cipants, 22 experienced right-hemisphere hemiplegia, while 28 experienced
left-hemisphere hemiplegia. It is worth noting that all participants were ori-
ginally right-handed. The first version was released in December 2022. The
latest version was released in September 2023.

During the experiment, the participants were seated in front of a com-
puter screen with their arms resting either on a pillow on their lap or on a
table. They followed the instructions that were presented on the computer
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screen. At the start of each trial, a picture with a text description was dis-
played for two seconds. The participants were asked to focus their minds
on the hand motor imagery that was instructed while a video of ipsilateral
hand movement was shown on the computer screen for four seconds. After
that, there was a 2-second break.

This dataset has zero citations on Google Scholar, the number of down-
loads is 1200, and the number of views is 3644. [25]

4.4 Farabbi-12
The name of the dataset is Motor-Imagery EEG Dataset During Robot
Arm Control. This experiment involved 12 healthy subjects who had no
prior experience with neurofeedback or BCI and did not have any known
neurological disorders. All participants were right-handed except for one who
was ambidextrous (participant number 5). The latest version was released
in April 2020.

The experiment was conducted in a laboratory environment under con-
trolled conditions. The subjects underwent three sessions, each lasting a
maximum of two hours, over three consecutive days, at approximately the
same time each day.

During each session, participants were exposed to three different condi-
tions. The first condition was always the "resting state," during which the
user was asked to keep their eyes open for two minutes while staring at a
screen with a green cross and a red arrow pointing up and then to close
their eyes for the next two minutes. After this, two more conditions related
to Motor imagery (MI) tasks were followed and performed in a randomized
order between left- and right-hand movements. The two MI conditions con-
sisted of two phases each: a training phase and a test phase. The general
experimental routine for both of them was the same. Each trial lasted 6
seconds (2 seconds baseline and 4 seconds MI), forewarned by the appear-
ance of a green cross on the screen and a concomitant beep sound a second
before the onset of the task.

Then, an arrow appeared pointing left or right, and the subject had
to imagine the movement of the corresponding arm reaching an object in
front of the Baxter Robot (Rethink Robotics, Bochum, Germany). For
both phases, 20 trials for left and 20 trials for right MI were generated in
a randomized order for a total of 40 trials. Finally, there was an inter-trial
interval that extended randomly between 1.5 and 3.5 seconds.

There are metrics for the number of downloads, 216, and the number of
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views, 577. There are zero citations on Google Scholar. [26]

4.5 Jun-25
The name of the dataset is A large EEG dataset for studying cross-session
variability in motor imagery brain-computer interface. The dataset com-
prises data about 25 individuals across five sessions conducted on different
days, with a gap of 2-3 days between each session for every subject. Each
session encompasses 100 trials of left-hand and right-hand Motor Imagery
(MI). The latest version was released in September 2022.

The MI experiment was conducted in three stages. The initial stage,
0-2s, was the preparatory rest period, during which subjects were allowed
to rest, make small body movements, and blink. The second stage, 2-4s,
was the prompt stage. Here, a left-hand or right-hand movement animation
was displayed on the monitor to remind the subjects of the upcoming hand
task. The third stage, 4-8s, was the MI process. During this period, subjects
performed MI tasks of hand movement in the corresponding direction as per
the arrow prompt on the monitor. [32]

There are metrics for the number of downloads 2260, and the number of
views 3423. [27] The number of citations is three on Google Scholar.

4.6 Dreyer-87
The name of the dataset is A large EEG database with users’ profile in-
formation for motor imagery Brain-Computer Interface research. The data-
base contains electroencephalographic signals from 87 human participants,
amounting to over 20,800 trials in total and representing about 70 hours of
recording. The data was collected during brain-computer interface (BCI)
experiments and organized into three datasets (A, B, and C). All three
datasets were recorded following the same protocol, which involved right
and left-hand motor imagery (MI) tasks during a single-day session.

The database includes the performance of the associated BCI users, de-
tailed information about their demographics, personality, and cognitive pro-
files, as well as the experimental instructions and codes executed in the
open-source platform OpenViBE.

This database could be helpful for various studies, including but not
limited to 1) exploring the relationship between BCI users’ profiles and their
BCI performance, 2) examining how EEG signal properties vary for different
users’ profiles and MI tasks, 3) leveraging a large number of participants to
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design cross-user BCI machine learning algorithms, or 4) incorporating user
profile information into the design of EEG signal classification algorithms.
[28]

There are metrics for the number of downloads 390, and the number of
views 1000 [28]. [33] There are two citations on Google Scholar. The latest
version was released in January 2023.

4.7 Peterson-10
The name of the dataset is Motor Imagery vs Rest - Low-Cost EEG System.
This dataset contains electroencephalography (EEG) signals obtained using
an inexpensive consumer-grade device. Ten individuals with no prior experi-
ence with the brain-computer interface (BCI) participated in the study. The
BCI protocol involved two conditions: kinesthetic imagination of grasping
movement (MI) of the dominant hand and a rest/idle condition. The par-
ticipants were asked to perform five protocol runs, with the first involving
natural grasping movement to explain the protocol better and help the sub-
ject focus on the sensation of moving. The remaining runs were identical,
consisting of MI vs. Rest conditions. EMG signals of the dominant hand
were acquired for protocol control. During acquisition, the EEG signals were
filtered using a third-order Butterworth bandpass filter between 0.5 and 45
Hz. The latest version was released in November 2021. [29]

There are no metrics for the number of downloads, the number of views,
and the number of citations directly in the data portal. However, at the
Google Scholar [34], it has three citations.

4.8 Stieger-62
The name of the dataset is Human EEG Dataset for Brain-Computer In-
terface and Meditation. This database contains EEG data that has been
de-identified from 62 healthy individuals who took part in a brain-computer
interface (BCI) study. Each individual underwent 7-11 sessions of BCI train-
ing to control a computer cursor in one-dimensional and two-dimensional
spaces using their "intent." EEG data was recorded with 64 electrodes. Ad-
ditionally, behavioral data, including the online success rate of BCI cursor
control, is also included in the database. Their aim is to characterize how in-
dividuals learn to control SMR-BCI systems. The latest version was released
in February 2021. [30]

23



There are metrics for the number of downloads 49244 and the number of
views 5348. [35] The number of citations is five on Google Scholar.

4.9 Summary
In this chapter, available data sets were described. For each data set, a short
description of the experiment, some basic information like the number of
participants or the number of channels, and metrics of citations, downloads,
or views were gathered.

There could be several drawbacks. The first is the fact that two data
sets (Averta-156 and Liu-50) include patients who suffered a stroke. This
could lead to different EEG samples, and thus, this data can be discarded
from further usage because the volume of these samples could be too much
different from healthy ones. On the other hand, this data can be a useful
addition because it can help to cover a wider area. The second drawback
is that data sets are created with totally different experiments; therefore,
data samples can be too different from each other. However, we want to get
quality data from experiments or situations that are most similar.

The overall summary of metrics is in Table 4.9. These metrics are the
number of people, the number of downloads, the size of the data set, and
the license as assurance that the data set can be used. Alongside metrics
for each data set, there is the sum of these metrics. Sizes of datasets range
from dozens of MB to hundreds of GB. If the size of the dataset is too
much different from the original dataset, there could be two outcomes. The
first is when the new dataset is too small compared to the original dataset.
This could lead to samples from the new dataset having little to no impact
on accuracy. The second outcome is when the new dataset is too large.
This could lead to samples from the new dataset having a great numerical
advantage; thus, classifiers will fit more into them.

The information about datasets was gathered in February of 2024.
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5 Classification techniques

There are many classification techniques in the machine learning field. It
starts from the simplest Logistic regression to the most complex artificial
neural networks. In this chapter, techniques that were chosen for future
testing are introduced. All mentioned techniques are supervised machine
learning algorithms.

From a statistical point of view, there is no way to tell whether the
classifier will produce good or bad results; it must be tested in the actual
situation.

5.1 Support Vector Machine
Support Vector Machine (SVM) is the first chosen technique. This algorithm
finds a hyperplane between classes in N-dimension space. An indefinite
number of hyperplanes can exist between classes. Therefore, SVM aims to
find a hyperplane that has the biggest margin between samples of different
classes. Maximizing the margin distance provides some reinforcement so
that future samples can be classified with more confidence. Hyperplanes are
decision boundaries that help distinguish the samples. Instances that fall on
either side of the hyperplane can be assigned to distinct categories.

In SVM, support vectors refer to the data points that are closest to the
hyperplane. These points play a crucial role in determining the orienta-
tion and position of the hyperplane. By utilizing these support vectors,
we can effectively maximize the margin of the classifier. Removing any of
these support vectors will significantly affect the position of the hyperplane.
Therefore, these data points are vital in constructing our SVM. [36]

5.2 Naive Bayes
The second machine learning algorithm is the Naive Bayes classifier. It is
part of a family of generative learning algorithms that seek to model the
distribution of inputs in a given class or category. Unlike discriminative
classifiers, like logistic regression, it does not learn which features are most
important to differentiate between classes. Instead, it learns the probabilistic
distribution of features in each class.

Naive Bayes has several main assumptions. The first is that features in
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data are conditionally independent or unrelated to any of the other features.
The classification model assumes that all features have an equal contribution
to the outcome, even though this may not be true in real-life situations (e.g.,
in an email, the next word depends on the previous one). However, this sim-
plifies the classification problem and makes it easier to compute since only
one probability is needed for each variable. Despite this unrealistic assump-
tion of independence, the classification algorithm performs well, especially
with small sample sizes. [37]

5.3 Artificial neural networks
Artificial neural networks (ANN) are a subset of machine learning and deep
learning algorithms. The name of a neural network is like the structure taken
from a human brain. They are trying to mimic the human brain’s behavior
with a certain level of abstraction. As the human brain, they are composed
of nodes called neurons. The neuron consists of two parts. In the first part,
inputs are multiplied by the weights and then summed. In the second part,
the sum is passed into the activation function, where it is decided if the
neuron will pass information further. The structure of the neuron is shown
in Figure 5.1.

