
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Security of
Distributed Cloud Systems

Plzeň 2024 Bc. Petr Urban

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2023/2024

ZADÁNÍ DIPLOMOVÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Bc. Petr URBAN
Osobní číslo: A22N0061P
Studijní program: N0613A140040 Softwarové a informační systémy
Téma práce: Zabezpečení distribuovaných cloudových systémů
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s problematikou microservices, webových služeb a možnostmi komunikace s nimi.
2. Analyzuje v kontextu těchto architektur možnosti bezpečné komunikace, zajištění důvěry (trust

management), správy identit a přístupu (identity and access management), autentizace a autori-
zace. Navrhněte vhodné komplexní řešení těchto aspektů pro alespoň jednu vybranou konkrétní
aplikaci.

3. Implementujte navržené řešení a demonstrujte několik ostatních formou jednoduchých Proof-of-
-Concept prototypů.

4. Řešení řádně otestujte a kriticky zhodnoťte přínosy, nevýhody a důsledky návrhu.

Rozsah diplomové práce: doporuč. 50 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování diplomové práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

dodá vedoucí diplomové práce

Vedoucí diplomové práce: Ing. Jakub Daněk
Katedra informatiky a výpočetní techniky

Datum zadání diplomové práce: 8. září 2023
Termín odevzdání diplomové práce: 16. května 2024

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 11. října 2023

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 8th May 2024

Bc. Petr Urban

Abstract

The goal of this thesis was to explore microservices and web services,
focusing on their communication capabilities. Furthermore, an analysis of
safe communication, trust, identity, and access management, along with
authentication and authorization within these architectures was made in
order to choose the best model for user access and management for the
SPADe project, which is a research tool invented at the Department of
Computer Science and Engineering. Key issues, particularly authentication
and authorization protocols like OIDC and SAML, were applied to a demo
application. Based on the analysis and implementation results, the OIDC
protocol was chosen using the IAM tool Keycloak.

Keywords: owasp, nist, cybersecurity, oauth2, oidc, saml, microservices,
soa communication

Abstrakt

Cílem této práce bylo zkoumat mikroslužby a webové služby s důrazem na
jejich komunikační schopnosti. Byla provedena analýza bezpečné
komunikace a správy přístupu, včetně autentizace a autorizace, pro výběr
optimálního modelu pro projekt SPADe z katedry informatiky a výpočetní
techniky. Hlavní zaměření bylo na protokoly autentizace a autorizace jako
OIDC a SAML, které byly testovány na demonstrační aplikaci. Na základě
analýzy a implementace byl pro projekt vybrán protokol OIDC pomocí
nástroje IAM Keycloak.

Acknowledgement

I would like to thank my thesis supervisor, Ing. Jakub Daněk, from the Fac-
ulty of Applied Sciences of the University of West Bohemia. His office door
was always open whenever I encountered obstacles or had questions about
my research or writing. He consistently guided me in the right direction
whenever necessary. This thesis has confirmed my interest in the field of
cybersecurity, a domain I want to explore further in the future.

Contents

1 Introduction 10

2 Microservices (SOA) 11
2.1 Definition and Characteristics

of Microservices . 12
2.2 Advantages and disadvantages 12

2.2.1 Advantages . 12
2.2.2 Disadvantages . 13

2.3 Commonly used approaches in communication 14

3 Communication Between Microservices 16
3.1 Rest API . 16

3.1.1 Advantages and Disadvantages of REST API 17
3.2 Message Queue . 17

3.2.1 Definition and Characteristics of Message Queue . . . 17
3.2.2 Message Queue Protocols 18

4 Security Approaches and Risks 19
4.1 Application Security Verification Standard (ASVS) 19

4.1.1 ASVS Overview . 19
4.1.2 ASVS Related Risks 20

4.2 Data Protection Techniques: Encryption and Hashing 22
4.2.1 Essentials of Data Security 22
4.2.2 Hashing . 22
4.2.3 Attacks to Hashes . 23
4.2.4 Encryption . 24

4.3 Transport Layer Security (TLS) / Secure Sockets Layer (SSL) 27
4.3.1 Definition of TLS / SSL 27
4.3.2 Importance in Cybersecurity 28

4.4 Identity and Access Management (IAM) 28
4.4.1 Authentication . 28
4.4.2 Process of Authentication 29
4.4.3 User Identification and Management 32
4.4.4 Username & Password Authentication 32
4.4.5 IP Address Authentication 35
4.4.6 X.509 Certificates . 36

7

4.4.7 WebAuthn . 38
4.4.8 Risk-Based Authentication (RBA) Method 40
4.4.9 Authorization Overview 41
4.4.10 Process of Authorization 41
4.4.11 Recommendations for Effective Authorization 42
4.4.12 Identity and Access Management Technologies 42

4.5 Authentication and Authorization Protocols 44
4.5.1 JSON Web Tokens (JWT) 44
4.5.2 Open Authorization (OAuth) 2.0 46
4.5.3 OpenID Connect (OIDC) 49
4.5.4 Security Assertion Makrup Language (SAML) 2.0 . . 51
4.5.5 Kerberos . 55
4.5.6 LDAP in Cloud Computing Environments 57

4.6 Trust Management . 58
4.6.1 Trust Management Technologies 59

4.7 Further Security Practices 59
4.7.1 Input Validation . 60
4.7.2 Common Attacks on the Internet 60
4.7.3 Common Security Risks and Attacks 61

5 Practical Implementation 63
5.1 Introduction of the Applications 63
5.2 Design and Architecture . 65
5.3 Brief Description of Components 65

5.3.1 Docker . 65
5.3.2 Keycloak . 66
5.3.3 Overview of the Core Application 66
5.3.4 Simple Broker . 68
5.3.5 ReactJS Application for User Interface 69
5.3.6 Databases . 71
5.3.7 Nginx . 71
5.3.8 Apache Web Server 72

5.4 Chosen Authentication Protocol For
SPADe Project . 73
5.4.1 Authentiction and Authorization 73
5.4.2 User Management in the SPADe 76

5.5 Illustration of Implemented Security Approaches 77
5.5.1 Authentication . 77
5.5.2 Authorization . 82
5.5.3 Message Signing . 82

8

5.5.4 Encryption and Hashing 83
5.5.5 User Management and Trust Management 84

6 Testing and Quality Assurance of The Demo Application 86
6.1 ZAP Proxy . 87

6.1.1 Vulnerabilities Identified and Addressed by ZAP Proxy
Tool . 87

6.1.2 Corrections For Vulnerabilities 88

7 Conclusion 92

Used Shortcuts 96

Bibliography 97

A Description of the directory structure of the submitted file104

B Images of the graphical user interface of the demo applica-
tion 106

9

1 Introduction

In the current technological landscape, the shift towards decomposing ser-
vices into smaller, independently operating microservices has garnered sig-
nificant attention from developers of large-scale systems. This trend, along
with the advent of cloud computing, offers numerous advantages. For in-
stance, it eliminates the need for powerful hardware by hosting systems in
the cloud, allows for smaller, more manageable codebases through the use
of thin clients, and supports language independence, enabling services to be
developed in various programming languages and hosted in different loca-
tions. However, this architectural style necessitates intricate communication
between services, each with its distinct responsibilities, thereby introducing
complexity not only in development but also in maintaining security. As
automation and remote service operation become more prevalent, particu-
larly in cloud-based environments, the demand for stringent security meas-
ures escalates in response to the increasing frequency of cyberattacks.

This thesis provides an initial exploration of microservices, examining
the array of protocols that enable these services to communicate effectively
while highlighting crucial security aspects. It leverages respected sources in
cybersecurity, like the Open Web Application Security Project (OWASP)
and the National Institute of Standards and Technology (NIST), to under-
line the significance of secure practices, including but not limited to au-
thentication, authorization, various security protocols, Identity and Access
Management (IAM), and Trust Management (TM). By applying some of
these concepts from the analysis to a demonstration application, the study
presents a practical application of selected security measures, notably focus-
ing on authentication protocols. The ultimate goal is to select and integrate
superior security mechanisms, especially authentication protocol into the
SPADe application, aiming to significantly improve its security, especially
in terms of authentication and management of user identities to determine
their privileges not only to allow an access to the application’s resources,
but also to trigger the application’s processes, thereby providing a secure
model for similar applications. The SPADe (Software Process Anti-patterns
Detector) is used to analyze projects to detect activities that may have a
negative impact on the overall project.

10

2 Microservices (SOA)

Service Oriented Architecture (SOA) is a standard way of developing robust
systems and smaller services that communicate with each other in the end.
There is an assumption that the usage of the SOA approach eliminates mono-
lithic applications, as the core of each service is separated and independent.
This may result in better maintainability and scalability of the whole sys-
tem, which not only leads to potentially better testing methods that can be
used to improve the quality of service but also makes them easier to replace
in some cases. Not surprisingly, these components often communicate with
each other, either via a defined protocol or via an Application Program-
ming Interface (API). This service-oriented architecture also brings another
benefit associated with cloud computing, as each service can be hosted in
a different environment under different circumstances, which raises a very
important question - how to secure these systems, as each service may run
in a different environment, may be implemented in different programming
languages, and each service may require different security policies to access
specific resources and do specific tasks. Cybersecurity plays a pivotal role
with terms like authentication, authorisation, data consistency, encryption
and more, which is the main topic of this thesis.

This chapter discusses the fundamentals of microservices, including their
advantages and disadvantages, as well as various approaches to communic-
ation between them. Additionally, it discusses the technologies commonly
used to develop these services and the final environment in which they can
be run.

11

2.1 Definition and Characteristics
of Microservices

Microservices[1] are small applications with only one responsibility inde-
pendent of the rest of the system. A simple example may by illustrated by
this diagram:

Client

Service C

API Gateway

Authenticator

Service B

Service A

Figure 2.1: Illustration of SOA

2.2 Advantages and disadvantages

2.2.1 Advantages
[2],[3] Before delving into the specifics of microservices, it is crucial to under-
stand the myriad benefits they bring to the table. This section illuminates
the advantages of adopting a microservices architecture, from enhancing

12

scalability and technological flexibility to bolstering system resilience and
deployment efficiency. Each point is articulated to provide readers with
insights into why microservices have become the preferred architectural pat-
tern for many contemporary software development projects.

Here is a brief list of the most important advantages from the point of
Microservices:

• Scalability: Microservices enable scaling of individual components as
needed, without the necessity to scale the entire application, making
it more efficient and cost-effective.

• Flexibility in Technology: Teams can select the most suitable tech-
nology stack for each service, fostering innovation and efficiency.

• Resilience: Failure in one service does not necessarily compromise
the entire system, enhancing overall reliability.

• Deployment Velocity: Independent services allow for quicker up-
dates and deployments, facilitating continuous delivery and integra-
tion.

2.2.2 Disadvantages
Despite their benefits, microservices also present certain challenges and draw-
backs that must be navigated carefully. This section aims to highlight the
complexities and potential pitfalls of implementing a microservices architec-
ture. These include management difficulties, data consistency issues, com-
munication overheads and increased infrastructure requirements.

Here is a brief list of some significant disadvantages from the point of
Microservices:

• Complexity in Management: The distributed nature of microservices
introduces complexity in deployment, monitoring, and management.

• Data Consistency: Ensuring data consistency across services can be
challenging due to decentralized data management.

• Inter-service Communication: The reliance on network calls between
services can introduce latency and potential points of failure.

• Overhead: The architectural overhead can increase with the need for
more infrastructure and tools to manage the microservices ecosystem.

13

2.3 Commonly used approaches in commu-
nication

[4] Today, there are two basic service-to-service communications that can be
chosen when designing SOA architecture. Here is a list of the most common
ones:

• Synchronous: As defined by Microsoft’s own source, this type of
communication follows a pattern where a service calls a API exposed by
another service, using a protocol such as Hypertext Transfer Protocol
(HTTP) or gRPC Remote Procedure Calls (gRPC). This approach is
called synchronous because the caller waits for a response from the
receiver.

• Asynchronous: In other words, asynchronous messaging. A type of
communication in which (not only) a service sends a message without
waiting for a response. This sent message is then processed asynchron-
ously by one or more services. For example, Message Queue (MQ) is
one of the candidates for the asynchronous type of communication.

It is typical today that many (not only) distributed applications run in
cloud-based environments, making them accessible to users over the Inter-
net. It is also typical that these applications, or in other words services,
can communicate with other services. It does not matter what type of com-
munication is used, at this point it is very important to take a look at the
security aspects and make sure that the communication is secure enough to
prevent cyber threats that may occur.

To achieve a secure communication not only between client and service,
but also between service to service communication, it is important to use
security approaches such as Transport Layer Security (TLS) which includes
encryption of the transferred data to keep the data safe against unwanted
leakage so that only the right participants communicating with each other
are able to obtain the data. Not only encryption is required, but also some
sort of mechanism to ensure that the data being transferred are not com-
promised. This is called integrity checking. Not only the communication
itself must be protected, but also the resources that are accessible to others.
This is where authentication and authorization play a key role.

All these approaches, from data encryption, data integrity, authentica-
tion, authorization and more, are discussed later in the theoretical part of
this thesis, in the chapter 4. Now follows a chapter 3 that briefly intro-
duces selected communication approaches, such as Representational State

14

Transfer (REST), gRPC, and MQ. Especially MQ and REST have been se-
lected and implemented in the practical part of this thesis described in the
chapter 5.

15

3 Communication Between
Microservices

3.1 Rest API
[5] Roy Fielding introduced REST in his doctoral dissertation, defining it
as Representational State Transfer. A RESTful application, as Surwase
explains, adheres to six architectural constraints, namely:

• Uniform Interface

• Stateless

• Cacheable

• Client-Server

• Layered System

• Code on Demand

These principles facilitate the development of scalable, flexible, and effi-
cient services. RESTful services expose endpoints, such as:

http://example.com/api/resource

offering Application Programming Interfaces (APIs) that provide a means for
service-to-service and service-to-client communication mediated via HTTP,
which means that the REST also shares the security parameters of HTTP
that must be considered. Also, since this approach is stateless by definition,
it means that the server itself does not store any session information about
the client, but processes the operations that the client requires. The server
simply accepts the client’s requests and processes them. This raises an
important question - how to authenticate the user and decide whether the
requested operation is allowed or not? This is a problem that is discussed
in more detail in the section 4.5.

The REST has also been used in the implementation in the demo ap-
plication in the chapter 5, illustrating the protection of resources located
on specific Uniform Resource Locator (URL) and also controlling the access
of each user.

16

3.1.1 Advantages and Disadvantages of REST API
The REST architectural style offers several advantages, including scalability,
flexibility, and a wide range of supported data formats. However, it also
presents challenges such as potential over-fetching or under-fetching of data
and the need for careful design to avoid these issues[6].

3.2 Message Queue
Since the MQ communication approach is demonstrated in the practical
part of this thesis (chapter 5), this chapter discusses what the message
queue is, its advantages, disadvantages and, most importantly, its security
implications for a system that needs to be properly secured.

3.2.1 Definition and Characteristics of Message Queue
[7],[8] A message queue serves as a key mechanism for asynchronous inter-
service communication in both serverless1 and microservices architectures.
By allowing messages to be held in a queue until they are ready to be
processed and deleted, it ensures that each message is handled once by a
single consumer. This setup facilitates the decoupling of processing tasks,
enables the buffering or batching of work, and aids in managing fluctuating
workloads.

[7] In practice, message queues allow applications to send and receive
messages without requiring the producer and consumer to interact with the
message at the same time. This flexibility is crucial for applications that are
structured as a collection of smaller, independent services, enhancing their
development, deployment, and maintenance efficiency. Key features often
associated with message queue implementations include message durability
options, security policies, and various delivery and routing policies, among
others.

1“Serverless computing is a method of providing backend services on an as-used basis.
A serverless provider allows users to write and deploy code without the hassle of worrying
about the underlying infrastructure” [9]

17

ClientClientClientClient Send
Messages

Message Queue

ClientClientClientSubscriber

Receives
relevant
message

Figure 3.1: Illustration of MQ

As shown on the image 3.1, clients (a user or a system) push messages
into the queue that offers a specific endpoint. On the other hand, subscribers
(clients or other systems that listen to the queue, or so-called, they have
subscribed to it and that want to receive the messages from the queue)
receive the message as soon as there are any.

3.2.2 Message Queue Protocols
[10] Streaming Text Oriented Messaging Protocol (STOMP), Message Queuing
Telemetry Transport (MQTT), and Advanced Message Queuing Protocol
(AMQP) are typically used within the MQ protocol suite. STOMP is known
for its simplicity and adaptability, making it suitable for a wide range of ap-
plications from web messaging to complex enterprise environments. MQTT,
designed for low-bandwidth and high-latency situations such as Internet of
Things (IoT) contexts, provides efficient message delivery under constrained
conditions. AMQP is used because of its reliability, flexibility, security and
open nature.

18

4 Security Approaches and
Risks

This chapter is a comprehensive guide to contemporary security approaches
and the risks prevalent in today’s digital landscape, with a focus on prac-
tical application and prevention strategies. It meticulously outlines various
security measures, each bolstered by credible sources like OWASP and oth-
ers within the cybersecurity domain. These approaches are not only detailed
theoretically but some of them are also illustrated through a demo applica-
tion to show their practical implementation.

Central to the thesis, this chapter aims to consolidate essential security
knowledge vital for developers of cloud-based applications or any system that
interacts with users and potentially handles sensitive data. In an era where
even minor applications are vulnerable to attacks and stringent regulations
like General Data Protection Regulation (GDPR) demand rigorous data
protection, understanding and applying these security measures becomes
imperative.

Covering a broad spectrum of cybersecurity practices, this section delves
into authentication, authorization, encryption, hashing, the use of IAM
tools, and many more. It also highlights common attacks, offering insights
into their prevention or mitigation. The ultimate goal is to safeguard the
integrity of server-client communications, protect data from breaches, and
ensure system availability. Selected security approaches are further explored
in chapter 5, demonstrating their real-world applicability.

4.1 Application Security Verification Stand-
ard (ASVS)

4.1.1 ASVS Overview
Application Security Verification Standard (ASVS) [11] is a project designed
to help developers assess the effectiveness of security measures in their web
applications. It provides a guide and checklist for a complex security evalu-
ation, from the process flow in the system to the technical aspects in general.
By standardizing the verification process, ASVS aims to ensure consistent
and thorough security assessments across different applications and envir-

19

onments.
One of the greatest advantages of the OWASP ASVS project is its access-

ibility. Hosted on the OWASP Foundation’s GitHub repository, the standard
is freely available to not only developers. This accessibility allows developers
to review the documentation and adopt standardized security practices for
assessing the security quality of specific applications in many aspects such
as: development process flow, architectural styles (patterns) used, and more.

However, it is essential to acknowledge a fundamental reality: no big ap-
plication can be completely protected against every cyber threat. Developers
must recognize that achieving comprehensive security involves more than
just adhering to standardized guidelines. Considerations such as application-
specific use cases and compliance with industry or governmental regulations
play crucial roles. For instance, applications handling sensitive personal
data or those with potential real-world impacts demand heightened security
measures to prevent data breaches or mitigate potential risks to individuals’
lives.

This standard is highlighted in the thesis for its comprehensive enumer-
ation of common vulnerabilities and attacks that need to be addressed to
ensure the security of applications. It serves as an important resource, es-
pecially for developers, as it emphasises the importance of being familiar
with these security risks in order to develop applications that are robust
and secure against many potential threats. Developers, especially security
professionals who are charged with ensuring the security of software, can use
this standard as a checklist to ensure that OWASP-recommended security
practices are incorporated into their software.

4.1.2 ASVS Related Risks
While the Application Security Verification Standard (ASVS) provides com-
prehensive guidelines for securing web applications, it’s also essential to con-
textualize these within the broader landscape of prevalent security risks.
The OWASP Top Ten API Security Risks for 2019 and 2023 outline the
most critical web application security risks currently identified by security
professionals globally. Acknowledging these risks underscores the dynamic
and evolving nature of web application security, particularly in the domain
of Rest APIs, which are becoming increasingly popular. This thesis can-
not track updated problems due to the unpredictable and rapidly changing
nature of vulnerabilities and risks; hence, more information should be sought
from up-to-date and trustworthy sources like OWASP and NIST.

The list of the Top Ten API Security Risks for 2019 includes [12] :

20

1. API1:2019 - Broken Object Level Authorization

2. API2:2019 - Broken User Authentication

3. API3:2019 - Excessive Data Exposure

4. API4:2019 - Lack of Resources & Rate Limiting

5. API5:2019 - Broken Function Level Authorization

6. API6:2019 - Mass Assignment

7. API7:2019 - Security Misconfiguration

8. API8:2019 - Injection

9. API9:2019 - Improper Assets Management

10. API10:2019 - Insufficient Logging & Monitoring

And for 2023 [13] :

1. API1:2023 - Broken Object Level Authorization

2. API2:2023 - Broken Authentication

3. API3:2023 - Broken Object Property Level Authorization

4. API4:2023 - Unrestricted Resource Consumption

5. API5:2023 - Broken Function Level Authorization

6. API6:2023 - Unrestricted Access to Sensitive Business Flows

7. API7:2023 - Server Side Request Forgery

8. API8:2023 - Security Misconfiguration

9. API9:2023 - Improper Inventory Management

10. API10:2023 - Unsafe Consumption of APIs

The upcoming sections will address key challenges frequently encountered
in cybersecurity. A major concern in distributed systems is the protection
of data, underscoring the importance of robust data security measures. The
following section will detail encryption and hashing techniques, which are
critical components of data protection, as they are used in other approaches
such as TLS/Secure Sockets Layer (SSL), data signing, authorization pro-
tocols, and trust management in general.

21

4.2 Data Protection Techniques: Encryption
and Hashing

4.2.1 Essentials of Data Security
In the digital age, information security is paramount for privacy and reliab-
ility, especially with legislation dictating how users’ sensitive data should be
handled when it is stored. Encryption plays a key role in converting data
into a coded format to prevent unauthorised viewing, accessible only with
the appropriate decryption key. This is often combined with hashing, which
creates a digital print of the current snapshot of the data. It can be said
that encryption and hashing techniques are now crucial to protecting data
transmissions over the Internet, as much of the data may be sensitive and
users may wish to keep it private.

4.2.2 Hashing
[14] Hashing transforms data into a consistent-sized value or signature,
serving as a digital fingerprint. It is a unidirectional technique, meaning the
original information cannot be derived from its hash. It is mainly used for
integrity verification, as even a small change to the source being hashed by
a strong hash function will significantly alter the resulting hash. This func-
tion is essential for confirming the unaltered state of data, usually to validate
the signature during the authentication process or software via checksums,
which can prevent some suspicious software from being downloaded that
could be used to attack a system.

Incorporating Salting and Peppering: [15] Salting is a technique where
additional data added to the hashing process is mainly used to process the
user’s credentials, in this case mainly passwords, which are stored in the
database. Credentials must not be stored in their plain-text form. This
would make the system more potentially vulnerable to data breach and the
attacker would have easier access to the user’s information. Security is im-
proved by adding a salt, or random data, to the data before it is hashed.
Each salt should be unique, ensuring that even if several passwords are the
same, each password will have a different hash thanks to the additional data.
At the same time, the salt values must be stored with the passwords in the
database to be able to reproduce the hash to verify its correctness, especially
during the authentication process when the user enters the credentials. Pep-
pering, on the other hand, consists of adding another secret, but in this case

22

not to the data before the hash, but to the generated hash after salting.
As mentioned by OWASP, one peppering strategy is to apply, for example,
Hash-Based Message Authentication Codes (HMAC) to the original pass-
word hash before storing the password hash in the database, in which case
the pepper acts as a HMAC key known only to the application. The fact
that the value used for peppering is known only to the application, and
is not stored in the database, makes it more difficult for an attacker who
would steal the contents of the database containing the user’s credentials to
crack the passwords, since the attacker would have to know the peppering
value first. This makes it even harder for the attacker to guess the original
password, even using brute force or dictionary techniques.

4.2.3 Attacks to Hashes
As with any security approach used in the system, the hash is subject to
some common attacks that are used to extract the original data from it,
although the definition of the hash function remains that the hash cannot
be transformed back into the original appearance. For this reason, various
approaches are used on a daily basis to try to crack the crucial information
hidden behind the hash, or the so-called fingerprint of the data. Here is a
list of common attacks [16], [17]:

• Brute Force Attacks: A brute force attack is applied mainly in a
situation when an attacker retrieved the database of (perharps hashes)
of users’ passwords, by for example an Structured Query Language
(SQL) Injection attack, and is trying to guess the passwords by at-
tempting to calculate the hash for random words combinations that
may be taken from for example database of known passwords used
among many users1.

• Rainbow Table Attacks: A special table (a “rainbow table”) of
pre-computed password hash values for each plaintext character. An
attacker can then use the stolen hashes of encrypted passwords and try
to find a match with the rainbow table. This technique is often used
when an attacker finds vulnerabilities in a system, such as outdated
hashing algorithms. As mentioned by the OWASP in the section
4.2.2, where the salting and peppering techniques are described, this
can make this type of attack significantly more difficult, since using

1Those are password such as: mom, dad, 123456789 and more. These passwords are
recommended as not to be used in any system as these are the first attempts to be tried
when trying to crack them.

23

salting requires an attacker to crack hashes one at a time using the
appropriate salt, rather than calculating the hash once and comparing
it to each stored hash. Peppering is an addition to salting that makes
it impossible for an attacker to crack any of the hashes if the attacker
only has access to the database without knowing the peppering value.

4.2.4 Encryption
[18] Encryption is a technique used to hide information from an unauthorized
user. During this process, two participants must share a secret that is used
to encrypt and decrypt the crucial information, the secret is called a key.
There are two types of keys [19], [20]:

• Symmetric Encryption: This approach employs a singular key for
encrypting and decrypting data. Advanced Encryption Standard (AES)
and Data Encryption Standard (DES) are notable examples utilized
for this encryption style.

• Asymmetric Encryption: Known too as public-key encryption, this
strategy involves a public key for encryption and a private key for
decryption, with RSA being a widely recognized method [21].

Application Scenarios

• Safeguarding Data: Applying encryption to data stored in data-
bases or on physical storage. For example, AES encryption to secure
files stored on a drive.

• Securing Data in Motion: Guaranteeing the safe transport of data
over networks. TLS protocol, for instance, is used for securing web
traffic.

• Data Signing: [22] One of the processes of data signing is illustrated
in the picture 4.3. A participant who wants to verify the signature
must obtain a public key from a participant who created the digital
signature. Another way to create a digital signature is to use HMAC
- in this case only one secret is needed to verify the signature. This
process of creating a digital signature is also illustrated in the practical
part of this thesis, in the section 5.8.