These neurons are combined into layers. Between layers, there are links
called synapses. There are three main types of layers. First is the input
layer. The input layer reads the input data. The second one is the hidden
layer. There can be many but also none hidden layers. A number of hidden
layers can differ from one experiment to another experiment. If in the neural
network, there are two or more hidden layers, then it is called the deep
neural network. The last one is the output layer. The common structure
of an Artificial neural network is shown in Figure 5.2. The output layer
provides the vector as an output. For example, in the recognition tasks, this
vector contains the numbers whose sum gives one. The highest value in that
vector is the wanted outcome. [38] This basic scheme is called Multilayer
perceptron (MLP) [39]. There are various types of ANN. Each type adds
some new way of classification.

5.3.1 Convolutional neural network
A convolutional neural network (CNN) is a type of ANN that has a classic
feed-forward structure. Besides that, CNN adds new types of layers to its
structure. These new types are the Convolutional layer and Pooling layer.
These two layers are in tandem. In short, the Convolutional layer computes
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Figure 5.1: Example of neuron structure. The inputs with weights are on
the left side. In the middle is the sum. The activation function with the
result is on the right side. Source: [40]

the representation of the point by matrix multiplication of its surroundings
and chosen kernel. This is done for all points in the input. The output of this
operation is called the Convoluted feature. This feature is then passed to
the Pooling layer as input. The Pooling layer performs dimension reduction
by down-sampling. Together, these two layers perform feature extraction
before the output is flattened to pass it into fully connected layers with the
same structure mentioned above. An example of the whole CNN is in Figure
5.3, which shows how the Convolutional and Pooling layers are between raw
input and classic ANN structure. [41] [42] [43]

5.3.2 Long short-term memory
Long short-term memory, mostly referred to as LSTM, is a special type
of Recurrent neural network (RNN). RNN is a neural network where the
output of the cell is used in the next steps to enhance the knowledge of
the neural network with past experience. These RNNs are great for text
or series classification tasks. The reason for that is their memory. Classic
feedforward ANN mentioned before learn from its mistakes. RNNs also learn
from mistakes but add the memory of previous experiences. RNN has one
problem called vanishing gradient. This vanishing gradient causes forgetting
information over time. The LSTM resolved this problem by changing the
inner structure of the cell. [44]

The structure of LSTM is pretty much the same as ANN (see Figure 5.4)
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Figure 5.2: Example of ANN structure. The input layer is on the left side. In
the middle are hidden layers. The output layer is on the right side. Source:
[38]

with one change. The change is the recurrent connection in hidden layers.
More changes are in the neuron, which is called a cell. The structure

shown in Figure 5.5 is totally different from the structure of the neuron
shown in Figure 5.1. Each cell works with three values. The first value
is the input Xt shown in Figure 5.5 . Other values are output and hidden
state from the previous computation. These two values form the memory of
LSTM. For more depth information see [45], [44], or [46].

5.3.3 Transformer
The Transformer is a new type of ANN. It was published in the year 2017 by
Google [47]. It is the next step in machine learning with memory. The prede-
cessors like RNN or LSTM address this problem with recurrent approaches.
With this approach, RNN and LSTM can take into account the context of
other samples. However, the recurrence is a highly time-consuming process.
So, the Transformer finds different ways how to take context into computa-
tion. [47]

The Transformer structure is shown in Figure 5.6. The Transformer
consists of the encoder and decoder parts. The encoder takes the input
vector and transforms it into a representative vector. The decoder generates
the output sequence from this representative vector and the previous output.
[48], [49], [50]
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Figure 5.3: Example of CNN structure. The input layer is on the left side.
In the middle, there are Convolutional layers and Pooling layers. The output
layer is on the right side. Source: [43]

5.4 K - Nearest Neighbors
K - Nearest Neighbors alias KNN is a non-parametric classifier. Although
it can be utilised for regression or classification, it is commonly applied as a
classification algorithm. The algorithm functions based on the assumption
that similar points exist close to each other. KNN uses distance as a metric
for classification or prediction tasks. Basically, the method of classification
computes distances from all data points in the dataset and looks for K points
that are closest to the original point. Based on these points, the classification
of the given point can be determined.

The metric determines the distance between two points. There are a
lot of different metrics. For instance, the most common Euclidean distance
measures a straight line between the query point and the other point, or
Manhattan distance measures the absolute value between two points; also,
other different distances can be found. [51]

5.5 Statistical classification
This approach uses basic paradigms of statistics like Mean or Median. It
takes samples represented as vectors and labels of these samples. For each
class from labels, it computes one representative called the pivot. This is
done via Mean, Median or other techniques for centroid computation. So,
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Figure 5.4: Structure of LSTM. The recurrent connection of the cells is
shown. Source: [45]

each class is represented by one pivot. The distances between the new sample
and the pivots are computed during the classification of the new sample. The
new sample belongs to the class with the least distance from its pivot.

5.6 Summary
This chapter briefly introduced some classification techniques. It gives little
insight into these methods for further understanding of the topic. For more
deep knowledge on classification techniques, you can see [52].
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Figure 5.5: The structure of the cell of the LSTM. The same cell is shown
in the three different stages. Source: [44]
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Figure 5.6: Structure of the Transformer. The encoder is on the left side,
and the decoder is on the right side. Source: [47]

33



6 Data analysis

In Chapter 4 there were listed several open access datasets on the same
topic as this thesis deals with. Works that created the first dataset at the
University of West Bohemia were shown in Chapter 3.

From Chapter 4 was chosen dataset Farabbi-12. This dataset was chosen
because the experiment behind it has the most similar description to the
experiment done on DCSE. The description of this dataset is the most similar
to the dataset Kodera-29. Farabbi-12 has the same stages in the experiment:
rest stage, left-hand movement, and right-hand movement. Even though
these datasets have the same number of channels (in the system 10-20), the
movement of the upper limbs can be recognized in channels Cz, C3, and C4,
so there is no need to use all 32 available channels. So, the total count of
subjects in the final dataset is 41. All basic parameters for both datasets
are in Table 6.1. Datasets have different sampling rates. To merge these
datasets together, Kodera_29 must be resampled in 250 Hz.

Kodera_29 Farabbi_12 Hrabik_41
Number of subjects 29 12 41
Number of channels 32 32 3

Sampling rate 500 250 250

Table 6.1: Table of parameters of datasets alongside their combination.

6.1 Data structure
Both datasets have different structures in terms of the directory structure,
file naming, and file structure.

6.1.1 Kodera-29
This is the dataset from previous experiments on DCSE described in Chapter
3. This dataset consists of 11 directories. Each directory represents one
measurement with multiple subjects. The name of the directory is the date
when it was measured. There are three groups of directories. The first group
is in directories from 1. 12. 2020 to 28. 1. 2021. This group consists of 5
directories with EEG data about 14 subjects and was measured by Mochura
[18]. The second group is in directories from 2. 9. 2021 to 14. 10. 2021.
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This group consists of 5 directories with EEG data about ten subjects and
was measured by Saleh [19]. The last directory contains EEG data about
five subjects, was measured by Kodera, and was measured on 3. 4. 2023
[20].

There are two naming conventions in those directories. The first con-
vention is used in the first group of measurements from Mochura [18] and
the third group of measurements from Kodera [20] (in 6 directories). This
convention looks like this:

< ID > _ < sex > _ < date > _ < movement > _ < trial > . < format >

• ID - Identification of a subject.

• sex - Sex of the subject.

• date - Date when the measurement was performed.

• movement - Information is about which hand was moved.

• trial - Number of trials for each subject.

• format - Format of the File.

The second convention is used by the second group of measurements from
Salech [19]. This convention looks like this:

HR_ < date > _ < ID > _ < haptic > _ < movement > . < format >

• HR - Prefix. All files have the same prefix.

• date - Date when the measurement was performed.

• ID - Identification of a subject.

• haptic - Information on whether there was a haptic device with vibra-
tion during the experiment.

• movement - Information is about which hand was moved.

• format - Format of the File.

Both conversions use the same Brain Vision standard, which consists of
3 separate file formats.

• .vhdr - This file is a header file with metadata about EEG data.
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• .vmrk - This file is a marker file with information about events in EEG
data.

• .eeg - This file contains the voltage values of the EEG.

To sum up this dataset, a structure is chosen based on each measurement.
This means that to get all the data about one subject, we need to go through
all the measurements. Figure 6.1 is an example of the structure of directories
and files in the file system.

Figure 6.1: This is an example of the structure of the Kodera-29 dataset.
Within the root folder are directories of each measurement labelled by the
date of measurement. Inside these directories, there are sets of three data
files corresponding to each subject involved in the measurement.

6.1.2 Farabbi-12
It was got through [26] Zenodo storage. The dataset consists of 12 direct-
ories. Each directory has the ID of the subject in its name and represents
one subject. In each directory, three directories represent sessions for each
subject. In each session, there were three conditions. The conditions are
rest state, movement from the first-person view, and movement from the
third-person view. The first-person view means the subject is trying to ima-
gine movement like he could. The third-person view implies the subject
is trying to imagine the puppet’s movement before him. For example, it
can be ordered as "Rise right-hand puppet." Each condition has a separate
directory. In the rest state directory, there is only one file named in the
format:

rest_state − [< date > − < time >].gdf

In the other two conditions, there are two files in the format:

< view > −person− < phase > [< date > − < time >].gdf
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The view can become 1st or 3rd, as mentioned before. The phase is inform-
ation about whether it is a final (called online) or a training trial of the
subject. Both phases have the same experiment structure and thus can be
merged. The whole structure is shown in Figure 6.2.

Figure 6.2: Example of the structure of data for one subject.

The format of files .gdf [53] is the acronym for General data format. This
format envelops all EEG data alongside metadata and markers. The inform-
ation about left-/right-hand movement is inside those files in the marker
part.