24

Figure 4.1: Symmetric encryption[23]

Figure 4.2: Asymmetric encryption[23]

25

Figure 4.3: Digital Signature[24]

The illustrations 4.1 and 4.2 emphasize the central role of keys in en-
cryption processes. The challenge, however, lies in the secure transmission of
these keys. Protocols like TLS illustrate this challenge well, as they involve
a negotiation process for secret keys to encrypt and decrypt communications
securely. The integrity of the entire communication can be compromised if
this key exchange is intercepted or manipulated, leading to vulnerabilities
such as man-in-the-middle attacks. Therefore, the method of key trans-
fer is as crucial as the encryption itself, underscoring the need for robust
mechanisms to protect against unauthorized interception and ensure the
confidentiality of the communication.

Difference between Hash and Encryption Techniques: [25] The
main difference between the hashing techniques mentioned in the section
4.2.2 and the encryption is the fact that it is possible to revert encrypted
data to the previous state, this is called the process of decryption, unlike
the hashing which is a one-way function only that creates unique string that
is not reversible back to the previous value. Another difference is the speed
of the process. Hashing functions are considered to be faster algorithms
than the encryption algorithms. In particular, signing algorithms take ad-
vantage of the idempotency and speed of hash functions by first creating a

26

much smaller hash from a (presumably large) input, and then using a slower
encryption algorithm to create a digital signature of the hash.

4.3 Transport Layer Security (TLS) / Secure
Sockets Layer (SSL)

[26] In the digital era, ensuring secure communication across the internet
is paramount, particularly for web applications and services. TLS, along
with its predecessor SSL, stands at the forefront of addressing this need by
providing a robust mechanism for encrypting communications. This section
delves into the significance of TLS/SSL within the realm of cybersecurity.

4.3.1 Definition of TLS / SSL
TLS and its precursor, SSL, are fundamental to safeguarding data transmit-
ted over the Internet. Originally developed for encrypting web communic-
ations, their applications now extend to email, messaging, and Voice Over
IP (VoIP) among others. The inception of TLS by the Internet Engineering
Task Force (IETF) marked a significant advancement in internet security
protocols, with TLS 1.3 being the latest iteration, emphasizing enhanced
privacy and data security.

ServerClient

ServerClient

Hello, Key Share

Hello, Key Share, Certificate,
Certificate Verify, Finished.

Finished
GET HTTP/1.1

HTTP Respose

Figure 4.4: TLS 1.3 Handshake Illustration

27

4.3.2 Importance in Cybersecurity
At its core, TLS/SSL serves three key purposes: encryption, authentica-
tion, and integrity. Encryption conceals the data exchange between parties,
preventing unauthorized access. Authentication confirms the identity of the
entities involved in the communication, ensuring that users are actually in-
teracting with the intended servers. Lastly, integrity checks guarantee that
the data transmitted remains unaltered and secure from tampering.

The utilization of TLS/SSL is particularly critical for web applications,
where Hypertext Transfer Protocol Secure (HTTPS) employs TLS encryp-
tion to secure web traffic. The widespread adoption of HTTPS, driven by
initiatives from major web browsers and heightened user awareness, under-
scores the importance of TLS/SSL in establishing a secure and trustworthy
internet ecosystem.

4.4 Identity and Access Management (IAM)
This section discusses IAM and its related technologies and tools that are
mainly used in cloud computing and distributed systems. It includes a
wide range of cybersecurity methods like authentication, authorization, di-
gital certificates, Risk-Based Authentication (RBA), encryption, hashing,
and many more. Some of these methods are shown in a demo application
described in Chapter 5. It aims to mention at least some of standard secur-
ity technologies, tools, and practices, using reliable sources like the OWASP
Foundation and NIST.

Oracle defines IAM as a critical framework for protecting user informa-
tion and managing access within an organization’s systems, including both
cloud-based and on-premise2 resources. [27].

This subsection describes the basics of authentication, authorization and
protocols where these approaches are used, as well as the principles of secure
data management to prevent data breaches.

4.4.1 Authentication
This section examines prevalent methods of authentication and authoriz-
ation deployed across various applications. These methods are critical not

2An on-premise solution is a replacement for a cloud-based solution, where the software
typically runs in the customer’s own environment rather than in a remote facility such as
the cloud.

28

only in globally accessible cloud environments but also within intranets. En-
suring the security of both externally facing APIs and internal applications
is essential for safeguarding business-critical processes. This thesis describes
the concepts of digital identity, identity verification, and session control, of-
fering guidelines primarily advocated by the OWASP Foundation. Practical
illustrations are provided through links to a demo application, demonstrat-
ing some of these principles in action.

4.4.2 Process of Authentication
The process of authentication in this concept is defined by trustful sources
in the area of cybersecurity as follows:

• “Security measures designed to establish the validity of a transmis-
sion, message, or originator, or a means of verifying an individual’s
authorization to receive specific categories of information.“[28]

• “Authentication (AuthN) is the process of verifying that an individual,
entity, or website is who or what it claims to be by determining the
validity of one or more authenticators (like passwords, fingerprints, or
security tokens) that are used to back up this claim.“[29]

[29] In this context of authentication, it is important to define also the
following subjects: Digital Identity, Identity Proofing, and lastly Ses-
sion Management:

• Digital Identity: serves as a distinct marker for individuals particip-
ating in online activities. It is designed to be unique within the digital
realm, though it is not always directly linked to an identifiable person
in the physical world.

• Identity Proofing: The process of identity verification, or identity
proofing, is crucial in confirming that an individual is who they claim
to be. This process parallels the principles of Know Your Customer
(KYC), striving to associate a digital presence with an actual person.

• Session Management: Managing sessions involves a server’s ability
to keep track of a user’s interaction over time. This capability is es-
sential for the server to consistently respond to a user’s actions during
an online session.

29

The following subsections are dedicated to the authentication approaches
(Authentication General Guidelines). Although the main resource is OWASP
Foundation, the guidelines do not differ from the guidelines that can be found
at other sources, such as NIST, National Cyber Security Centre (NCSC),
and more, as those principles are already well known among cybersecurity
experts. However, this paragraph does not necessarily cover all possible ap-
proaches that are available to be used. The cybersecurity scene is really fast
and new approaches are most likely to be found and some old ones can be
already outdated due to their insufficiency.

All the guidelines are linked with the demo application that starts from
chapter no. 5 (Practical Implementation).

Authentication Risks

One critical vulnerability in digital security is broken authentication, as
mentioned in the OWASP Top 10. This flaw arises when authentication
procedures are incorrectly implemented, allowing attackers to assume other
users’ identities or access unauthorized information. Authentication mech-
anisms, being openly accessible, present a tempting target for exploitation.
The complexity and common misconceptions about authentication contrib-
ute to the widespread occurrence of these issues. Attackers can potentially
gain full control over user accounts, access personal data, and undertake
actions indistinguishable from those of legitimate users[30].

Identifying Vulnerabilities An application may be deemed vulnerable
to broken authentication if it exhibits (not only) any of the following char-
acteristics described by the OWASP Foundation:

• It is vulnerable to credential stuffing, a type of attack where the at-
tacker uses brute force with a list of possibly valid usernames and
passwords. Very similar to the rainbow table attack mentioned in the
section 4.2.2.

• It lacks adequate measures, like captcha or account lockout mechan-
isms, to prevent repeated brute-force attempts on the same user ac-
count. This problem is related to the RBA solution which is mentioned
later in the section 4.4.8.

• It allows the use of weak passwords, increasing the risk of successful
brute-force attacks.

30

• It transmits sensitive authentication details, such as tokens or pass-
words, in URLs. All the data transmitted in the URLs are traceable
as they are not hidden from anyone.

• It does not require password confirmation for critical operations, such
as changing email addresses or passwords. Which may lead to account
theft. If such an account could have higher roles in the system as
a bonus, the attacker would have more opportunities to misuse the
system and its data.

• It fails to verify the authenticity of tokens or accepts tokens with weak
or no signatures. This can lead to access by users who may compromise
or steal the token to gain easy access to the system.

• It stores passwords in plain text, without encryption, or employs weak
hashing techniques. Which leads to easier theft with attack techniques
that have been mentioned for example in the section 4.2.2.

Practical Measures for Prevention To mitigate the risks of broken
authentication, several preventive measures can be adopted:

• Understanding all possible authentication flows and ensuring they are
secure.

• Adhering to standard practices for authentication, token generation,
and password storage.

• Treating credential recovery endpoints with the same security measures
as direct authentication pathways.

• Implementing multi-factor authentication where feasible to add an ex-
tra layer of security.

• Establishing anti-brute force mechanisms to protect against various
types of automated attacks.

• Requiring re-authentication for sensitive operations within the applic-
ation.

These strategies, along with insights from the OWASP Authentication
Cheat Sheet, form the cornerstone of secure authentication practices. Chapters
5 and 6 of this thesis, which detail the Practical Implementation and Testing
and Quality Assurance of the Demo Application, respectively, will further
explore how tools like Zed Attack Proxy (ZAP) can be utilized to identify
and address broken authentication vulnerabilities in real-world scenarios[30].

31

4.4.3 User Identification and Management
[29] As highlighted by the OWASP Foundation, safeguarding the user’s iden-
tifier within a system is crucial. A direct method to enhance security is by
randomly generating the user identifier. This approach helps in avoiding
the creation of predictable or sequential Identifiers (IDs), which could elev-
ate security risks. Such precautions are particularly vital in environments
where User IDs may be exposed or deduced from external sources.

Definition of Username and Email Within System: A username is
a memorable identifier that is chosen by individuals to represent themselves
when they log on to a system or service. It is recommended that individuals
are allowed to use their email address as a username, subject to email veri-
fication during the registration process. In addition, users should be allowed
to choose a username that is different from their email address.

However, as the username or email address is the user’s prompt, it is
important to keep in mind that all the inputs that are inserted must be
properly validated to avoid the potential risk that could be caused by an
attacker. Further details on approaches to input validation can be found in
Section 4.7.1 of this document.

Additionally, it is imperative to enforce specific security measures con-
cerning account access and authentication practices that are strongly recom-
mended by the OWASP Foundation:

• Sensitive accounts that can be used for the more advanced operations
within the system (e.g. direct access to the back-end / middle-ware
/ database) should not be allowed to log in to any front-end user
interface.

• An Authentication solution (e.g. Identity Provider (IDP)3 / Active
Directory (AD))

The following subsections discuss various authentication mechanisms such
as Username & Password, Internet Protocol (IP) Address, X.509 and more.

4.4.4 Username & Password Authentication
The Username and Password is a fundamental method for user authentic-
ation. While simple and straightforward to implement, this method neces-

3The identity provider can be a banking system, for example. The user’s identity is
verified by logging into the system, as the identity has already been verified by the bank
when the account was created.

32

sitates careful handling by developers to protect against password breaches
and other potential attacks.

As described in article [31], and in the subsection above (4.4.3), user-
name and password authentication involves verifying a user’s identity through
a unique identifier (username) and a secret (password) against a stored data-
base.

To bolster security when employing this method, developers can adopt
several practices:

• Implementing a robust password policy,

• Utilizing hashing with salting for password storage,

• Employing RBA to identify anomalies.

Some of the key challenges associated with password authentica-
tion:

• Password Reuse: A significant risk arises when credentials from
one system are compromised, as attackers may attempt to use these
credentials across various platforms.

• Password Guessing: Attackers often employ dictionaries of common
passwords in their attempts to breach user accounts. Techniques like
RBA can mitigate such risks by detecting and preventing suspicious
login attempts.

Password Policy

Ensuring password strength is critical to secure authentication. A strong
password policy makes it difficult for attackers to guess or crack passwords
using manual or automated methods. Key elements of a strong password
include:

• Password length: It is important to have a password policy in place
that limits the length of a password and prevents users from creating
passwords that are too weak or unnecessarily too complicated.

• Character diversity: Encourage the use of a variety of characters,
including Unicode and spaces, without imposing restrictions on charac-
ter types. This flexibility supports the creation of stronger passwords.

33

• Compromise Response: Prompt password changes in the event of
a security breach or when a compromise is detected to protect user
accounts.

• Password strength meter: Include tools such as the zxcvbn-ts lib-
rary to help users generate complex passwords and prevent the selec-
tion of common or previously compromised passwords.

• Vulnerability checking: Use services such as Pwned Passwords to
check against a database of known compromised passwords. This ser-
vice can be integrated via an API or directly hosted.

Storing the Password

[32] It is very important to keep user credentials safe, especially if someone
breaks into an application. As mentioned in the previous section 4.2, the
way passwords are stored in the database is crucial for the whole application.
Only password hashes with the addition of salting and peppering, as men-
tioned in the section 4.2.2, should be stored. There are some pre-existing
methods that are deliberately slow to slow down any attempt at password
cracking. Such methods are called mixing methods. Some of these are, for
example

• bcrypt: is older, but still very reliable, especially for systems that can
not use the latest methods yet.

• Argon2id: is the newest and is recommended for its ability to ef-
fectively fend off hacker attacks. It allows you to adjust the settings
according to how much security you need.

• PBKDF2: is often required to meet certain security standards and is
a solid choice for many applications.

The name “mixing” comes from the principle of mixing passwords to
increase their strength. Each has its own set of suggestions, but they all add
a bit of unique data to each password before mixing it, making it harder for
attackers to figure out the passwords.

Risks with Passwords

Not having a strong rule for passwords can lead to dangers like brute-force
attacks, where hackers try many passwords to get in. This can let them into

34

user accounts without permission. Having a variety of checks for user logins
can greatly lower this danger[32].