6.1.3 Summary
Datasets have different approaches to how they store data. Kodera-29 has
files with the movement of a specific hand (the file containing data from the
right hand and the file for the left hand), and Farabbi-12 has files with data
about the movement of both hands mixed. Besides this, both datasets have
the following structure of the experiment with minor changes at the start
and the end of measurements.

• rest stage

• movement stage
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7 Problem analysis

Chapter 3 presented various works and open-access datasets related to a
topic, yet our understanding of the subject remains insufficient. Rather
than blindly tuning classifiers, we took a different approach and turned to
basic statistics, learning some valuable insights. Given the complexity of
the problem, we are determined to cover most outcomes and then try to tell
which approach could lead to better results.

The main aim of this thesis is to decide if we are able to enhance our
dataset with data from different sources, and the second goal is if it is good
to have one general model for all subjects or a specific model for each subject.

7.1 Chosen classifiers
With this in mind, we chose mostly standard classifiers in the field. The
chosen classifiers are:

• Statistical classification (SC)

• MLP

• CNN

• LSTM

• Transformer

MLP, CNN, LSTM, Transformer, and Statistical classification are described
in Chapter 5.

7.2 Types of classification
Classification can be based on the nature of the dataset, such as binary or
multiclass, and EEG specifications that can be either inter-subject or intra-
subject. Both are used for comparison to determine if it is better to have a
general model or a subject-specific model.
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7.3 Feature vectors
Before classification, proper input feature vectors are needed. In the Chapter
3, there are several examples of these vectors. In this work, the Time series
and Frequency representations were chosen. For this, there were a few
ideas. The first idea is the desire to keep the most simple flow of the data.
The second reason is that if another representation were chosen, it would
only mean data transformation. However, the information contained in the
data stays the same. The last reason is that most chosen classifiers natively
want to do their feature extraction from raw data.

The data has an uneven distribution of samples among different classes,
making it inconvenient for cross-validation. To mitigate this, the data needs
to be split into class-specific parts and then merged back together. This issue
is not seen in inter-subject classification because there is a great volume of
data, and both training and testing sets are all types of samples.

So, there are basically two types of feature vectors for each representa-
tion. In the first, data is unsorted, and in the second, data is sorted in the
way described above. This applies to multi-class classification. For binary
classification, there is only one unsorted feature vector for each representa-
tion.

For instance, these are labels for subject 09:

2, 5, 2, 5, 5, 5, 2, 5, 5, 2, 5, 2, 5, 5, 2, 6, 6, 2, 6, 2, 6, 6, 2, 6, 6, 6, 2, 6

As seen from the star, there are only twos and fives. On the other hand,
from the middle, there are only twos and sixes (for context, two is rest,
five is left-hand, six is right-hand). To eliminate this, this vector must be
reordered as described before.
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8 Implementation

The project is written in Python version 3.10.4. The whole project is on
GitHub: https://github.com/Hrabikv/Diploma_thesis as a public reposit-
ory. The project’s overall structure is shown in Figure 8.1. The project is
divided into four main parts. These parts are:

• Preprocessing

• Classification

• Postprocessing

• Visualization

The main entry point is main.py, which delegates all work to the proprietary
part.

The used libraries are SciPy, NumPy, Plotly, MNE, Scikit-learn, Keras,
Matplotlib, TensorFlow, and Pandas.

8.1 Preprocesing
This part is responsible for loading the data from various sources that are
described in Chapter 6 and transforming these raw data into a structure
that can be used for classification purposes.

The data loading is simple because both data formats have open struc-
tures, and there are already functions for loading them. The only problem
is to group loaded data from one subject.

The more complicated process was the transformation of the data. After
loading, the minimal sampling frequency for both datasets must be found.
With this sampling frequency, epochs can be computed. Epochs and their
events are created from this process. From these pairs must be chosen pairs
with proper events.

In the end, the shape of the loaded and transformed data is as follows:

[number_of_subjects, number_of_events, channels, timestamps]

The shape of the labels looks like this:

[number_of_subject, number_of_events]
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Figure 8.1: The structure of the project.

• number of subjects - It is the number of subjects in a dataset. For
example, in Kodera_29, there are 29 subjects.

• number of events - It is the number of rest, left-hand, and right-hand
events together. Each subject has a different number of events

• channels - Number of used channels. There are three (C3, CZ, C4).

• timestamps - The length of the signals from the channel. For the used
sampling rate of 250 Hz across 4 s, it is 1000 values.
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8.2 Classification
The classification uses a cross-validation method to test created models.
This cross-validation tries different sizes of folding. Each classifier has a
separate class. All classifiers implement abstract class Classifier to have
methods train and validate. Each classifier transforms general input data
to specific needs. Classifiers produce raw results and other metrics from
cross-validation. These raw results and other metrics are then saved during
cross-validation in .csv in directory results/raw_results files for further work.

8.2.1 Statistic classification
This method is very similar to K - means. This approach computes Pivot
for each class. Each pivot represents each class during classification. The
example of computed pivots with data classes is shown in Figure 8.2. For
classification, there are defined metrics that compute the distance between
each pivot and the sample that is classified. The sample is then included in
the class with the least distance.

Figure 8.2: Example of computed pivots. Each point represents an EEG
signal fingerprint constructed by dimensionality reduction Common Spatial
Patterns (CSP) algorithm [54]. The blue color points represent left-hand
samples, the red color points represent the rest, and the green color points
represent right-hand samples. The purple color points are the pivots of each
class.
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8.2.2 MLP
MLP consists of 4 layers. The Dense layers have a variable number of neur-
ons. It depends on the size of the input feature. The input layer has the
size of the input feature neurons with a ReLU activation function followed
by Batch normalization. The core of MLP is two hidden layers. The first
hidden layer has two-thirds of the size of the input feature neurons, and the
second has a fifth of the size of the input feature neurons. Both layers have
ReLU and Batch normalization. The number of neurons corresponds with
the number of classification classes in the output layer. Here is Softmax as
an activation function. Figure 8.3 shows this structure.

8.2.3 CNN
The created CNN model consists of 5 layers. The first three layers are
convolution layers with filter size set to 100 and kernel size set to 5. All
three layers have ReLU as an activation function and are followed by Batch
normalization. After the convolution block is the Global average pooling
layer. The output layer is a dense layer with a softmax activation function
and a variable number of neurons, such as MLP. The whole structure can
be seen in Figure 5.3.

8.2.4 LSTM
The LSTM model is the smallest of all NNs. It consists of 3 layers. Two
of these layers are LSTM layers. The first is the input layer, which has 250
LSTM units, and the second is the hidden layer, which has 150 LSTM units.
Both LSTM layers use ReLU as an activation function. The output layer
is a dense layer with a number of neurons corresponding with a number
of classes and a softmax activation function. LSTM structure is shown in
Figure 8.5.

8.2.5 Transformer
The Transformer model is the most complex one as it consists of 15 layers.
The Encoder has 12 layers, and the last three layers are for classification.
Furthermore, the Encoder consists of four blocks, each with its own three
layers. The first layer is the MultiHeadAttention type with four heads. Each
head has a size of 250, and each layer has Dropout and Layer normalization.
The second and the third layers are the same. Moreover, both have four
filters with kernel size 1, an activation function is ReLU, and have Dropout.
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After these blocks, the Global Averaging pooling layer is created. The last
two layers are fully connected. The first of the¨two has 125 neurons, ReLU
as an activation function, and has Dropout. In comparison, the output layer
is the same as before. The whole structure is displayed in Figure 8.6.

8.3 Postprocessing
This part of the project loads raw results from the classification. From them,
it computes these metrics:

• the average accuracy of classification for tenfold cross-validation

• the best accuracy from all folds

• the average time of training

• the average time of classification of one sample

The results are saved in .xlsx file by the Pandas framework.

8.4 Visualization
This part of the program is for printing graphs of raw data, raw results, and
results. There is a function to print graphs of raw data with the help of CSP
reduction dimension [54]. It is responsible for creating graphs of raw results
of accuracies from cross-validation. Lastly, it has a method to print a graph
for each metric described in the previous Section 8.3.
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9 Results

This chapter conducts results from all possible combinations of the paramet-
ers (types of classification, feature vector) described in Chapter 7. A total
of 4 different tests on each possible dataset were performed. The results are
focused on average accuracy from cross-validation. However, for complete-
ness, there are data about the time of the training of each model alongside
the time of classification of one sample.

These metrics are computed from 10-fold cross-validation. The other
folds were tested for clarification on whether the classifiers were over-trained.
These results were only for testing purposes and are not shown in the fol-
lowing sections.

All experiments were performed on the Notebook with 16GB of RAM
DDR4, 8-core processor AMD Ryzen 7 5800H (3.2GHz, TB 4.4GHz, 16
thread), and graphics card NVIDIA GeForce RTX 3050 Ti 4GB GDDR6.

9.1 Intra-subject results
The volume of these results is huge. For each subject, 26 models of each
classifier were trained. This means that a total of 1066 models were trained
for each scenario. The total computing time for all scenarios is 85 hours.

Each subject has a different size of data. The number of samples ranges
from 18 (subject 24) to 224 (subject 23) for binary and from 14 (subject
24) to 216 (subject 36) for multi-class classification. The difference between
binary and multi-class is caused by the implementation of the MNE library.
During dropping samples in the multi-class part, some samples are cut out.
Subject 24 has 0 samples which is the minimum and can be seen in Tables
B.1, B.2, B.3, B.4, B.5, B.6, from the Appendix B. It is because data could
not be adequately split into training and testing parts for 10-fold.

Tables B.1, B.2, B.3, B.4, B.5, B.6, in Appendix B, have the following
structure. One table has 6 data columns and 41 data rows. Each row
represents the accuracies of classifiers on data from one subject and, in the
last column, the number of samples for that subject. As stated in Chapter 7,
the binary classification has only one type of feature vector, so the results in
this case have one table. On the other hand, the multi-class classification has
two feature vectors, so it has two tables. Each table is subsequently divided
into four different groups. Each group represents one performed dataset. In
bold are the best accuracies for each group and each classifier. If there are
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two or more best accuracies, all are in bold.
For better referring to groups in tables, there is implemented a color-

coding:

• 1. group Blue - 14 subjects from Mochura Thesis [18].