In summary, this section on username/password authentication, includ-
ing the password policy, is intended to cover basic aspects and considerations
for developers implementing this method. Despite its widespread usage, the
shift towards passwordless methods, including Single Sign-On (SSO), signi-
fies evolving security paradigms in application development. The username
and password approach is illustrated in the practical part, subsection 5.5.1.

4.4.5 IP Address Authentication
[33] IP address authentication allows users access to certain services based
on their computer or device’s IP address, usually managed by an organiza-
tion’s Information Technology (IT) department. This method, often used for
securing access to specific online resources within an organization’s physical
location like campuses or offices, requires additional tools like EZproxy4 or
HAN proxy5 for off-site access.

This form of authentication is favored for its ease of setup and mainten-
ance, providing a frictionless experience for users. However, it falls short
in supporting modern remote access needs without additional remote au-
thentication tools. Moreover, it limits user actions, such as placing holds on
library items, unless they’re within the recognized IP range.

Users accessing resources from a registered IP address enjoy seamless
entry to organization-specific resources. Conversely, access from unregistered
IPs necessitates navigating through a proxy tool, initiated from the library’s
website or similar platforms, potentially complicating the user experience.

For organizations with static IP ranges, IP authentication remains a vi-
able option. Yet, those with dynamic or frequently changing IP ranges might
find maintenance burdensome. In such cases, exploring more stable authen-
tication methods or considering Personal User Authentication for remote
access could prove beneficial. Ensuring your authentication settings are up-
to-date, including proxy configurations, is also recommended for a smoother
user experience.

4A technology that provides remote access to Electronic Information Resources by
means of EZProxy links: https://ezdroje.muni.cz/vzdaleny_pristup/ezproxy.php?
lang=en

5HAN is based on the technological concept of a reverse proxy: https://www.hh-han.
com/en/concept.cfm

35

https://ezdroje.muni.cz/vzdaleny_pristup/ezproxy.php?lang=en
https://ezdroje.muni.cz/vzdaleny_pristup/ezproxy.php?lang=en
https://www.hh-han.com/en/concept.cfm
https://www.hh-han.com/en/concept.cfm

4.4.6 X.509 Certificates
[34] An X.509 certificate is like a digital passport for websites or electronic
identities. It confirms that the public key contained within the certificate
belongs to the person, organization, or device it claims to. These certificates
rely on a standard format for Public Key Infrastructure (PKI) to work across
the internet. The main structure of the certificate is shown below [35]:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
extensions [3] Extensions OPTIONAL

-- If present, version MUST be v3 -- }

Usage of X.509 Certificate

As mentioned in the source [36], the X.509 may also be used as an authen-
tication service. This digital certificate is a certificate-based authentication
security framework that may be used for securing transaction processing and
private information. In particular, it is used to handle security and identity
in computer networks and Internet-mediated communications in general.

The core of this authentication service is the public key certificate as-
sociated with each user. Each key is assumed to have been generated by
a trusted certification authority and provided to a user by the certified au-
thority. This certificate is then used as a credential.

The X.509 Authentication Service Certificate has many applications be-
cause many protocols depend on this standard. Some of these are illustrated

36

below:

• Document signing and Digital signatures,

• TLS / SSL certificates,

• Email certificates,

• Code signing,

• Secure Shell Protocol (SSH),

• Digital Identities

The Working Mechanism of X.509 Certificates

At its core, an X.509 certificate’s job is to establish a secure link. This
process involves:

1. Issuing the Certificate: A trusted authority checks and then issues
a certificate to the requester.

2. Validating the Certificate: When someone connects to a service,
like a website, their browser checks the site’s certificate is valid.

3. Establishing Secure Communication: Once the certificate is veri-
fied, a secure connection is made, protecting the data exchanged[37].

Why X.509 Certificates Matter

These certificates are foundational to online trust and security:

• Building Trust: It helps users feel secure, knowing they are possibly
talking to the website they think they are.

• Protecting Data: It is used during the handshake between a client
and a server to establish secure communication when adding an extra
layer of security to the communication: SSL / TLS.

• Proving Identities: They ensure that the parties in any digital com-
munication are who they claim to be.

37

4.4.7 WebAuthn
[38] WebAuthn, or Web Authentication, stands as a modern API standard
by W3C aimed at enhancing user login methods for online services and
websites. It supports authentication via biometrics, like fingerprint or facial
recognition, and hardware authenticators such as USB or NFC tokens.

Features of WebAuthn

• Phishing Resistance: By employing public key cryptography, where
the private key remains on the user’s device, WebAuthn effectively
guards against phishing. Credentials are domain-specific, preventing
their misuse on fraudulent sites.

• High Security Standards: WebAuthn adheres to stringent cryp-
tographic protocols, ensuring secure user verification through either
roaming or platform authenticators, depending on the device’s capab-
ilities.

• Seamless User Experience: WebAuthn facilitates a frictionless lo-
gin process, allowing authentication with a simple gesture, thereby
balancing convenience with heightened security.

Roles in WebAuthn

• Relying Party: The online service or website requiring user access,
initiating the authentication process.

• WebAuthn Client Device: The user’s device, hosting private keys
securely, supporting user authentication.

• User: The individual seeking access to the relying party’s resources.

• Authenticator Types:

– Platform Authenticators: Built-in device features like biomet-
rics.

– Roaming Authenticators: External devices, e.g., YubiKey, en-
hancing cross-platform security.

How WebAuthn Operates

WebAuthn authentication involves two primary flows:

38

• Registration (Sign Up Operation),

• Authentication (Sign In Operation).

Both operations are illustrated in the images provided on the next page
of this thesis, which are taken from the source cited in the title of the images:

Registration (Sign Up Operation) Flow

Figure 4.5: WebAuth Sign Up Flow [39]

39

Authentication (Sign In Operation) Flow

Figure 4.6: WebAuth Sign In Flow [39]

WebAuthn is a revolutionary approach because it eliminates the need to
create and manage passwords. This new method improves security because
it requires a special device, like a Universal Serial BUS (USB) or Near Field
Communication (NFC) token, to log in. Without this device, attackers can
not get into the application. These devices are important for creating se-
cure keys, which is a way to keep information safe, as have been mentioned
in section (4.2). This shows the importance of the traditional security ap-
proaches in the field of cybersecurity, especially in today’s world where cloud
computing is increasingly used and security plays a key role in protecting
not only the data but also the users.

4.4.8 Risk-Based Authentication (RBA) Method
RBA is a sophisticated approach to enhancing traditional password authen-
tication systems. It works by monitoring extra details, like the type of device

40

being used or where the user is located, while they enter their password. If
RBA spots anything unusual that could mean a higher security risk, it asks
for more proof that the person is who they say they are, such as a code sent
to their phone[40].

The idea behind RBA is to make it harder for bad actors to get into
someone’s account, even if they have somehow figured out the password.
This method is backed by guidelines from NIST on digital identity and is
already being used by many big online platforms. It is particularly good at
stopping a range of attacks aimed at stealing user data, like when hackers
try to break into many accounts at once using stolen password lists, guess
passwords, or take advantage of weak passwords. It is not just about pre-
venting account theft, but also about the security of the system as a whole,
since any client could be affected by an attacker who might try to make the
system unavailable.

Unfortunately, the exact way RBA works is not usually shared by com-
panies that use it. This lack of openness means there is not much detailed
research out there about how RBA is put into practice. This situation slows
down progress in making RBA better and more widely understood. For
users, it means it is tougher to know just how secure the online services
they rely on really are. It also makes it harder for RBA to be adopted more
broadly, even though it can significantly improve online security[40].

4.4.9 Authorization Overview
Authorization plays a critical role in securing applications by ensuring that
users can only access resources for which they have permissions. It is dis-
tinct from authentication, which verifies user identity, whereas authorization
verifies user permissions after their identity has been confirmed.

4.4.10 Process of Authorization
The process of authorization involves determining user rights and permis-
sions to various resources within an application. This process is pivotal in
maintaining the security and integrity of the application’s data.

Authorization Risks

Authorization risks arise when users are granted access to resources or data
for which they do not have legitimate need or permission. These risks can
lead to unauthorized data access, data manipulation, or exposure of sensitive
information.

41

4.4.11 Recommendations for Effective Authorization
To mitigate authorization risks and ensure a robust security posture, the
following recommendations should be considered:

Least Privileges

Employ the principle of least privilege by ensuring that users have the min-
imum level of access, or permissions, needed to perform their duties. This
minimizes the potential impact of a breach by limiting the resources an
attacker can access or compromise.

Deny by Default

Adopt a deny-by-default stance where access permissions are not granted
unless explicitly defined. This approach ensures that users are only able
to access resources that have been specifically allowed, reducing the risk of
unauthorized access. This is based on the least privileges principle.

Validate Permissions on Every Request Permissions should be valid-
ated for each request to ensure that users have appropriate access rights.

Attribute and Relationship-Based Access Control

Under Role-Based Access Control (RBAC), individuals are organized into
roles, with each role granted certain permissions. This setup simplifies the
management of access rights, as any changes to roles or their permissions
automatically reflect on all users linked to those roles. For instance, within
any IAM system, roles might encompass permissions such as the ability to
read, write, or delete content, and users are allocated roles aligning with
their job functions.

4.4.12 Identity and Access Management Technologies
Well known cloud service providers, including Microsoft, Amazon Web Ser-
vices (AWS), and International Business Machines Corporation (IBM), de-
liver complete IAM solutions that integrate a broad spectrum of cybersecur-
ity practices. They generally offer greater security and reliability than cus-
tom development, which can expose vulnerabilities or lead to bad design de-
cisions. Comprehensive IAM solutions incorporate advanced authentication
protocols, such as OpenID Connect (OIDC) and Security Assertion Markup

42

Language (SAML 2.0), along with Multi-Factor Authentication (MFA), re-
source access policies, user groups, sign-in and sign-up processes, SSO, and
extensive monitoring features.

The adoption of prebuilt IAM solutions is highly recommended to mit-
igate the risk of common cybersecurity threats effectively and to avoid the
pitfalls associated with custom-built systems. These platforms provide a ro-
bust framework for managing digital identities, enhancing system security,
and ensuring compliance with evolving cybersecurity norms.

[27], [41] This is a list of the most common technologies that are included
in the IAM:

• Single Sign-On (SSO): Or in other words Identity Federation is a
technology that allows users to log in once and access multiple sys-
tems without having to re-authenticate to each system. This reduces
the need for users to maintain multiple passwords for each service.
Another benefit is that the systems do not need to maintain the user’s
credentials, as they should already be authenticated and authorized
by some third parties.

• Multi-Factor Authentication (MFA): MFA enhances security by
requiring users to provide multiple forms of verification before gain-
ing access. This may be necessary to allow the user to perform some
critical operations, such as accessing resources that require higher priv-
ileges or operations (not only) related to the account settings, such as
changing password and email. Nowadays this solution is crucial for ex-
ample on the social media sites (e.g. Facebook), as it would be really
easy to steal someone’s account if there would be possibility to change
the user’s settings like phone number, email and more without any ad-
ditional validation steps required. This makes it much more difficult
for the attacker.

• Directory Services: Utilizing protocols like Lightweight Directory
Access Protocol (LDAP), directory services manage identity informa-
tion for users, groups, and devices without requiring additional custom
implementation by default, eliminating the risk of creating potentially
dangerous parts of the application that may be incorrectly implemen-
ted and exposed to attackers.

• User Provisioning: It automates the creation, modification, and
deletion of user accounts across multiple systems. In other words, it
allows system administrators to manage users across multiple systems

43

from a single location. User management includes managing their roles
to perform actions and access resources according to their privileges.

• RBA: RBA manages authentication challenges based on the risk pro-
file associated with a user’s behavior. This is useful for early detection
of a malicious user based on the user’s actions within the system(s).
This approach is described in more detail in the section 4.4.8.

• Cloud Identity Management Solutions: Technologies like AWS
Cognito, Azure Active Directory, and Google Cloud Identity provide
cloud-based solutions for managing user identities and access rights
efficiently.

4.5 Authentication and Authorization Pro-
tocols

In cybersecurity, authentication protocols are crucial for verifying the iden-
tities of users, systems, or entities before granting access to sensitive in-
formation, services, or networks. These protocols form the backbone of
security mechanisms, ensuring that access to digital assets is appropriately
controlled. The evolution of cyber threats necessitates robust authentication
protocols to protect against unauthorized access.

Authentication protocols are agreements on how credentials are exchanged
between a requesting party and the system providing access. They specify
methods for presenting and verifying credentials, such as passwords, digital
certificates, or biometric data, with their effectiveness measured by their
resilience to attacks, ease of implementation, and usability. The main ad-
vantage of these protocols is lack of need to send user’s credentials, especially
password.

The diversity of authentication protocols mirrors the broad spectrum of
applications and security requirements in today’s interconnected environ-
ment, from simple password-based methods to advanced cryptographic sys-
tems, all aiming to secure digital identities and facilitate secure transactions
and communications.

4.5.1 JSON Web Tokens (JWT)
This format deserves its own subsection, as it is very often used to hold
information about the current client, especially in the OIDC protocol, and
is also sent with every request, typically in the authorization header when

44

interacting with a web application that requires this type of token. The
application can then use this token to decide whether or not the user can
access the resource. The token has three parts:

1. Header: Contains information about the algorithm and token type

2. Payload: Contains the main data describing the client

3. Verify Signature: This part is important to prevent token comprom-
ise. This is a digital footprint of the token to verify that the token has
not been modified by a malicious client.

Each part of the token is then separated by the “dot (.)” character. The
representation of the token is shown in an image 4.7.

Figure 4.7: Part of the JWT Token

The content of the decoded token may then look like this (only part of it):
1 ...
2 " resource_access ": {
3 " account ": {
4 "roles": [
5 "manage - account ",
6 "manage -account -links",
7 "view - profile "
8]
9 },

10 " client ": {
11 "roles": [
12 "role1",
13 "role2"
14]

45

15 }
16 },
17 "scope": " openid email profile ",
18 "sid": "2bf75c36 -5a94 -4612 - b472 -13 db68331b0a ",
19 " email_verified ": false ,
20 "name": "<name >",
21 " preferred_username ": "test",
22 " given_name ": "<given_name >",
23 " family_name ": "<faimly_name >",
24 "email": "<email_address >"
25 ...
26 }

Listing 4.1: Decoded JWT Token

4.5.2 Open Authorization (OAuth) 2.0
[42] Defined by the IETF in RFCs 6749 and 6750, Open Authorization
(OAuth) 2.0 is a framework that lays down a standardized method for secure
authorization. Unlike its predecessor, OAuth 1.0, which was more focused on
client authentication and cryptographic signatures, OAuth 2.0 introduces a
more flexible and extensible framework primarily aimed at authorizing third-
party applications to access server resources on behalf of a user. It allows
services like Facebook, GitHub, and Google to grant application access to
user information over HTTP, without sharing the user’s credentials.

[43] It is important to note once again that OAuth 2.0 is an authorization
protocol and not an authentication protocol. This is due to the fact that
this protocol is primarily designed for granting access to specific resources on
the Internet, such as APIs or user data in general. In order to achieve this,
so-called access tokens are used, which contain the necessary information
about the current authorization of a specific client that receives this token.
This token is often represented as a JSON Web Token (JWT) token6, which
is described in more detail in the subsection 4.5.1. This type of token
allows the insertion of a lot of information about the client, which can then
be used in systems to determine whether or not the client is allowed to access
the resources. A diagram 4.8 illustrates the flow of how OAuth 2.0 works
in general.

6The content of the JWT token can be viewed by using https://jwt.io for example.
This is a very useful debugging tool.

46

https://jwt.io

Figure 4.8: OAuth 2.0 Flow Illustration[44]

OAuth 2.0 Roles

The OAuth 2.0 framework specifies four roles:

• Resource Owner: Typically the user, who can grant access to their
resources (data).

• Resource Server: The server hosting the protected resources, cap-
able of accepting and responding to protected resource requests using
access tokens.

• Client: The application requesting access to the resource owner’s
data.

• Authorization Server: The server issuing access tokens to the cli-
ent after successfully authenticating the resource owner and obtaining
authorization.

Authorization Grants

As also described in the [43] source, in OAuth 2.0, grants are the set of steps
that a client must perform to obtain authorization to access a resource. The

47

authorization framework provides several types of grants to address different
scenarios:

• Authorization Code Grant: The Authorization Server issues a one-
time Authorization Code to the Client. This code is then exchanged
for an Access Token. This method is optimal for traditional web ap-
plications that handle the token exchange securely on the server side.
Although also applicable to Single Page Application (SPA)s and mo-
bile apps, these cannot securely store the client secret, thus limiting
authentication to only the client ID during token exchange. An en-
hanced alternative for these applications is the Authorization Code
Grant with PKCE.

• Implicit Grant: This simplified procedure directly sends the Ac-
cess Token to the Client. Traditionally, the token might be delivered
through the callback Uniform Resource Identifier (URI) or as a re-
sponse to a form submission. The former method is generally discour-
aged due to the risk of token exposure.

• Authorization Code Grant with PKCE (Proof Key for Code
Exchange): [45] This method extends the Authorization Code Grant
by incorporating additional security measures, making it more secure
for mobile apps and SPAs, as these types of applications cannot se-
curely store a client secret. This approach introduces a secret created
by the calling application that can be verified by the authorization
server itself. The calling application also creates a transient value of
the code verifier, called a code challenge, which is sent within the re-
quest over HTTPS to retrieve an authorization code. This prevents a
malicious attacker from obtaining a token because the attacker does
not have the code verifier.

• Resource Owner Password Credentials Grant: In this grant, the
Client must first acquire the resource owner’s credentials to request the
token directly from the Authorization Server. This grant is only suit-
able for highly trusted clients due to the sensitive nature of handling
user credentials directly. It is particularly useful where redirecting to
the Authorization server is not viable.

• Client Credentials Grant: This grant is intended for applications
acting on their own behalf rather than on behalf of a user, such as auto-
mated processes or microservices. The client is authenticated using its
client ID and secret.

48

• Device Code Grant: Designed for devices with limited input capab-
ilities, like smart TVs, this grant allows a secondary device to facilitate
the authorization process.

• Refresh Token Grant: This involves exchanging a Refresh Token
for a new Access Token, enabling extended access without requiring
the user to re-authenticate.

4.5.3 OpenID Connect (OIDC)
Built on OAuth 2.0, OIDC extends this authorization framework to include
user authentication, thereby enabling clients to verify users’ identity effi-
ciently and access basic profile information via a standardized protocol [46].

[47] To define the OIDC, it is also important to mention another termin-
ologies that are related to this protocol:

• Relying Parties (RP): Commonly web applications, visited by cli-
ents, that requires users to be authenticated to perform specific actions
(e.g. fetch data from other other applications, or access specific sources
on the web application and more).

• OpenID Connect Provider (OP): Provider, or in other words, a ser-
vice that uses IDP to obtain user’s information once the user is authen-
ticated successfully. The IDP may be own solution, typically database
with user’s credentials, or external services such as LDAP, SAML 2.0,
Google and many more.

49

Figure 4.9: OIDC Authentication Illustration[48]

[49] As mentioned at the beginning of this subsection, the OIDC is an
extension of the OAuth 2.0 in that it adds an identity layer. This is achieved
by abstracting an ID token from this layer using JWT tokens. The Identifier
(ID) token then represents the user’s identity, which is used for authentica-
tion, or in other words, proving the user’s identity, since the OAuth 2.0 itself
is used for authorization, which involves what the user can do.

The client receives an ID token along with the access token. The ID token
is retrieved thanks to the OP mentioned at the beginning of this subsection.
The client then sends this token with each request to appropriate sources,
which use it to perform necessary actions to determine whether the user is
allowed to access the resource.

This approach with OIDC and the tokens takes the security aspects to
another level, as the applications relying on this protocol do not need to
store the user’s credentials, and the solution is so-called passwordless. The
JWT token contains all the necessary information that applications need
to know to decide whether the client is authenticated and authorized for
access. This also allows the SSO approach between many services, which
means that the user only needs to be logged in once in one place and can
access multiple services, reducing the pressure on users to remember their

50

passwords for multiple applications, but they can be authenticated from
one place because each service handles all the processes (authentication and
authorization) thanks to the tokens. This process is illustrated in the picture
4.10. Not only the theoretical illustration has been done in this thesis, but
the OIDC protocol has also been implemented in the practical part of this
thesis, which is illustrated in the section 5.5.1.

Figure 4.10: OIDC Access and ID Tokens in API calls[49]

4.5.4 Security Assertion Makrup Language (SAML)
2.0

[50] SAML 2.0 is an Extensible Markup Language (XML)-based standard for
exchanging authentication and authorization data between parties. Before
diving into the description of this protocol in more details, it is important
to mention the basic actors that play pivotal role in this approach:

• IDP: SAML 2.0 IDP is an authority used to verify a user’s identity.
The IDP typically provides public endpoints to obtain necessary data
to mediate the authentication flow. The IDP is the same as defined in
the OIDC section (if allows the SAML 2.0 authentication).

51

• Service Provider (SP): A typical example of a SP used in the SAML
2.0 based authentication may be ShibbolethSP. Service provider is
most commonly a component, or a middleware in a web application
that triggers the authentication requests to a SAML 2.0 IDP.

The authentication and authorization mediated between IDP and SP is
done by exchanging the digitally signed XML documents, in this case SAML
2.0 Assertions. The whole process may be illustrated by the picture 4.11.
The SAML 2.0 response exchanged between IDP and SP may be illustrated
like this (shortened version):

1 <samlp:Response xmlns:samlp =" urn:oasis:names:tc:SAML:2 .0
:protocol " xmlns:saml =" urn:oasis:names:tc:SAML:2 .0
:assertion " ID="
_8e8dc5f69a98cc4c1ff3427e5ce34606fd672f91e6 " Version ="2.0"

IssueInstant ="2014 -07 -17 T01:01:48Z " Destination ="http: //
sp. example .com/demo1/index.php?acs" ... >

2 <saml:Issuer >http: // idp. example .com/ metadata .php </
saml:Issuer >

3 <samlp:Status >
4 <samlp:StatusCode Value=" urn:oasis:names:tc:SAML:2 .0

:status:Success "/>
5 </ samlp:Status >
6 <saml:EncryptedAssertion >
7 <xenc:EncryptedData xmlns:xenc ="http: // www.w3.org

/2001/04/ xmlenc #" xmlns:dsig ="http: // www.w3.org /2000/09/
xmldsig #" Type="http: // www.w3.org /2001/04/ xmlenc # Element ">
<xenc:EncryptionMethod Algorithm ="http: // www.w3.org
/2001/04/ xmlenc #aes128 -cbc"/><dsig:KeyInfo xmlns:dsig ="
http: // www.w3.org /2000/09/ xmldsig #"><xenc:EncryptedKey ><
xenc:EncryptionMethod Algorithm ="http: // www.w3.org
/2001/04/ xmlenc #rsa -1_5"/><xenc:CipherData ><
xenc:CipherValue >... </ xenc:CipherValue ></ xenc:CipherData ><
/ xenc:EncryptedKey ></ dsig:KeyInfo >

8 <xenc:CipherData >
9 <xenc:CipherValue >... </ xenc:CipherValue >

10 </ xenc:CipherData >
11 </ xenc:EncryptedData >
12 </ saml:EncryptedAssertion >
13 </ samlp:Response >
14 }

Listing 4.2: SAML Response

52

The IDP provides an endpoint that contains all the necessary information
for the SP. In this case, an example using IAM Keycloak, which is used in
the practical part of this thesis. The endpoint is located on this URI:

http://<domain>/auth/realms/<realm>/protocol/saml/descriptor

After calling this endpoint, all other necessary endpoints are described within
this saml descriptor. The response is also XML based and looks like this

1 This XML file does not appear to have any style information
associated with it. The document tree is shown below.

2 <md:EntityDescriptor xmlns=" urn:oasis:names:tc:SAML:2 .0
:metadata " xmlns:md =" urn:oasis:names:tc:SAML:2 .0 :metadata "

xmlns:saml =" urn:oasis:names:tc:SAML:2 .0 :assertion "
xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #" entityID ="
http: // localhost:9080 /auth/ realms / SAMLRealm ">

3 <md:IDPSSODescriptor WantAuthnRequestsSigned ="true"
protocolSupportEnumeration =" urn:oasis:names:tc:SAML:2 .0
:protocol ">

4 <md:KeyDescriptor use=" signing ">
5 <ds:KeyInfo >
6 <ds:KeyName >a2Z9TtLbPk6TfGVR7e -5 hI0TcQfh7UPFUC5nCz8bZ6E </

ds:KeyName >
7 <ds:X509Data >
8 <ds:X509Certificate >... </ ds:X509Certificate >
9 </ ds:X509Data >

10 </ ds:KeyInfo >
11 </ md:KeyDescriptor >
12 <md:ArtifactResolutionService Binding ="

urn:oasis:names:tc:SAML:2 .0 :bindings:SOAP " Location ="http:
// localhost:9080 /auth/ realms / SAMLRealm / protocol /saml/
resolve " index="0"/>

13 <md:SingleLogoutService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:HTTP -POST" Location ="http: // localhost:9080 /auth/
realms / SAMLRealm / protocol /saml"/>

14 <md:SingleLogoutService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:HTTP - Redirect " Location ="http: // localhost:9080 /
auth/ realms / SAMLRealm / protocol /saml"/>

15 <md:SingleLogoutService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:HTTP - Artifact " Location ="http: // localhost:9080 /
auth/ realms / SAMLRealm / protocol /saml"/>

16 <md:SingleLogoutService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:SOAP " Location ="http: // localhost:9080 /auth/
realms / SAMLRealm / protocol /saml"/>

17 <md:NameIDFormat >urn:oasis:names:tc:SAML:2 .0 :nameid -
format:persistent </ md:NameIDFormat >

18 <md:NameIDFormat >urn:oasis:names:tc:SAML:2 .0 :nameid -
format:transient </ md:NameIDFormat >

53

19 <md:NameIDFormat >urn:oasis:names:tc:SAML:1 .1 :nameid -
format:unspecified </ md:NameIDFormat >

20 <md:NameIDFormat >urn:oasis:names:tc:SAML:1 .1 :nameid -
format:emailAddress </ md:NameIDFormat >

21 <md:SingleSignOnService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:HTTP -POST" Location ="http: // localhost:9080 /auth/
realms / SAMLRealm / protocol /saml"/>

22 <md:SingleSignOnService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:HTTP - Redirect " Location ="http: // localhost:9080 /
auth/ realms / SAMLRealm / protocol /saml"/>

23 <md:SingleSignOnService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:SOAP " Location ="http: // localhost:9080 /auth/
realms / SAMLRealm / protocol /saml"/>

24 <md:SingleSignOnService Binding =" urn:oasis:names:tc:SAML:2 .0
:bindings:HTTP - Artifact " Location ="http: // localhost:9080 /
auth/ realms / SAMLRealm / protocol /saml"/>

25 </ md:IDPSSODescriptor >
26 </ md:EntityDescriptor >
27 }

Listing 4.3: SAML Response

54

Service ProviderClient
(Web Browser)Identity Provider

Service ProviderClient
(Web Browser)Identity Provider

1) User attemps
unauthenticated access

2) Redirect to IdP

3) Access IdP SSO
endpoint

4) Validate SAML
Request

5) Show Login Form

6) Login

7) Validate Credentials
&

Generate SAML Response

8) Instruct browser to post
the SAML Response to SP

9) Post the SAML Response

10) Check the SAML response

11) Set Cookie

12) Access as authenticated user

Figure 4.11: SAML authentication flow[50]

More detail on how this protocol works from a practical perspective and
how it can be configured is illustrated in the practical part of this thesis, in
the section 5.5.1.