• 2. group Gray - 10 subjects from Saleh Thesis [19].

• 3. group Orange - 5 subjects from Kodera Thesis [20]

• 4. group Green - 12 subjects from Farabbi paper [26].

This partition was done to determine whether data from multiple measure-
ments performed similarly or if there were some differences.

9.1.1 Time-series representation and binary classific-
ation

Table B.1 presents the accurate classification results using time-series repres-
entation and binary classification parameters. Table 9.1 displays all subjects’
average accuracy, training times, and classification time to provide further
details.

In the blue group, subject 09 had the best performance with 75 % ac-
curacy using MLP, resulting in the best outcome. This subject has only 36
samples in the data, which implies that the result of this test was just luck,
but interestingly, cross-validation could not negate this. Subjects 10 and 12
have slightly lower accuracy than subject 09. Their performance is not as
great as subject 09. Both have around 61 % with the MLP classifier. These
results thus can be supposed to be more trustworthy ones because subjects
10 and 12 have a higher number of samples.

The gray group has pretty much the same pattern as the blue group.
There is subject 22 with 72,50 % accuracy from the MLP but with 40
samples. But the other results of this subject are not that good. Subject 23
has better average accuracy across all classifiers on 224 samples.

The orange group is the smallest, but all subjects have many samples.
The best-performing subject, 27, has an accuracy of 65,91 % from the LSTM
and has almost all other best scorers from the group except one. All is
achieved with the second highest number of samples of 220.

The last green group has the best results of all groups. The best result
is subject 35, with an accuracy of 75,71 % on the Transformer. However,
as previously mentioned, this subject has only 70 samples. Subjects 37, 39,
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and 40 have great results with a high number of samples. Even subjects 37
and 40 have an average accuracy above 68 %.

There are no significant differences within Kodera_29 (Blue, Gray, and
Orange group). Subjects from Farabbi_12 have slightly better results than
subjects from Kodera_29.

On the average, this test performed poorly. Accuracies from Table 9.1
show a maximum average accuracy of 54,80 % for the MLP classifier, which
is not more of a coin flip. In the training time, the statistical classific-
ation excels with 9 ms of training. This is a huge difference when com-
pared to Transfomer performance with 58,9 s of training time. Nevertheless,
both classifiers have similar classification results. The CNN, LSTM, and
MLP classifiers used a comparable amount of resources during training and
provided similar results.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 52,77 52,22 54,80 51,05 51,88
Time of training (s) 1,390 3,049 4,912 0,009 58,902
Time of classification (ms) 42,184 37,995 43,542 0,026 75,211

Table 9.1: Table shows the model’s average accuracy from all subjects, train-
ing time, and classification time for each classifier. The combination of para-
meters is time-series representation and binary classification.

9.1.2 Time-series representation and multi-class clas-
sification

The tables representing classification accuracy with time-series representa-
tion and multi-class classification parameters are shown in Tables B.2 and
B.3. Table 9.2 displays the average accuracy, time taken by each classifier for
training all subjects, and classification time with unsorted feature vectors,
while Table 9.3 shows the same metrics for all subjects with sorted feature
vectors.

The blue group’s best performer was subject 3, with an accuracy of 56,25
% for unsorted vectors and an accuracy of 65,71 % for sorted vectors for the
LSTM classifier on data with 82 samples. The other results are bad except
for subject 10. This subject has achieved, with a sorted vector, an accuracy
of 50 % from the CNN and the LSTM but on only 51 samples in the dataset.

The gray group has exciting results. For unsorted vectors, subject 22
was the best, with an accuracy of 53,33 % from the statistical approach.
For sorted vectors, it was subject 20 with an accuracy of 45,45 % from the
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LSTM, the MLP, and the statistical approach. Both subjects have a smaller
pool of samples, 31 samples for subject 22 and 38 samples for subject 20.
The overall best subject from this group is subject 15, which showed an
accuracy of 36,73 % for unsorted vectors and an accuracy of 42,80 % for
sorted ones. Another indication is his number of samples, which is 115.

The orange group is the exact opposite of the gray group. Sorting the
vectors leads to lower overall results. The best accuracy of subject 26 goes
from 48,46 % from the CNN to 42,50 %. This group has two candidates for
the best results. Subject 26 has high accuracies with fewer samples, and his
results are not stable across all classifiers. Subject 27 achieved a lower best
accuracy with a higher number of samples, and his results achieved better
accuracies on average.

The green group shows resistance to the sorting of vectors. Sorting helps
subject 30 to increase the accuracy of the CNN from 56,25 % to 61,11 %,
but the performance of other classifiers is too bad on his 48 samples. It
seems subjects 37 and 40 again performed great across classifiers with their
high number of samples. Subject 37 is the best classifier for the Transformer,
with 58,00 % on unsorted vectors and 57,00 % on sorted vectors. The subject
has the best classifier, the MLP, with an accuracy of 58,00 % on unsorted
vectors, and the Transformer with 56,32 % accuracy on sorted vectors.

There is no big difference between groups. However, there are differences
across subjects.

On the average, this test performed poorly. Accuracies from Tables 9.3
and 9.2 show a maximum average accuracy of 35,87 % for the MLP classifier
with sorted vectors. In the training time again, the statistical classification
excelled with 9 ms of training. The overall performance of this approach is
lower than that of other classifiers, but there are considerable differences in
the resources used (0,009 ms of training time). The Transformer perform-
ance can be comparable with other classifiers, but the number of resources
used (58,902 s training time) is vastly different. The CNN, LSTM, and
MLP classifiers used a comparable amount of resources during training and
provided similar results.

9.1.3 Frequency representation and binary classifica-
tion

Tables B.4, 9.4 show the classification accuracy and average accuracy and
average training and classification times for each classifier using frequency
representation and binary classification.

Subject 09 is the best-performing with 66,67 % accuracy from the Trans-
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Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 34,58 32,25 34,69 32,12 34,04
Time of training (s) 1,439 3,088 4,403 0,009 55,704
Time of classification (ms) 42,09 39,17 44,19 0,04 75,02

Table 9.2: Table shows the model’s average accuracy, training time, and
classification time for each classifier with unsorted feature vectors. The
combination of parameters is time-series representation and multi-class clas-
sification.

Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 35,60 34,71 35,87 31,86 34,41
Time of training (s) 1,436 2,986 4,255 0,009 55,317
Time of classification (ms) 42,52 42,30 41,23 0,04 74,00

Table 9.3: Table shows the model’s average accuracy, training time, and
classification time for each classifier with sorted feature vectors. The com-
bination of parameters is time-series representation and multi-class classific-
ation.

former classifier but only on 36 samples from the blue group. Subjects 10
and 12 were in second place in overall performance. Both subjects have the
MLP as the best classifier. Subject 10 achieved 62,86 % accuracy with 214
samples, and Subject 12 had 61,67 % accuracy with 188 samples.

In the gray group, the best subjects are 15, 19, and 23. Despite Subject
15 not having achieving the highest scores, his overall performance is at the
same level as that of Subjects 19 and 23. Subject 19 achieved an accuracy
of 68,33 % from the LSTM classifier with 62 samples. Subject 23 has 61,82
% as well from the LSTM classifier with 224 samples.

The situation is the same in the orange group. Subject 27 outperformed
the other subjects in 4 out of 5 classifiers with his 220 samples. His best-
achieved accuracy is 62,72 % from the LSTM classifier. Subject 26 is in
second place with his 60,56 % accuracy from the MLP classifier with 182
samples.

At first glance, Subject 31 has the highest accuracy of 62,86 % from
the LSTM with 70 samples. However, Subject 39 performs better across all
classifiers with 62,22 % accuracy from the MLP with 182 samples.

It seems that the frequency spectrum negates the differences between
groups.

Again, this test performed poorly. 3 out of 5 accuracies from Table 9.4
are under 50 %. Regarding average training time, the statistical approach is
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the fastest at 7 ms. On the opposite of the spectrum is the Transformer with
43,003 s average training time. The average training time for other classifiers
is in seconds. There is the same situation for the metric of the average time
of classification. The fastest is the statistical approach, the transformer is
the slowest. CNN, LSTM, and MLP have similar performance and it is
between these values.

Metrics CNN LSTM MLP SC Transformer
Average accuracy 49,29 51,87 52,21 49,01 49,73
Time of training (s) 0,994 2,792 3,588 0,007 43,003
Time of classification (ms) 39,63 38,28 41,47 0,02 63,41

Table 9.4: Table shows the model’s average accuracy, training time, and
classification time for each classifier. The combination of parameters is fre-
quency representation and binary classification.

9.1.4 Frequency multi-class
The accuracy of classification with parameters frequency representation and
multi-class classification are represented by Table B.1. Table 9.5 shows each
classifier’s average accuracy, training times, and classification times for all
subjects with unsorted feature vectors. Table 9.6 shows the same metrics
for all subjects with sorted feature vectors.

The blue group was dominated by subject 13 as far as his/her results
were concerned results. In unsorted vectors, he did not get the best result of
66,67 % from the statistical approach of Subject 06 with 60 samples but got
the second-best accuracy of 65,00 % from the same classifier. This subject
got the best results on average in both unsorted and sorted vectors with his
101 samples. In sorted vectors, this subject got an accuracy of 71,25 % from
the LSTM and the Transformer.

In the gray group, it is the same situation as in the blue group. Subject
16 was the most successful so far. These subject results are outstanding
because he achieved the best accuracies across all classifiers in unsorted and
sorted vectors. These results are also supported by his 140 samples, which
is a higher number of samples in the whole dataset. From unsorted vectors,
this subject gets an accuracy of 75,71 % from the MLP, and in sorted vectors,
it gets 73,33 % accuracy from the statistical approach.