4.5.5 Kerberos
[51] Kerberos is a network authentication protocol designed to provide strong
authentication for client/server applications by using secret key crypto-
graphy. It is primarily used in secure network environments where identity

55

verification is crucial, such as corporate intranets and secure web applica-
tions. One of the technological examples where Kerberos takes its part is
Microsoft Active Directory that employs Kerberos for authentication across
Windows networks.

Service ServerTicket Granting ServerAuthentication ServerClient

Service ServerTicket Granting ServerAuthentication ServerClient

Request Auth Token

Encrypted SK1
and Auth Token

Request Service Ticket (with Auth Token + Authenticator)

Service Ticket + Encrypted SK2

Access Request (with Service Ticket + new Authenticator)

Confirmation of Authentication

Figure 4.12: Simplified Kerberos Authentication Flow

Advantages

• Enhanced Security: Encrypts data to protect against eavesdropping
and replay attacks.

• Single Sign-On (SSO): Allows users to log in once and access mul-
tiple services without re-authenticating.

• Scalability: Well-suited for large organizations with extensive net-
work security requirements.

Disadvantages

• Complexity: Implementation and management can be complex and
resource-intensive.

• Dependency: Relies on a central authentication server, creating a
single point of failure.

56

• Limited Cross-Domain Capability: Cross-realm authentication
can be challenging to configure.

4.5.6 LDAP in Cloud Computing Environments
[52] LDAP serves as a cornerstone in managing directory services across
IP networks, facilitating efficient user and resource management. This sec-
tion explores LDAP’s functionality, its critical role in cloud computing, par-
ticularly in Azure, and delves into inherent security risks and mitigation
strategies.

Overview of LDAP

LDAP, a streamlined version of the Directory Access Protocol (DAP), is
pivotal for querying and modifying directory services via an open-source ap-
plication protocol. Its compatibility with both public and private networks
enhances its utility across diverse directory services, making it indispensable
for accessing and authenticating user information in a multitude of environ-
ments.

LDAP and Cloud Computing

The integration of LDAP with cloud services, such as Microsoft’s Azure,
exemplifies the protocol’s versatility. LDAP functions as the communicative
protocol for Azure Active Directory, enabling seamless authentication and
access management in cloud infrastructures. This synergy underscores the
protocol’s adaptability in bridging on-premises directory services with cloud-
based environments.

57

Figure 4.13: LDAP Workflow[53]

4.6 Trust Management
Trust Management plays a crucial role in enhancing the security of dis-
tributed systems within cloud computing environments. It is particularly
relevant when systems incorporate services from third parties or manage
access to sensitive data and functionalities that must be protected against
unauthorized or malicious access. Trust Management System automates the
process of validating access across varied services with potentially different
access requirements.

Originally introduced by Matt Blaze, Trust Management aids in the auto-
mated verification of actions against established security policies. It assesses
whether actions comply with policies based on presented credentials, regard-
less of the entity’s actual identity. This approach decouples the symbolic
representation of trust from the actual identity, focusing on aspects such as
honesty, truthfulness, competence, and reliability [54], [55].

Key principles of Trust Management include:

• Formulating and managing security policies and credentials.

• Determining if a specific combination of credentials satisfies relevant
policies.

• Deferring trust to third-party entities.

58

• Dynamically adjusting trust levels based on behavior or other factors,
with the possibility of increasing or decreasing trust based on observed
actions.

Trust can be illustrated by analogy with ticketing systems, such as those
used in Kerberos (section 4.5.5), where a ticket grants entry or access
rights, embodying distributed trust. However, systems may reject a ticket
if further verification is required, demonstrating the need for adaptive trust
levels.

4.6.1 Trust Management Technologies
Trust Management technologies are integral to the effective implementation
of the above principles within information systems. These technologies in-
clude for example:

• Kerberos: As mentioned in the section 4.5.5.

• JWT: As mentioned in the section 4.5.1, JWT plays a pivotal role
in the TM in general, as the JWT may be used across the systems to
evaluate whether the operation is allowed or fobidden.

• RBA: As mentioned in the section 4.4.8.

• RBAC (Role-Based Access Control): This is more of a process
than a technology, but this approach also plays a central role in the
TM topic, as access to resources is automatically maintained by the
roles of each user trying to access them. This approach has been also
illustrated in the practical part of this thesis 5.5.2.

4.7 Further Security Practices
As mentioned in the previous section discussing the IAM and IAM techno-
logies, it is also important to mention another security aspect that must be
considered when developing any application that would be available to users
online. The first and very important aspect, which can help prevent some
dangerous attacks that can lead to data breaches (but not only), can be pre-
vented by proper input validation. Nevertheless, this section also mentions
some of the most common attacks that occur daily to many applications that
are accessible online, especially larger systems and applications in general.

59

4.7.1 Input Validation
It is widely recognized that any application allowing user input must im-
plement stringent input validation. Specifically, techniques from extreme
programming prove invaluable in this context. Users should never be fully
trusted, as even minor vulnerabilities can lead to significant system failures,
primarily due to attackers exploiting every small oversight in the application.

Proper input validation is crucial for preventing attacks such as [56]:

• SQL Injection,

• Cross-Site Scripting (XSS): This attack can lead to the compromise of
redirect links used for example in the OIDC protocol (but not only).
Therefore, those IAM systems that mediate this protocol, and are used
for SSO approach, explicitly require a list of allowed URLs that are
valid to increase the security of the user that would use the specific
application, most likely the web application.

• In today’s digital landscape, even DOM-based XSS attacks7,

• Denial of Service (DoS), which can occur, for instance, by upload-
ing malicious files. Such files might overwrite crucial server files (e.g.,
.htaccess) or exhaust server storage, severely impairing server availab-
ility.

The examples listed above highlight just a few of the many potential
issues associated with inadequate input validation. The validation process
must be tailored to the type of data being submitted, encompassing files,
text, numbers, and any other conceivable input types. While it’s imprac-
tical to catalog all issues related to input validation here, it’s essential to
consult resources like the OWASP Foundation’s cheat sheets for comprehens-
ive guidelines. This mention serves as a reminder that input validation is a
critical security aspect in the development of any application open to pub-
lic interaction, especially web applications engaging users through various
input forms.

4.7.2 Common Attacks on the Internet
As each application is unique, employing its own or external libraries, con-
tributing to the complexity of securing it. Importantly, threats to system

7For more details about preventing DOM-based XSS, refer to the OWASP
Cheat Sheet: https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_
Prevention_Cheat_Sheet.html

60

https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html

stability are not solely external; incorrect input validation, as highlighted in
section 4.7.1, or unforeseen failures, such as runtime exceptions, can also
lead to service denial.

The development of robust and secure applications highly depends on
the specific use case. It is acknowledged that larger systems cannot remain
without any vulnerabilities; no system is entirely bulletproof. Therefore, the
security measures prioritized will vary based on system functionality. For in-
stance, systems focusing on data storage and analysis prioritize safeguarding
data against breaches or loss. Systems for streaming video content, among
others, also have specific security needs.

In all cases, a fundamental understanding of good programming paradigms
and patterns that mitigate risks is crucial. Knowledge in areas such as au-
thentication, authorization, encryption, data integrity checks, digital sig-
natures, certificates, and input validation is indispensable for securing ap-
plications. With new vulnerabilities discovered weekly in various libraries,
staying informed through technical cybersecurity news, updating systems
regularly, checking for library vulnerabilities, monitoring for malicious activ-
ities, establishing static connections through Media Access Control (MAC)
or IP address restrictions, and more, becomes imperative. Moreover, utiliz-
ing established security frameworks, like Spring Security in Java, is advisable
over custom-built security solutions, unless one possesses extensive security
expertise and is involved in developing advanced security tools.

This master’s thesis does not aim to transform readers into cybersecurity
experts. Instead, it seeks to outline fundamental security principles and re-
mind readers that cybersecurity requires staying informed through reputable
sources such as the OWASP Foundation, NIST, and others. Continual edu-
cation, attending conferences, and adhering to the latest recommendations
and guidelines are all part of maintaining a strong security posture.

4.7.3 Common Security Risks and Attacks
This section outlines prevalent security risks and attacks, recognized widely
both in online sources and cybersecurity literature. The focus here is not to
exhaustively list all potential security threats but to highlight common ones
identified by reputable sources, including cybersecurity and web application
security books.

Cloudflare8 enumerates several widespread security risks, underscoring
the varied nature of threats facing web applications today:

8“Cloudflare operates one of the largest networks on the Internet, providing services
that enhance the security and performance of websites and web services [57]."

61

• Zero-Day Vulnerabilities,

• XSS,

• SQL Injection,

• DoS/Distributed Denial of Service (DDoS) Attacks,

• Memory Corruption,

• Buffer Overflow,

• Cross-Site Request Forgery (CSRF),

• Credential Stuffing,

• Page Scraping,

• API Abuse,

• Shadow APIs,

• Third-Party Code Abuse,

• Attack Surface Misconfigurations.

This compilation serves as an overview of frequent challenges encountered
every day by developers, particularly within large-scale systems. It is crucial
to acknowledge that this list is not exhaustive. Cybersecurity professionals
continually confront emerging threats not specified here, necessitating ongo-
ing vigilance and innovative preventive strategies.

62

5 Practical Implementation

5.1 Introduction of the Applications
This Master’s thesis is primarily analytical, delving into cybersecurity recom-
mendations, trends, and essential concepts pertinent to the subject matter.
To complement the theoretical analysis, a demonstrative application has
been developed to showcase practical implementations of selected authen-
tication protocols, authorization approaches, and encryption and hashing
algorithms within specific use cases. This application serves as a bridge
between theoretical concepts and real-world application, particularly within
the realms of cloud computing and microservice architectures.

A full-stack real-time chat application was chosen as the demonstration
platform. This application, developed using the ReactJS framework, reflects
current trends in web application development, favoring ReactJS or Angular
for their robust capabilities. The real-time functionality is achieved through
a websocket connection to a broker, implemented in the Spring Boot frame-
work and utilizing STOMP for communication. Additionally, a core applic-
ation, also crafted in Spring Boot, plays a pivotal role in authentication and
authorization. This application acts as a pseudo API gateway, facilitating
direct communication with Keycloak and each service, thereby ensuring a
comprehensive demonstration of both websocket and Representational State
Transfer Application Programming Interface (REST API) secured endpoints
for basic CRUD operations.

The selection of authentication protocols for demonstration purposes in-
cludes:

• Custom Username & Password management with JWT Bearer token
integration in the Core application.

• OIDC Authentication Protocol, managed by Keycloak, with commu-
nications routed through the Core and ReactJS applications.

• SAML 2.0 Authentication Protocol, demonstrated using a Shibboleth
module in an Apache Server to illustrate SSO capabilities, also under
the management of Keycloak but not utilizing the Core application.
This setup represents a distinct service within the entire infrastructure,
aimed solely at demonstrating the SAML 2.0 protocol.

63

Furthermore, the application embodies specific authorization approaches,
simultaneously demonstrating encryption and hashing techniques through
message signatures that incorporate both symmetric and asymmetric en-
cryption methods.

The development of this demonstration application was also motivated
by the desire to underscore the significance of penetration tools. These
tools are invaluable not only for integration into automated Continuous In-
tegration/Continuous Delivery (CI/CD) pipelines but also for identifying
vulnerabilities and performance bottlenecks. For this thesis, the ZAP proxy
was primarily utilized to highlight these aspects.

Each service and technology is discussed individually in separate sections,
with details of the approaches used and specific references to the theoretical
part of this thesis, so that the correlation between theory and practical use
can be seen, with its pros and cons. It is also important to mention that
this is only a demo application, so it could not be used in a real production.
Some implementation approaches are really a proof of concept and their real
use would suggest a more complex implementation with additional steps in
the code for specific use cases.

With a successful proof of concept of the OIDC Authentication
Protocol, an integration of this protocol has also been realised in a real pro-
ject called SPADe1, which also consists of a core application and a ReactJS
client that is used for users so that they can use the application with a
given user interface. The Keycloak service manages this protocol and the
implementation is the same as in the demo application.

1More information about what SPADe is can be found here: https://dspace5.zcu.
cz/bitstream/11025/49934/1/A19B0615P_BP.pdf

64

https://dspace5.zcu.cz/bitstream/11025/49934/1/A19B0615P_BP.pdf
https://dspace5.zcu.cz/bitstream/11025/49934/1/A19B0615P_BP.pdf

5.2 Design and Architecture

PostgreSQL

Apache
Server

Shibboleth
SP

Client

HTTP
Req / Res

Nginx
Load Balancer

Nginx

ReactJS
Front End

HTTP
Req / Res

Broker
Message Queue

Core Application

Redis

Keycloak IAM & IDP

OIDC
&

Custom Auth

SAML 2.0

Websocket
STOMP

HTTP
Req / Res

OIDC
Auth

Process

Custom Auth
(JWT Bearer)

SAML 2.0
Auth

Process

GET /v1/index.html HTTP/1.1
Host: localhost

OIDC
Retrieve

JWT Token

Figure 5.1: Illustrated infrastructure

5.3 Brief Description of Components

5.3.1 Docker
For the demonstration application, Docker2 technology, particularly docker-
compose, has been utilized to containerize and streamline the development
workflow. This approach not only simplifies the development process but
also supports the horizontal scaling of the core application, a topic that will
be elaborated upon later in this document.

2For more information on Docker technology, refer to the official documentation:
https://docs.docker.com/desktop/

65

https://docs.docker.com/desktop/

5.3.2 Keycloak
Keycloak is a free tool developed by Red Hat that helps with managing
identities and access for applications and services, it can be said that Keyc-
loak is a whole IAM tool, like mentioned in the chapter 4.4. It is built
to handle a range of security tasks, like logging in with one set of creden-
tials SSO, connecting with different identity systems (identity brokering)
such as: AWS Cognito, Azure Active Directory, and even social media like
Google and Facebook. It works well with popular authentication ways, such
as OIDC and SAML 2.0 [58]. Keycloak is also up-to-date with the latest
security standards and ways of doing things.

For the demo application in this master’s thesis, Keycloak (version 22.0.1)
was chosen to showcase the application of widely used authentication pro-
tocols, OIDC and SAML 2.0. The aim was not to build these protocols
from scratch but to demonstrate their practical application and verify their
security effectiveness in a cloud computing environment. This example il-
lustrates how developers can seamlessly integrate sophisticated authentica-
tion mechanisms into applications, leveraging tools like the Spring Security
framework, without reinventing the wheel and potentially introducing vul-
nerabilities. The principles demonstrated here are applicable across various
programming languages, including C#, Python, and more.

5.3.3 Overview of the Core Application
The Core Application is the backbone of the real-time chat system, built
using Java and the Spring Boot framework for handling HTTP requests
and secured with Spring Security. This application is not limited to CRUD
operations but also incorporates default Spring Security for authentication
and authorization.

Keycloak, an external IAM solution, is integrated to demonstrate ad-
vanced authentication mechanisms beyond basic username and password
strategies. This integration showcases the use of OIDC for authenticating
users, with Keycloak managing the authentication process and issuing JWT
tokens containing user credentials.

The application’s architecture supports horizontal scaling, optimizing
performance and user experience. It serves as a central hub for service
requests, including message signature verification and user authentication,
with specific actions varying based on the target URI. Security operations
such as hashing and encryption are standard practices within the applica-
tion, aimed at safeguarding data integrity and confidentiality.

66

For an in-depth exploration of specific security approaches, separate sec-
tions are dedicated to discussing their application within this core system,
supplemented by use cases and detailed analyses. The figure below offers a
visual representation of how Spring Security manages authentication across
different endpoints:

Custom Spring Security Filters

/v1/**
JWT Bearer

/v2/**
OAuth2 - OIDC

FilterChain

Client

Filter0

Filter2

Servlet

DelegatingFilterProxy

FilterChainProxy
Specific

Security Filter
Chain

Other Spring Security
Filters

Figure 5.2: Flow of Security Filter Chains

Endpoint Overview The core application encompasses several endpoints,
each designed to fulfill distinct functionalities within the chat system. A
summarized description of these endpoints is provided in the tables below,
outlining their purposes and access methods.

67

Endpoint Method Description

/v1/auth/signup POST Register a new user.
/v1/auth/login POST Authenticate a user.
/v1/auth/validate POST Validate the JWT token.
/v1/chat/save POST Save a chat message, requiring authorization.
/v1/auth/csrf GET Retrieve a CSRF token.
/v1/unAuthorized GET Respond to unauthorized requests.

Table 5.1: Protected with own JWT Bearer mechanism - /v1/** Endpoints

Endpoint Method Description

/v2/unAuthorized GET Testing endpoint.
/v2/public-chats GET Retrieve public chat conversations.
/v2/private-chats GET Retrieve private chat conversation.

Table 5.2: Protected with Keycloak OAuth2 OIDC protocol - /v2/** End-
points

5.3.4 Simple Broker
The Simple Broker application represents a pivotal component within a
Java Spring Boot framework, specifically designed to facilitate real-time, bi-
directional communication between clients and servers through websockets.
This application acts as a messaging intermediary, routing messages based
on predefined topics to the Core application mentioned in the section 5.3.3.

Configuration and Functionality

The Simple Message Broker within this application is adeptly configured
to manage messages directed to topics prefixed with ‘/all‘ and ‘/user‘, ef-
fectively enabling targeted communication. The main STOMP endpoint,
accessible at ‘/ws‘, is meticulously set up to accept connections exclusively
from ‘http://localhost:3000‘, catering to a ReactJS client application with
SockJS fallback options for broader compatibility.

Real-Time Communication and Authentication: This broker’s archi-
tecture underpins the seamless, real-time exchange of messages, supplemen-
ted by a authentication mechanism. Utilizing JWT tokens within message

68

headers, the application ensures that each communication client is authen-
ticated. The authentication is mediated via the Core Application.

Important to mention: The broker primarily functions as a message
router, directing communications to the core application, which then handles
all authentication and authorization tasks. The broker’s role is largely to
facilitate message flow between clients and the core application, disconnect-
ing clients if responses from the core application are anything other than a
200 HTTP status, indicating success. Two notable exceptions exist to the
broker’s routine operation. Firstly, during initial connection setup, user au-
thentication is required for connection to the broker, although this process
too is managed by the core application through a custom Websocket Authen-
tication Interceptor class. Secondly, the broker tracks currently active chat
users, enabling visibility of active participants within the chat application.

While the authentication mechanisms in the demo application are ad-
equate for demonstration purposes, they fall short of the complexities re-
quired for real-world production environments. Beyond securing STOMP
endpoints, a production-level system must regulate subscription access to
these endpoints, employ strategies to monitor data flow and prevent suspi-
cious activities, and ensure proper management of real-time communication
events, such as recovery mechanisms. These enhancements are crucial for
maintaining system integrity and user security.

5.3.5 ReactJS Application for User Interface
In line with the current trend of full-stack development, this master’s thesis
includes a ReactJS application designed to illustrate the application of se-
curity approaches discussed in the theoretical part. This application enables
users to engage in a real-time chat, allowing both public messages and private
messaging among online users. Authentication within this application is im-
plemented via two methods:

1. A custom JWT Bearer token, generated server-side for user authen-
tication and authorization, is utilized following a traditional username
and password login. This process is facilitated through a login and
signup form, depicted in the images: B.9, B.10. A graphical illustra-
tion of the data flow for this authentication method is detailed in the
images later in this document: 5.4, 5.5.

2. OIDC authentication through Keycloak, which serves both as a re-
source and identity provider. In this setup, user management and

69

authentication processes are delegated to Keycloak. A graphical rep-
resentation of the OIDC is shown in this figure: 5.6.

However, securing applications developed with frontend technologies like
ReactJS poses significant challenges. These frameworks, while powerful, rely
extensively on third-party libraries, which can introduce vulnerabilities.

To mitigate these risks, the application underwent rigorous penetration
testing using tools selected for their effectiveness in identifying potential
security weaknesses. Remediation efforts for identified vulnerabilities were
guided by OWASP and NIST principles to enhance the application’s security
posture.

The application features multiple user interfaces, each designed for spe-
cific functionalities. Images of the application’s Graphical User Interface
(GUI) are provided in the attachment section B. Below is a list of the
application’s pages along with brief descriptions and corresponding links to
their images in the attachment section:

• Main Page: Serves as the application’s landing page, providing gen-
eral information without requiring user authentication B.1.

• Signature Test: An unauthenticated tab designed to demonstrate
the workings of two digital signature algorithms, RSASSA and HMAC,
selected for their relevance to this thesis B.2, B.3.

• Chat Room: Accessible post-authentication, this tab allows logged-
in users to join and participate in chat discussions. Authentication is
facilitated through a custom JWT token mechanism, securing commu-
nications with the server B.4.

• Chat Settings: Protected by OIDC authentication, this tab redirects
unauthenticated users to the Keycloak login page. Upon successful au-
thentication, users will be presented with a chat settings dashboard.
This page demonstrates the use of react-oidc-context, a special-
ised JavaScript library that simplifies the integration of OIDC authen-
tication, and shows the advantages of using well-supported external
libraries over custom-built solutions, as well as some authorisation ap-
proaches, such as RBA, as not all users authenticated via Keycloak
can see the stored chat history, as it requires a special role admin B.6,
B.7, B.8.

70

5.3.6 Databases
The architecture of the application leverages two primary databases to handle
data persistence, user management, messaging functionality, and security
mechanisms. These databases are PostgreSQL and Redis, each serving dis-
tinct but crucial roles in the system’s overall functionality.

PostgreSQL serves as the backbone for both Keycloak and the core
application, providing a robust and reliable storage solution. In the realm of
Keycloak, PostgreSQL stores identity and access management data, enabling
efficient authentication processes. For the core application, PostgreSQL is
utilized for two main purposes:

• User Management: The database is used for storing user credentials,
including hash of a password.

• Messaging Storage: Leveraging its reliability and scalability, Post-
greSQL is used for storing messages from the real-time chat feature
offered by the ReactJS application. This includes both public and
private messages.

Redis, known as a key-value database, is specifically employed for CSRF
token storage. This choice is particularly relevant in scenarios where the core
application undergoes horizontal scaling. By using Redis to manage CSRF
tokens, the application ensures that security tokens are consistently available
across multiple instances of the back-end application. This design choice is
pivotal in maintaining the security integrity of the application, especially in
distributed deployment scenarios where load balancing and session consist-
ency are essential.

5.3.7 Nginx
In the application’s infrastructure, Nginx plays a pivotal role, with two dis-
tinct servers set up to optimize performance and scalability. Each Nginx
server is configured to fulfill specific responsibilities, ensuring that the web
application operates smoothly and efficiently for the demonstration purposes
of this Master’s thesis.

Nginx as a Web Server for ReactJS: The first Nginx server is ded-
icated to serving the ReactJS application. This server acts as a web server,
hosting the static files generated from the ReactJS build process.

Nginx as a Load Balancer for the Core Application: The second
Nginx server is configured as a load balancer. This setup is crucial for the
horizontal scaling of the core application, as it distributes incoming network

71

traffic across multiple instances of the core application. By doing so, the load
balancer ensures that no single instance is overwhelmed, thereby increasing
the application’s availability and reliability. The High Availability (HA)
feature of this Nginx server plays a vital role in maintaining uninterrupted
service, even in the face of high user demand or potential instance failures.

The strategic deployment of these two Nginx servers, one serving as a
dedicated web server for the ReactJS application and the other as a load
balancer for the core application, demonstrates a well-planned approach to
leveraging Nginx’s capabilities. This dual-server setup not only optimizes the
delivery of web content but also ensures the scalable and resilient operation
of the core application, marking a significant step towards achieving a robust
and high-performing web infrastructure.

5.3.8 Apache Web Server
This demonstrational application uses the Apache Web Server to host a
single HTML resource, which displays simple static text. The server em-
ploys the Shibboleth module for sophisticated authentication and author-
ization, enhancing the web services provided by this Apache server. This
module enables SSO capabilities and the secure exchange of web resources
among various institutions. Here, the primary purpose is to demonstrate the
SAML 2.0 authentication approach, with Keycloak serving as the resource
provider. If a user attempts to access the Apache server’s resource without
being logged in, they are presented with Keycloak’s login form. Successful
authentication allows the user access to the resource. It is worth noting that
this demonstration, while basic, hints at the complex integration possibilities
between the Apache server and the Shibboleth module. The configuration
of the Shibboleth identity provider is detailed in an XML file named shib-
boleth2.xml, which includes definitions for accessing specific resources on
specific locations. This file is included in the demonstration application’s
zip archive. However, this is merely an illustration of the SSO method using
Shibboleth, Keycloak, and the Apache server for resource protection with
SAML 2.0 approach, and not a comprehensive guide for securing applications
with the SAML 2.0 protocol. Despite its effectiveness for this demonstra-
tion, this approach is more complex for larger systems to set up in a real
production environment, and the attached configuration does not meet all
necessary requirements and it demands more extensive knowledge to use it
properly.

72

Important Note on the Demonstration Approach

The main objective of this thesis was not to develop a complete deploy-
ment solution, but to illustrate the use of different authentication protocols
and other recommended tactics to secure applications, especially for cloud
computing environments. A notable challenge arises from the complexity of
Docker technology and the use of the Shibboleth module within the Apache
server, which leads to the temporary unavailability of Keycloak as a service
provider during the startup of the entire infrastructure, resulting in an error
being displayed to a user accessing the resource instead of actually trigger-
ing the authentication flow. This problem occurs because the Apache server
and the Shibboleth module start up faster than the Keycloak service during
the Docker compose-up action. Shibboleth attempts to connect to Keycloak
which is not yet available, resulting in errors when attempting to access the
protected resource. The solution is to wait until all services are properly
started. Then manually restart the apache-saml service in the docker and
the problem should be solved.