As in previous results, the orange group subject with the highest accuracy
is Subject 27 in both unsorted and sorted vectors. From unsorted vectors,
this Subject gets 57,50 % accuracy from the MLP with his 165 samples. The
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Statistical approach was able to achieve an accuracy of 58,00 % in sorted
vectors. These results are not as good as results from previous groups.

The green group is nothing special from other groups. The best subject
was subject 31, with an accuracy of 60,00 % from the Transformer with his
70 samples on sorted vectors. In unsorted vectors was the best Subject 33
with 52,73 % accuracy from the CNN.

There are no big differences between groups. The main difference is
between subjects.

On the average, this test performed poorly. Accuracies from Tables 9.6
and 9.5 show a maximum average accuracy of 44,33 % for the statistical
approach classifier with sorted vectors. Relationships of other metrics are
the same here.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 41,10 42,82 42,61 44,33 38,07
Time of training (s) 1,439 3,088 4,403 0,009 55,704
Time of classification (ms) 39,17 37,34 36,16 0,01 42,30

Table 9.5: Table shows the model’s average accuracy, training time, and
classification time for each classifier with unsorted feature vectors. The
combination of parameters is frequency representation and multi-class clas-
sification.

Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 42,26 42,17 42,43 43,59 42,32
Time of training (s) 1,436 2,986 4,255 0,009 55,317
Time of classification (ms) 35,45 34,86 35,94 0,01 42,16

Table 9.6: Table shows the model’s average accuracy, training time, and
classification time for each classifier with sorted feature vectors. The com-
bination of parameters is frequency representation and multi-class classific-
ation.

9.1.5 Discussion
In this test scenario, binary classification performed better than multi-class
classification. This is a predictable outcome.

The more interesting result is from data representation. Firstly, time-
series representation has better results than frequency representation in the
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case of binary classification. time-series representation achieved higher ac-
curacy but on subjects with fewer samples. The maximum accuracy of 75,71
% from Subject 35 from the Transformer and the average accuracy of 54,80
% from MLP. On the other hand, frequency representation has lower max-
imum values in both maxima (68,73 %, Subject 19, LSTM) and on average
(52,21 %, MLP).

In multi-class classification, the situation is reversed. The time series
achieved the best outcome from Subject 03 with an accuracy of 65,71 %
from the LSTM. The best average accuracy of 35,87 % comes from MLP.
The frequency representation was better here. Subject 16, with an accuracy
of 73,33 % from the statistical approach, was the best result, which is almost
8 % more. On average, it achieved 44,33 % accuracy from the Statistical
approach, which is again almost 8 % more. These results show that different
data representations are suitable for different classifications.

In comparison with previous works from Chapter 3, these tests, on av-
erage, have lower performance, but in the best cases, they are on the same
level. The results from Kodera’s work are in Table 9.7.

Representation Binary Multi-class
Time-series 76,00 % 58,57 %
Frequency 65,17 % 50,81 %

Table 9.7: Results from Koderas work on the same combination of paramet-
ers. [20]

9.2 Kodera_29 results
This section covers the results of the Kodera_29 dataset. The results for
time-series representation are presented in Table 9.8 for binary classification.
The LSTM classifier achieved the highest accuracy with 54.44 %. The Stat-
istical classification had the fastest training time. The Transformer classifier
was the slowest but achieved the second-highest accuracy.

Below is a summary of the results for multi-class classification and time-
series representation. Tables 9.9 and 9.10 show the performance of unsorted
and sorted vectors, respectively. The LSTM classifier achieved the highest
accuracy of 36.88 %. On the other hand, the statistical classification had
the fastest training time, while the transformer had the slowest training time
and achieved the second-best accuracy.

Table 9.11 presents the results for frequency representation for binary
classification. The MLP classifier achieved the highest accuracy at 59,64 %.
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Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 53,50 54,44 53,75 49,26 53,69
Time of training (s) 17,86 40,72 197,40 0,24 1667,81
Time of classification (ms) 38,47 39,18 72,32 0,04 50,41

Table 9.8: The table shows the results of the scenario with the Kodera_29
dataset, time-series representation, and binary classification. Average accur-
acy, training time, and classification time for each classifier are shown.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 35,97 34,29 34,25 34,10 35,05
Time of training (s) 13,5 32,9 124,1 0,2 254,3
Time of classification (ms) 38,44 39,51 40,71 0,04 48,20

Table 9.9: Part 01. The table shows the results of the scenario with the
Kodera_29 dataset, time-series representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

In terms of training time, the statistical classifier was the fastest. On the
other hand, the transformer classifier took the longest time to train, but it
secured the second-highest accuracy.

For multi-class classification and frequency representation, there are Tables
9.12 for unsorted vectors and 9.13 for sorted ones. The best classifier in the
MLP with 41,21 %. The fastest training time has the statistical classifica-
tion. The transformer was the slowest but got the second place in accuracy.

9.2.1 Discussion
In binary classification, the results when using frequency representation
achieved a higher accuracy than the results when using time-series repres-
entation. The difference is only around five % of accuracy. This outcome is
opposite to results in intra-subject results from the previous Section 9.1.

The multi-class classification has better results from frequency repres-
entation where accuracies are reaching, in most cases, above 40 %. On the
other hand, the time-series representation with the highest accuracy of 36,88
% is worse. There is the same pattern as it is described in Section 9.1.

To compare these results with previous works, see Table 9.14, which sums
up results from the latest work from Kodera [20] alongside results from this
section. All achieved results are at a lower level of accuracy. The closest
to previous work is binary classification on frequency representation, where
the difference is around six % of accuracy. The results of the time-series
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Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 36,73 36,88 35,66 34,49 35,26
Time of training (s) 12,5 33,2 128,2 0,2 311,6
Time of classification (ms) 38,14 39,17 41,08 0,04 170,01

Table 9.10: Part 02. The table shows the results of the scenario with the
Kodera_29 dataset, time-series representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 58,24 58,48 59,64 55,62 56,61
Time of training (s) 6,63 7,26 4,02 0,05 173,18
Time of classification (ms) 37,12 38,23 63,16 0,02 50,02

Table 9.11: The table shows the results of the scenario with the Kodera_29
dataset, frequency representation, and binary classification. Average accur-
acy, training time, and classification time for each classifier are shown.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 41,03 40,00 41,21 39,52 36,15
Time of training (s) 4,48 7,73 3,34 0,03 131,46
Time of classification (ms) 38,21 37,92 39,07 0,03 51,37

Table 9.12: Part 01. The table shows the results of the scenario with the
Kodera_29 dataset, frequency representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

representation are both down by 22 %.
From these results, there was confusion about what happened. So, one

classifier was chosen to see where the problem is. The chosen classifier
was the MLP with the same architecture as in Kodera’s work [20] for help
pointing out the problem. The results are surprising because these results
are lower as well. The first idea was that the sampling rate causes it. The
original dataset has a sampling rate of 500 Hz, but to be able to add samples
from Farabbi, this rate was decreased to half 250 Hz, as shown in Table 6.1 in
Chapter 6. This decrease with high probability causes this lower accuracies.
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Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 41,07 39,78 40,85 40,51 36,88
Time of training (s) 5,96 8,77 3,71 0,03 138,96
Time of classification (ms) 38,51 37,07 38,81 0,03 168,58

Table 9.13: Part 02. The table shows the results of the scenario with the
Kodera_29 dataset, frequency representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

Binary Multi-class
Work This Kodera This Kodera
Time-series 54,44 % 76,00 % 36,88 % 58,57 %
Frequency 59,64 % 65,17 % 41,21 % 50,81 %

Table 9.14: The best results of this Section compared to Kodera´s results.

9.3 Farabbi_12 results
This section covers the results of the Kodera_29 dataset on classifiers, which
were described in Chapter 8. It’s unnecessary to repeat that the Statistical
approach was the fastest, and the Transformer was the slowest. This applies
to all the following results.

In the setup of binary classification and time-series representation, the
CNN gets the highest score of 63,35 % accuracy; see Table 9.15.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 63,35 60,26 60,29 61,48 60,77
Time of training (s) 6,6 12,3 53,0 0,1 115,9
Time of classification (ms) 37,64 66,91 41,65 0,04 48,46

Table 9.15: The table shows the results of the scenario with the Farabbi_12
dataset, time-series representation, and binary classification. Average accur-
acy, training time, and classification time for each classifier are shown.

The tables in Tables 9.16 and 9.17 show the results of multi-class clas-
sification for unsorted and sorted vectors, respectively. There is the best
classifier, the Transformer, with 48,90 % accuracy from sorted vectors.

In the frequency representation and binary classification, the best clas-
sifier is the CNN with 51,81 % accuracy; see Table 9.18.

The results of multi-class classification for frequency representation are
shown in Tables 9.19 and 9.20 for unsorted and sorter vectors. The best
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Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 47,68 46,13 45,48 41,74 47,03
Time of training (s) 7,1 14,8 56,5 0,1 145,8
Time of classification (ms) 39,01 38,86 42,84 0,04 48,85

Table 9.16: Part 01. The table shows the results of the scenario with the
Farabbi_12 dataset, time-series representation, and multi-class classifica-
tion. Average accuracy, training time, and classification time for each clas-
sifier are shown.

Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 47,34 41,21 44,55 41,10 48,90
Time of training (s) 7,4 16,9 55,0 0,1 117,6
Time of classification (ms) 37,90 38,56 43,24 0,04 1165,93

Table 9.17: Part 02. The table shows the results of the scenario with the
Farabbi_12 dataset, time-series representation, and multi-class classifica-
tion. Average accuracy, training time, and classification time for each clas-
sifier are shown.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 51,81 51,23 51,10 49,10 51,10
Time of training (s) 2,85 4,07 1,77 0,02 57,06
Time of classification (ms) 37,22 37,98 56,76 0,02 49,78

Table 9.18: The table shows the results of the scenario with the Farabbi_12
dataset, frequency representation, and binary classification. Average accur-
acy, training time, and classification time for each classifier are shown.

classifier is the transformer, with achieved accuracy of 49,10 %.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 43,29 41,03 41,68 34,71 49,10
Time of training (s) 2,88 4,74 1,95 0,02 66,55
Time of classification (ms) 36,61 37,86 37,98 0,02 49,33

Table 9.19: Part 01. The table shows the results of the scenario with the
Farabbi_12 dataset, frequency representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.
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Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 43,77 42,08 42,27 33,90 48,70
Time of training (s) 3,30 4,96 1,93 0,02 56,93
Time of classification (ms) 36,93 59,96 37,36 0,02 148,38

Table 9.20: Part 02. The table shows the results of the scenario with the
Farabbi_12 dataset, frequency representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

9.3.1 Discussion
As anticipated, these results are different from Kodera_29 results in Section
9.2. The time-series representation is more suitable for binary classification
in this dataset. This is the same as the Intra-subject Section 9.1 and opposite
to Kodera_29 Section 9.2. In the frequency representation, there is no big
difference in the results. The best results are from the transformer, with a
difference only of 0,2 %.

In comparison to results from section 9.2, these results are higher in 3
out of 4 cases (see Table 9.21).

Binary Multi-class
Dataset Farabbi_12 Kodera_29 Farabbi_12 Kodera_29
Time-series 63,35 % 54,44 % 48,90 % 36,88 %
Frequency 51,81 % 59,64 % 49,10 % 41,21 %

Table 9.21: The best results of this section compared to results from Section
9.2.
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9.4 Hrabik_41 results
This Section covers the results of the dataset composed from Kodera_29
and Farabbi_12 on classifiers described in Chapter 8.

The results for time-series representation are presented in Table 9.22 for
binary classification. The CNN classifier achieved the highest accuracy with
55,68 %.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 55,68 54,61 55,32 53,16 53,20
Time of training (s) 27,4 66,0 354,3 0,4 648,5
Time of classification (ms) 38,03 38,67 74,20 0,05 48,20

Table 9.22: The table shows the results of the scenario with the All Sub-
jects dataset, time-series representation, and binary classification. Average
accuracy, training time, and classification time for each classifier are shown.

The tables for unsorted and sorted vectors display the results of the
same representation and multi-class classification, as shown in Tables 9.23
and 9.24, respectively. There is the best classifier, the Transformer, with
37,41 % accuracy from sorted vectors.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 37,55 37,09 37,09 36,32 38,16
Time of training (s) 23,2 64,1 384,6 0,3 1464,0
Time of classification (ms) 38,82 39,63 46,61 0,05 51,81

Table 9.23: Part 01. The table shows the results of the scenario with the All
Subjects dataset, time-series representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier
are shown.

Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 37,99 36,31 36,29 36,66 38,41
Time of training (s) 20,2 60,9 297,8 0,3 1297,0
Time of classification (ms) 38,82 39,20 41,97 0,06 51,38

Table 9.24: Part 02. The table shows the results of the scenario with the All
Subjects dataset, time-series representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier
are shown.
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Table 9.25 shows results for binary classification on frequency represent-
ation. The best classifier is the CNN, with an accuracy of 56,42 %.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 56,42 54,24 55,47 54,80 53,53
Time of training (s) 9,36 9,03 4,57 0,06 238,06
Time of classification (ms) 37,74 37,66 58,58 0,02 48,99

Table 9.25: The table shows the results of the scenario with the All Subjects
dataset, frequency representation, and binary classification. Average accur-
acy, training time, and classification time for each classifier are shown.

For multi-class classification and the same representation, the results are
in Tables 9.26 and 9.27 for unsorted and sorted vectors, respectively. The
best classifier is the LSTM, with an accuracy of 41,38 % for unsorted vectors.

Metrics CNN LSTM MLP SC Transformer
Average accuracy (%) 41,38 39,95 38,18 32,49 38,74
Time of training (s) 8,26 10,29 6,01 0,05 194,69
Time of classification (ms) 37,50 37,56 37,53 0,02 40,21

Table 9.26: Part 01. The table shows the results of the scenario with the
All Subjects dataset, frequency representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

Metrics CNN LSTM MLP SC Transformer
sorted sorted sorted sorted sorted

Average accuracy (%) 34,51 34,53 32,43 29,25 37,66
Time of training (s) 8,29 9,27 3,57 0,05 212,79
Time of classification (ms) 37,02 37,45 37,08 0,02 39,93

Table 9.27: Part 02. The table shows the results of the scenario with the
All Subjects dataset, frequency representation, and multi-class classification.
Average accuracy, training time, and classification time for each classifier are
shown.

9.4.1 Discussion
These results show some improvement from the base dataset Kodera_29.
Table 9.28 shows the best results from each category. For comparison with
Section 9.2, these results have improved in 3 out of 4 best cases. There is
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only a slight improvement. On the other hand, the sum of improvement is
2,94 %, and the degradation is 3,22 %. So, in the end, adding new data from
different sources is more harmful than beneficial.

In the same manner, these results can be compared to the original results
from Kodera (see Table 9.28). Because there is no improvement from dataset
Kodera_29 as described above, there is no need to delve more into it.

The results achieved on the Farabbi_12 dataset are better than those on
the Kodera_29 and even composed datasets (see Table 9.28).

Binary
Dataset Hrabik_41 Farabbi_12 Kodera_29
Time-series 55,68 % 63,35 % 54,44 %
Frequency 56,42 % 51,81 % 59,64 %

Multi-class
Dataset Hrabik_41 Farabbi_12 Kodera_29
Time-series 38,41 % 48,90 % 36,88 %
Frequency 41,38 % 49,10 % 41,21 %

Table 9.28: The best results of this section compared to results from Section
9.2 and Section 9.3.
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9.5 Discussion
All achieved results provided in Sections 9.2, 9.3, and 9.4 are lower than
results from Kodera’s work. It is shown in Table 9.14 where there is a
difference of 20 % of accuracy in some cases. Several possible causes of this
outcome were found.

The first was the sampling rate. So, there was a created test on the
Kodera_29 dataset with an original sampling rate of 500 Hz. The results of
this scenario are shown in Table 9.29. These results are basically the same
as in Table 9.14 on the 250 Hz sampling rate described in Section 9.2. So,
the sampling rate is not the cause of this decline in accuracy.

Binary Multi-class
Time-series 53,71 % 38,19 %
Frequency 60,36 % 42,32 %

Table 9.29: The best results of the original sampling rate of 500 Hz on the
Kodera_29 dataset.

The next cause could be the architecture of neural networks. To test
this theory, the project of Kodera’s work was taken. This test only focused
on time-series representation with binary and multi-class classification. The
results of this test are shown in Table 9.30. These results are surprising
because they have not achieved the proposed results from work from Kodera
[20]. The best results are only the difference of 6% from the results of this
thesis from Table 9.7. This 6% can be caused by architecture. There is no
simple explanation for the difference of 20% from the proposed results.

Classification CNN LSTM MLP
Binary 60,94 % 55,28 % 49,59 %

Multi-class 40,04 % 40,70 % 33,84 %

Table 9.30: Classification results using the original sampling rate and archi-
tecture from [20].

The comparison with works of Mochura [18] and Saleh [19] is pointless
here. Not only did they use different approaches, but they had even better
results than Kodera [20].
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10 Conclusion

In Chapter 2, there were introduced principles of EEG. After that, in Chapter
3, there were shown works that were done on this topic by the neuroinformat-
ics group at the University of West Bohemia. The overview of available free
datasets was described in Chapter 4. In Chapter 5, there were described clas-
sification techniques. Chapters 6 and 7 describe analysis of gathered data.
Implementation of proposed tests was shown in Chapter 8. Accomplished
results were presented in the Chapter 9.

The intra-subject results showed a high variance in the performance of
subjects. This effect can be caused by several things. Firstly, there is a
difference in the number of samples for each subject. This is causing some
classifiers to have stable results on data from subjects with a higher number
of samples. Secondly, these results indicate that there is a big difference
between subjects. Some subjects have stable performance through all tests,
and some have better results for different setups. This shows that each
subject is unique and needs to be treated differently. Lastly, there can
be a subject that simply cannot produce proper EEG signals for MI. For
instance, it is Subject 11, which has a high number of samples but very low
performance in all tests.

Results from inter-subject testing even support these findings. Aggreg-
ating data of subjects to a big dataset does not generally achieve better
results. The idea that a similar dataset from another source could bring
more samples and thus increase the accuracy was wrong. The experiment
was similar enough, but something caused a more extensive accuracy loss
than the increase of accuracy gained by more samples. The first possible
cause was the sampling rate, which was cut in half for the original dataset
Kodera_29 to have data with the exact sizes of samples. Further testing
found that this was not the leading cause. Data were resampled with the
original rate, and the results were not that much different. In the end, the
various architectures could lead to bigger differences in classification results
than changes in the sampling rate.

In light of these findings, there are a few possible ways of progress. The
first is to go back to representations via ERD/ERS from work from Mochura
[18]. The second way is to enhance the measurement to get more samples
for future subjects. The last possible way could be to choose one neural
network, from the results, it could be MLP or CNN, and try to find the best
architecture via testing different settings of activation functions, normaliza-
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tion, number of neurons, layers, or even combination of architectural styles
of NNs.

The source codes for this thesis are available on a GitHub repository:
https://github.com/Hrabikv/Diploma_thesis.
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A User Guide

This chapter is a guide describing setting up the environment and testing
different setups for classification. The project is written in Python version
3.10. The project was tested on a laptop with Windows 10.

First, you need all the files from the GitHub repository: https://github.
com/Hrabikv/Diploma_thesis. You can download it via GitHub UI, or you
can clone it.

A.1 Structure of the repository
The project starts with directory src, where all source code files are. You
needed data from [22] and [26]. These datasets need to be in folder data on
the same level as src and need to be named kodera_29 and farabbi_12.

This project creates two new directories. The first is PREPROCESSED
DATA FOLDER, where preprocessed data for repeated usage are saved.
The second is the folder results. In this directory, there are folders for each
scenario and one folder with raw results. Aggregated results are in each
scenario folder and are saved as

< name > _ < representation >< classification >< metric > .xlsx

• name - Name of the test (Intra-subject, Kodera_29, Farabbi_12, Hr-
abik_41).

• representation - Used representation (time-series, frequency).

• classification - Type of classification (binary, multi-class).

• metric - Type of metric (average accuracy, best accuracy, time of train-
ing, time of classification). For each metric, there is one file.

Raw results are saved as

< classifier > .csv,

where the classifier is the name used classifier. Figure A.1 shows the struc-
ture of the project with all directories.
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Figure A.1: Directory structure of the project.

A.2 Installation
Installation In the main directory, you will find a file called requirements.txt.
This file contains a list of all the external libraries that were used in the pro-
ject. To get those, you need to install Python 3.10. It is recommended that
a virtual environment is created to make sure that there are no collisions in
the version of libraries. Run this command to create one:
python -m venv venv

This created a virtual environment named venv. To activate this envir-
onment, run this command:
venv\ Scripts \ activate

For installation of all libraries to the environment, run this command:
pip install -r requirements .txt
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A.3 Work with the Project
The entry point of the program is main.py in the src folder. Make sure you
have a data folder in your project. To start a program, run this command:
python src/main.py

in the same virtual environment as the libraries you installed above.

A.4 Parameters of the Project
The project has seven parameters that you can change without having to
open source code files. All parameters are in config.txt file. This file is
shown in Figure A.2. All these parameters are mandatory. The first is
NUMBER_OF_CLASSES, which indicates what type of classification is
wanted. The number "2" is for binary classification, and the number "3"
is for multi-class classification. The second TRAINING_INFO and third
TESTING_INFO parameters are about information printed into a console
during the run. The fourth parameter, called CLASSIFIERS, is an array of
classification techniques that will be used during classification. This para-
meter can have multiple values. The fifth parameter, TYPE_OF_DATA,
is the choice of the dataset that will be used. The FEATURE_VECTOR
parameter is about the representation of the samples of the chosen data-
set. The last parameter, CUDA_USE, is the switch of the CUDA Toolkit
environment. All possible values of all parameters are shown in Figure A.2.
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Figure A.2: Configuration file of the project.
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B Tables of results
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ID CNN LSTM MLP SC Transformer # samples
subject_01 49,44 46,11 51,67 51,67 44,44 184
subject_02 37,88 40,91 37,88 40,91 36,36 68
subject_03 50,00 55,45 43,64 47,27 46,36 110
subject_04 50,00 46,25 52,50 42,50 51,25 80
subject_05 51,95 42,86 44,16 42,86 53,25 78
subject_06 48,75 50,00 51,25 51,25 56,25 80
subject_07 36,25 37,50 51,25 42,50 41,25 80
subject_08 46,97 50,00 48,48 43,94 45,45 68
subject_09 55,56 55,56 75,00 58,33 61,11 36
subject_10 60,00 59,52 61,43 56,19 56,19 214
subject_11 48,95 45,79 43,16 47,37 48,42 192
subject_12 60,00 59,44 61,11 56,67 60,00 188
subject_13 48,46 60,00 56,92 43,85 46,15 134
subject_14 57,58 57,58 57,58 51,52 51,52 35
subject_15 60,67 56,00 58,67 49,33 57,33 154
subject_16 52,78 55,00 53,89 45,00 52,22 186
subject_17 38,33 41,67 50,00 39,17 39,17 126
subject_18 50,71 50,00 51,43 46,43 46,43 148
subject_19 53,33 43,33 58,33 50,00 51,67 62
subject_20 56,00 52,00 50,00 50,00 56,00 50
subject_21 47,50 55,00 48,33 50,83 54,17 126
subject_22 57,50 55,00 72,50 50,00 47,50 40
subject_23 58,18 55,45 64,55 53,64 60,00 224
subject_24 0,00 0,00 0,00 0,00 0,00 18
subject_25 48,33 51,11 54,44 51,67 47,78 184
subject_26 55,00 57,22 58,33 56,67 52,22 182
subject_27 57,27 65,91 63,18 54,55 57,73 220
subject_28 50,48 51,43 52,38 48,57 49,05 216
subject_29 52,67 53,33 50,00 50,67 48,67 156
subject_30 64,58 62,50 52,08 54,17 52,08 48
subject_31 50,00 45,71 50,00 51,43 47,14 70
subject_32 58,33 47,92 50,00 58,33 60,42 48
subject_33 61,82 52,73 56,36 52,73 45,45 58
subject_34 51,67 65,00 71,67 61,67 60,00 64
subject_35 60,00 48,57 70,00 68,57 75,71 70
subject_36 61,43 59,05 59,05 64,76 58,10 216
subject_37 70,00 67,50 66,00 67,00 69,50 204
subject_38 49,50 58,00 51,50 53,50 52,00 208
subject_39 66,11 62,78 67,22 63,33 62,78 182
subject_40 70,00 67,00 70,00 69,50 66,50 200
subject_41 59,47 54,74 61,05 54,74 59,47 190

Table B.1: Table of average classification accuracies of all classifiers for
intra-subject test with parameters Time-series representation and binary
classification.

83



ID CNN LSTM MLP SC Transformer # samlpes
subject_01 30,00 22,31 26,15 27,69 26,92 139
subject_02 20,00 18,00 26,00 10,00 16,00 51
subject_03 48,75 56,25 53,75 32,50 50,00 82
subject_04 31,67 33,33 30,00 26,67 36,67 60
subject_05 16,36 32,73 20,00 18,18 27,27 59
subject_06 30,00 33,33 31,67 28,33 31,67 60
subject_07 23,33 25,00 21,67 28,33 28,33 60
subject_08 34,00 30,00 42,00 38,00 34,00 51
subject_09 0,00 0,00 0,00 0,00 0,00 28
subject_10 31,25 31,88 33,13 38,13 26,88 161
subject_11 35,00 39,29 35,71 36,43 32,86 144
subject_12 30,00 26,43 35,71 31,43 28,57 140
subject_13 30,00 35,00 35,00 32,00 31,00 101
subject_14 0,00 0,00 0,00 0,00 0,00 27
subject_15 41,82 41,82 33,64 35,45 30,91 115
subject_16 29,29 34,29 30,00 33,57 31,43 140
subject_17 32,22 31,11 30,00 34,44 32,22 95
subject_18 39,09 31,82 36,36 33,64 28,18 111
subject_19 25,00 31,82 31,82 29,55 29,55 46
subject_20 30,56 30,56 38,89 36,11 33,33 38
subject_21 34,44 37,78 32,22 30,00 32,22 95
subject_22 46,67 33,33 46,67 53,33 46,67 31
subject_23 38,75 32,50 39,38 43,13 33,13 168
subject_24 0,00 0,00 0,00 0,00 0,00 14
subject_25 34,62 31,54 26,92 36,92 27,69 138
subject_26 48,46 36,92 35,38 45,38 46,92 137
subject_27 41,88 42,50 45,00 41,25 41,25 165
subject_28 30,63 28,75 24,38 28,13 30,00 163
subject_29 33,64 22,73 26,36 34,55 31,82 118
subject_30 56,25 27,08 41,67 27,08 39,58 48
subject_31 38,57 30,00 40,00 32,86 38,57 70
subject_32 35,42 37,50 45,83 35,42 39,58 48
subject_33 32,73 30,91 36,36 29,09 40,00 58
subject_34 50,00 33,33 41,67 46,67 41,67 64
subject_35 45,71 32,86 44,29 40,00 51,43 70
subject_36 47,62 44,76 49,05 42,38 50,95 216
subject_37 56,00 51,50 50,50 43,00 58,00 204
subject_38 45,50 46,00 53,50 39,50 44,00 208
subject_39 46,67 45,56 52,22 35,56 46,11 182
subject_40 54,00 53,50 58,00 48,50 56,00 200
subject_41 42,11 38,42 41,58 33,68 44,21 190

Table B.2: Part 01 of the table of average classification accuracies with para-
meters Time-series representation, multi-class classification of all classifiers
for the intra-subject test.
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ID CNN LSTM MLP SC Transformer # samlpes
sorted sorted sorted sorted sorted

subject_01 28,33 33,33 31,67 26,67 31,67 139
subject_02 26,67 23,33 33,33 20,00 20,00 51
subject_03 51,43 65,71 60,00 35,71 62,86 82
subject_04 30,00 30,00 26,67 31,67 36,67 60
subject_05 36,00 28,00 26,00 26,00 10,00 59
subject_06 23,33 30,00 38,33 28,33 33,33 60
subject_07 18,33 31,67 30,00 25,00 25,00 60
subject_08 50,00 50,00 40,00 42,50 37,50 51
subject_09 0,00 0,00 0,00 0,00 0,00 28
subject_10 42,00 40,67 36,67 38,00 37,33 161
subject_11 35,00 30,83 33,33 35,83 34,17 144
subject_12 35,83 40,83 42,50 40,00 27,50 140
subject_13 28,75 31,25 31,25 27,50 35,00 101
subject_14 0,00 0,00 0,00 0,00 0,00 27
subject_15 45,00 43,00 41,00 43,00 42,00 115
subject_16 35,00 35,83 31,67 30,00 35,83 140
subject_17 38,89 31,11 32,22 36,67 32,22 95
subject_18 40,00 37,00 37,00 33,00 34,00 111
subject_19 36,36 30,30 30,30 36,36 36,36 46
subject_20 30,30 45,45 45,45 45,45 30,30 38
subject_21 35,56 41,11 26,67 30,00 30,00 95
subject_22 0,00 0,00 0,00 0,00 0,00 31
subject_23 42,00 40,67 42,00 39,33 39,33 168
subject_24 0,00 0,00 0,00 0,00 0,00 14
subject_25 36,15 37,69 39,23 37,69 36,15 138
subject_26 42,50 42,50 44,17 41,67 37,50 137
subject_27 38,00 44,67 45,33 40,00 38,67 165
subject_28 35,33 36,00 32,00 33,33 35,33 163
subject_29 33,64 37,27 30,00 25,45 40,00 118
subject_30 61,11 27,78 52,78 36,11 50,00 48
subject_31 38,00 32,00 40,00 30,00 52,00 70
subject_32 41,67 29,17 36,11 40,28 48,61 48
subject_33 38,64 43,18 38,64 31,82 40,91 58
subject_34 42,00 32,00 50,00 42,00 52,00 64
subject_35 54,00 22,00 52,00 38,00 52,00 70
subject_36 47,50 49,00 52,00 41,50 45,00 216
subject_37 56,00 51,50 51,50 42,00 57,00 204
subject_38 41,00 43,50 49,50 40,50 48,00 208
subject_39 49,41 51,18 46,47 35,29 49,41 182
subject_40 50,00 55,26 52,63 49,47 56,32 200
subject_41 45,88 48,24 42,35 30,00 41,76 190

Table B.3: Part 02 of the table of average classification accuracies with para-
meters Time-series representation, multi-class classification of all classifiers
for the intra-subject test.
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ID CNN LSTM MLP SC Transformer # samples
subject_01 48,33 49,44 52,78 51,67 51,11 184
subject_02 39,39 42,42 34,85 40,91 46,97 68
subject_03 43,64 51,82 47,27 47,27 44,55 110
subject_04 45,00 51,25 46,25 42,50 47,50 80
subject_05 53,25 45,45 50,65 42,86 46,75 78
subject_06 45,00 51,25 50,00 51,25 56,25 80
subject_07 37,50 47,50 40,00 42,50 45,00 80
subject_08 39,39 48,48 54,55 43,94 50,00 68
subject_09 52,78 55,56 61,11 58,33 66,67 36
subject_10 54,29 59,05 62,86 56,19 57,62 214
subject_11 50,00 53,16 47,89 47,37 47,89 192
subject_12 57,78 57,22 61,67 56,67 59,44 188
subject_13 56,15 60,77 61,54 43,85 43,08 134
subject_14 36,36 51,52 57,58 51,52 42,42 35
subject_15 57,33 58,00 61,33 49,33 53,33 154
subject_16 47,78 55,00 52,22 45,00 55,00 186
subject_17 38,33 47,50 46,67 39,17 42,50 126
subject_18 47,86 48,57 52,14 46,43 52,86 148
subject_19 53,33 68,33 61,67 50,00 48,33 62
subject_20 58,00 52,00 58,00 50,00 52,00 50
subject_21 50,83 56,67 55,00 50,83 49,17 126
subject_22 50,00 60,00 57,50 50,00 40,00 40
subject_23 50,00 61,82 57,73 53,64 60,91 224
subject_24 0,00 0,00 0,00 0,00 0,00 18
subject_25 48,33 52,22 51,11 51,67 47,22 184
subject_26 56,67 58,33 60,56 56,67 50,00 182
subject_27 59,09 62,73 61,82 54,55 57,27 220
subject_28 47,62 52,86 56,19 48,57 46,19 216
subject_29 52,67 47,33 55,33 50,67 56,67 156
subject_30 52,08 52,08 47,92 62,50 54,17 48
subject_31 60,00 62,86 61,43 48,57 57,14 70
subject_32 43,75 31,25 52,08 41,67 50,00 48
subject_33 54,55 56,36 52,73 54,55 49,09 58
subject_34 58,33 53,33 58,33 61,67 56,67 64
subject_35 57,14 54,29 41,43 48,57 44,29 70
subject_36 50,48 45,71 42,38 50,95 52,38 216
subject_37 48,00 56,50 54,50 50,00 47,00 204
subject_38 57,50 51,00 51,00 53,50 55,00 208
subject_39 61,67 57,78 62,22 61,11 54,44 182
subject_40 48,00 47,00 51,00 53,50 51,50 200
subject_41 52,63 52,11 49,47 49,47 50,53 190

Table B.4: Table of average classification accuracies with parameters Fre-
quency representation, binary classification of all classifiers for intra-subject
test.
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ID CNN LSTM MLP SC Transformer # samlpes
subject_01 38,46 41,54 37,69 39,23 34,62 139
subject_02 36,00 44,00 46,00 34,00 32,00 51
subject_03 62,50 63,75 50,00 57,50 52,50 82
subject_04 41,67 53,33 55,00 51,67 31,67 60
subject_05 52,73 56,36 52,73 58,18 36,36 59
subject_06 60,00 61,67 60,00 66,67 26,67 60
subject_07 48,33 48,33 45,00 51,67 48,33 60
subject_08 24,00 44,00 36,00 48,00 48,00 51
subject_09 0,00 0,00 0,00 0,00 0,00 28
subject_10 30,63 43,75 49,38 43,75 30,00 161
subject_11 31,43 30,71 23,57 26,43 29,29 144
subject_12 52,86 47,14 42,86 45,71 33,57 140
subject_13 62,00 64,00 63,00 65,00 51,00 101
subject_14 0,00 0,00 0,00 0,00 0,00 27
subject_15 40,91 52,73 47,27 52,73 38,18 115
subject_16 66,43 70,71 75,71 74,29 54,29 140
subject_17 37,78 47,78 44,44 31,11 28,89 95
subject_18 40,91 41,82 46,36 53,64 29,09 111
subject_19 45,45 63,64 52,27 56,82 43,18 46
subject_20 52,78 52,78 44,44 55,56 50,00 38
subject_21 37,78 43,33 41,11 51,11 33,33 95
subject_22 43,33 53,33 53,33 63,33 36,67 31
subject_23 58,13 56,25 62,50 68,13 45,00 168
subject_24 0,00 0,00 0,00 0,00 0,00 14
subject_25 33,85 40,77 47,69 48,46 51,54 138
subject_26 40,00 43,85 48,46 46,92 36,15 137
subject_27 47,50 50,00 57,50 56,25 38,75 165
subject_28 46,88 38,13 43,13 46,25 33,13 163
subject_29 37,27 45,45 46,36 40,00 37,27 118
subject_30 43,75 35,42 47,92 43,75 43,75 48
subject_31 37,14 40,00 32,86 45,71 40,00 70
subject_32 29,17 16,67 16,67 25,00 41,67 48
subject_33 52,73 45,45 30,91 45,45 45,45 58
subject_34 46,67 35,00 51,67 48,33 50,00 64
subject_35 51,43 42,86 42,86 45,71 42,86 70
subject_36 37,62 35,24 35,71 38,57 49,52 216
subject_37 42,50 45,50 45,00 31,50 47,00 204
subject_38 44,50 39,00 46,00 44,00 50,50 208
subject_39 47,78 45,00 45,00 47,22 49,44 182
subject_40 38,50 36,50 37,50 35,00 46,50 200
subject_41 43,68 40,00 43,16 34,74 44,74 190

Table B.5: Part 01 of the table of average classification accuracies with
parameters Frequency representation, multi-class classification of all classi-
fiers for intra-subject test.
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ID CNN LSTM MLP SC Transformer # samlpes
sorted sorted sorted sorted sorted

subject_01 45,00 47,50 43,33 43,33 43,33 139
subject_02 33,33 50,00 43,33 33,33 36,67 51
subject_03 60,00 52,86 50,00 60,00 58,57 82
subject_04 53,33 55,00 51,67 48,33 45,00 60
subject_05 44,00 42,00 52,00 54,00 56,00 59
subject_06 53,33 65,00 56,67 66,67 40,00 60
subject_07 35,00 55,00 53,33 51,67 40,00 60
subject_08 42,50 27,50 42,50 52,50 45,00 51
subject_09 0,00 0,00 0,00 0,00 0,00 28
subject_10 50,00 44,67 45,33 50,00 46,67 161
subject_11 31,67 31,67 34,17 25,83 30,00 144
subject_12 41,67 50,83 45,00 48,33 43,33 140
subject_13 65,00 71,25 67,50 67,50 71,25 101
subject_14 0,00 0,00 0,00 0,00 0,00 27
subject_15 51,00 53,00 55,00 51,00 56,00 115
subject_16 66,67 70,00 67,50 73,33 63,33 140
subject_17 41,11 45,56 45,56 38,89 36,67 95
subject_18 56,00 54,00 51,00 57,00 38,00 111
subject_19 57,58 57,58 60,61 66,67 57,58 46
subject_20 51,52 45,45 45,45 66,67 48,48 38
subject_21 41,11 35,56 43,33 53,33 36,67 95
subject_22 0,00 0,00 0,00 0,00 0,00 31
subject_23 60,67 61,33 62,00 69,33 48,67 168
subject_24 0,00 0,00 0,00 0,00 0,00 14
subject_25 33,85 44,62 50,77 42,31 40,77 138
subject_26 44,17 54,17 48,33 50,00 43,33 137
subject_27 58,67 53,33 54,00 58,00 46,00 165
subject_28 40,00 36,00 48,67 46,67 42,00 163
subject_29 45,45 43,64 51,82 40,91 40,91 118
subject_30 52,78 41,67 33,33 50,00 58,33 48
subject_31 46,00 50,00 30,00 42,00 60,00 70
subject_32 32,64 25,00 27,78 17,36 34,72 48
subject_33 36,36 43,18 34,09 43,18 45,45 58
subject_34 48,00 42,00 50,00 52,00 54,00 64
subject_35 56,00 42,00 52,00 46,00 54,00 70
subject_36 35,00 31,50 34,00 34,00 43,50 216
subject_37 44,50 47,00 39,00 30,00 42,00 204
subject_38 47,00 40,50 47,00 42,00 44,50 208
subject_39 50,00 45,29 42,94 48,24 50,59 182
subject_40 35,79 35,79 38,42 36,32 46,84 200
subject_41 45,88 37,65 42,35 30,59 47,06 190

Table B.6: Part 02 of the table of average classification accuracies with
parameters Frequency representation, binary classification of all classifiers
for intra-subject test.
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