5.4 Chosen Authentication Protocol For
SPADe Project

Following the analysis conducted in the introduction (5.1), and informed by
comprehensive cybersecurity fundamentals primarily sourced from OWASP,
this section details the authentication protocol selection for SPADe. SPADe,
at its core, interfaces with external entities exclusively through REST API
endpoints. Accompanying this backend functionality, a user-friendly web
interface developed with ReactJS technology complements the application.
The existing infrastructure and methodologies applied in the demo applica-
tion facilitated a straightforward integration of the selected authentication
protocol into SPADe.

5.4.1 Authentiction and Authorization
Previously, the SPADe offered a custom authentication approach, managing
own database (Microsoft SQL Database) with user’s credentials on its own.
This fact faced multiple problems, such as:

1. The front-end client developed in the ReactJS framework had a prob-
lematic solution for storing the JWT token, which was created and
managed by the SPADe application itself. Since this was developed

73

manually without any further analysis, but with a basic guide found
on the web, this solution had problems related to refresh tokens and
automatic management on the client side, which ended up having many
glitches that made this solution not so user friendly.

2. Since the SPADe application was completely stateless from the begin-
ning, the JWT token management was managed by the SPADe applic-
ation itself to determine whether a user was logged in or not to allow
access to resources. In the previous solution, there was a great lack of
advanced practices related to the management of JWT tokens. This
solution only worked with a few facts passed in the token. Application
was vulnerable (not only) to token compromise attack.

3. The role-based access mechanism would be much more difficult to
achieve because the previous solution was not designed for roles that
would be used throughout the application.

4. The SPADe project used its own management of user credentials. As
in the demo application, this solution had some security risks and did
not provide any additional benefits for the application itself. Although
the application was protected against threats like SQL injection, mak-
ing it more difficult to steal a user’s data through this type of attack,
but the developers of this application would have to update the en-
cryption and hashing algorithms used for pre-processing and storing
the user’s password in the database in case the algorithm was found
to be vulnerable to known attacks such as rainbow table attack or
brute force attack, since this application had a total lack of risk-based
authentication, which is offered by default by the larger IAM tools
that manage user authentication on their own by default if properly
configured.

5. There is a high probability that the SPADe system will expand into
a larger system consisting of more independent services. In this case,
some services may require different user roles or perhaps different IAM
systems. In this case, Identity Federation would be beneficial because
it would allow clients to authenticate in one place and be able to ac-
cess other systems depending on their privileges. This would not be
possible with the previous solution.

The list of problems encountered with the previous authentication, au-
thorization and user management solution in the SPADe project described

74

above may be even longer, as there may be other problems highlighted that
were present in the project before the integration of the chosen solution.

Since the demo application included a demonstration of multiple authen-
tication methods (SAML 2.0 mediated by shibbolethSP, OIDC, and custom
username/password), the custom approach was automatically rejected as
this solution did not bring any benefits except the ease of implementation,
and the solution was already implemented in the previous version and had
to be improved. The SAML 2.0 protocol provided a very good use case,
especially for Identity Federation. However, due to the fact that the web
application is written as a single page application (SPA), there would be no
advantage compared to OIDC, especially since the SAML 2.0 is much harder
to maintain and setup than the OIDC itself, it also does not require any mid-
dleware like shibbolethSP to mediate the authentication, so the OIDC was
the obvious choice.

The OIDC was mediated by Keycloak IAM. This solution brings many
advantages, as this IAM tool not only provides user management, but also
allows system administrators to prepare groups and user roles, which can
then be used for systems to control access to resources, making the system
more robust. The whole system after the integration is illustrated in the
picture 5.3.

75

MySQL

Client

Nginx

ReactJS
Front End

SPADe

Keycloak IAM & IDP

OIDC OIDC
Auth

Process

OIDC
Retrieve

JWT Token

MS SQL

HTTP Requests

Figure 5.3: SPADe Component Diagram

5.4.2 User Management in the SPADe
With the use of IAM, an entire user management has been delegated to the
Keycloak system. This means that the SPADe now allows users who are
authenticated by the Keycloak IDP, which is an issuer of the token that
is passed to the SPADe REST API with each request. This brings many
advantages, such as the fact that the Keycloak can be a central authentic-
ation point for the whole SPADe system, so the user would just send the
token issued by the Keycloak with each request. Also, since the Keycloak
is a complete IAM solution, it offers basic functionalities such as advanced

76

authentication approaches like two-factor authentication, email verification,
forgotten password and much more, which was not possible with the previous
solution.

However, the database (Microsoft SQL Database) used to store the user’s
credentials is still used. However, it is not used to store the user’s credentials
such as password, but to store the user’s digital footprint, which allows to
store the user’s settings and other options offered by the application, so that
the user always has his own customized environment, making the application
more user-friendly.

5.5 Illustration of Implemented Security Ap-
proaches

This section provides implementation details of selected security approaches,
in this case: authentication, authorisation, encryption, hashing and user
management within a specific use case related to the demo application. For
these simple proof of concepts, the advantages and disadvantages are also
described, along with possible improvements that might be beneficial, as well
as the critical parts that would make the implemented solution impossible
to use in real production, and why.

5.5.1 Authentication
For illustration purposes, three authentication approaches are implemented.
Those approaches are:

• Custom Username and Password

• OIDC managed by Keycloak

• SAML 2.0 managed by Keycloak

77

The Custom Username and Password authentication is illustrated
like following:

Core ApplicationReactJS

Core ApplicationReactJS

1. Authorized Request

2. 401 Unauthorized

3. Login (Username and Password)

4. JWT Bearer Token

Figure 5.4: Basic Authentication Sequence Diagram

Broker ApplicationCore ApplicationReactJS

Broker ApplicationCore ApplicationReactJS

1. Access Chat Page
(User Not Authenticated)

2. Request Login (Username, Password)

3. Returns JWT Bearer Token

Initiate WebSocket connection with JWT in Authorization header

Verify JWT Bearer Token Validity

Confirm Token Validity

Allow Connection If Token Validated Successfully

Figure 5.5: Broker Authentication

The fundamental approach of using JWT Bearer tokens for session man-
agement and authentication, while effective for basic use cases, presents

78

several limitations that can impede scalability and efficiency in more com-
plex applications. Although JWT tokens facilitate stateless authentication
by encapsulating user session information, their fixed lifespan poses chal-
lenges for maintaining active user sessions without manual intervention for
token renewal. This issue underscores the necessity of Refresh tokens in the
standard OIDC protocol, which allow for seamless session extension without
requiring user re-authentication upon token expiration.

Moreover, the process of validating the JWT token with each request, es-
pecially without implementing a caching mechanism, can significantly strain
server resources. In scenarios where the authentication server also serves as
the core application server, this can lead to system overload, creating po-
tential bottlenecks that affect the overall performance and reliability of the
architecture. The continuous need to validate tokens, compounded by the
absence of a token refresh strategy, not only increases the risk of server col-
lapse under high load conditions but also detracts from the user experience
by necessitating frequent logins.

These limitations highlight the importance of adopting more sophist-
icated authentication strategies, such as incorporating Refresh tokens and
implementing token validation caching, to enhance system scalability, main-
tain uninterrupted user sessions, and mitigate the risk of server overload.
Adopting these strategies ensures a more robust and user-friendly authentic-
ation system capable of supporting complex application requirements while
maintaining optimal server performance.

79

The OpenID Connect Authentication illustration:

Spring Boot APIKeycloak IAMReactJS App

Spring Boot APIKeycloak IAMReactJS App

At startup:

ReactJS stores tokens
(Access Token & Refresh Token)

alt [token validation]

Uses react-oidc-context
for OIDC operations

Configuration in application.properties
for OAuth2 resource server

0. Fetch OIDC configuration and public keys
[OIDC Discovery mechanism]

Return configuration and keys

1. Redirect to Keycloak login

2. Login successful,
return ID token & access token

3. Request with access token

4. Validate token locally
using public keys

5. Provide requested data

Figure 5.6: OIDC Authentication

This simple solution does not have any negative aspects that would pre-
vent it from being used in real production, as this approach already uses a
tested solution with a working IAM system, Keycloak. However, this demo
contains a security risk due to the absence of the TLS on which the OIDC
protocol relies. This layer is not added to the demo infrastructure as auto-
mated certificate management in Docker is complex and it would not add
anything to this proof of concept of authentication/authorization protocols
and how they work other than another layer of security for network traffic
within the bridge.

80

The Security Assertion Markup Language (SAML 2.0) illustration:

Keycloak IAM (IDP)Apache Web Server w/ Shibboleth SPClient

Keycloak IAM (IDP)Apache Web Server w/ Shibboleth SPClient

Access localhost:8081/v1/index.html

Redirect for SAML Auth

Display Keycloak Login Form

Submit Credentials

SAML Response

Verify the SAML Response

Redirect to /v1/index.html (Authenticated)

Access /v1/index.html (Authenticated)

Serve the resource index.html

Figure 5.7: SAML Authentication Flow

Although this solution not only works very well as a SSO principle, but
is also considered to be a very secure protocol, its configuration can be very
complex and not as friendly as the OIDC configuration and the discovery
mechanism that allows clients to dynamically obtain the necessary public
keys for signature verification. This protocol is used in the demo application
mainly to demonstrate the use case and the differences between OIDC and
SAML 2.0 approaches. OIDC is more user friendly as it is considered to be
lighter and more suitable for web and mobile applications. SAML 2.0 an
opposite when talking about SPAs applications (Sundas Coudry [59]). This
is one of the reasons why SAML 2.0 was not selected during the analysis as
a suitable candidate for integration within the SPADe project.

It is also important to mention that the configuration for Shibboleth
SP, as defined in the shibboleth2.xml file, is simplified for demonstration
purposes and may not suffice for production environments. Real-world de-
ployment demands a more intricate setup, highlighting a potential drawback
of this approach due to the need for comprehensive understanding of Shib-
boleth SP’s integration with the Apache web server.

81

5.5.2 Authorization
In the theoretical part of this thesis, some authorization approaches are
mentioned, such as RBA, which defines access policies based on defined roles.
This thesis highlights the application of RBA) through the use of groups and
roles managed by Keycloak IAM, particularly within the context of the chat
settings page. In the demonstration application, RBA is effectively utilized
where all requests targeting /v2/** endpoints in the core application are
secured by Keycloak through OIDC.

Furthermore, the chat settings page is accessible only to authenticated
users. However, to retrieve resources such as the history of private and
public chats, users must possess the admin role; otherwise, they receive a 403
Unauthorized response. This ensures that sensitive information is strictly
managed and accessible only by users with appropriate authorization levels.
In overall, the application uses two roles:

• basic_user: Least privilege role that allows the user to access the
chat settings page, but does not allow the user to access the chat
history. How it then looks is illustrated in the picture B.7.

• admin: Role that is required to access the history of the chat. How
it then looks is illustrated in the picture B.8.

5.5.3 Message Signing
Since the theoretical part mentioned the importance of data signing, as
shown in the picture 4.3, a message signing is chosen to demonstrate how
the integrity of data transferred between different applications can be estab-
lished. This process is illustrated in the following figure 5.8:

82

Validate & SaveSpring Boot
{ Broker}

<Port 8090>
Spring Boot
{ REST API }
<Port 8080>

SHA256-RSA HMAC-SHA256

Message
Signature

Choose
Signature Type

Sent Message

Signature
validated

Message saved

PostgreSQL

Save the
message

Validation

Validate the
signature

Yes

No

Response 401

Response
401

Yes

Close
the socket

Client

No, show the message
and send to others

Figure 5.8: Message Authorization Flow

As shown in the figure, a user can choose whether messages created in
the chat application are signed using the RSA-SHA256 or HMAC-SHA256
approach (both approaches are described in the next subsection (5.5.4).
This functionality works very well and is thoroughly tested with unit tests
to ensure that this signing mechanism works well. However, the solution is
very primitive for demonstration purposes only, as both approaches require
keys to encrypt the message and verify the signatures. This is solved by
defining the key statically in the code, a practice that should never be used
in real production, and the keys should be generated dynamically with a
secure mechanism. Another thing that needs to be considered is how to
transfer the public key to the receiver so that signature verification can be
done.

5.5.4 Encryption and Hashing
To demonstrate the encryption and hashing techniques detailed in the theor-
etical section (4.2), the demo application integrates the RSA-SHA256 and
HMAC-SHA256 algorithms, as mentioned in subsection (5.5.3). This selec-
tion illustrates the key management differences inherent to encryption meth-
ods. RSA, an asymmetric encryption system, relies on a key pair (private
and public) for encrypting and decrypting data. In contrast, HMAC uses a
symmetric encryption model, necessitating a single key for both encryption
and decryption tasks. Furthermore, we employ the Secure Hash Algorithm
(SHA-256) for hashing encrypted messages, chosen for its robust security

83

that renders collision discovery computationally perharps infeasible.
Besides RSA-SHA256 and HMAC-SHA256, the demo application also

incorporates bcrypt for password encryption, as discussed in the Password
Policy and Password Storing section Section (4.4.4). Bcrypt, a crypto-
graphic hash function created in 1999 by Niels Provos and David Mazières
based on the Blowfish cipher, is designed for secure password hashing and
storage, offering resilience against dictionary attacks [60]. This method
is pivotal when handling custom Username and Password authentication
mechanisms, ensuring user credentials are securely stored in the database.
Integrating the core application with an IAM solution, outlined in the next
subsection User Management (5.5.5), further minimizes password vul-
nerability by offloading user management to services equipped with advanced
security measures against suspicious activities.

5.5.5 User Management and Trust Management
The demonstration of User Management within the project showcases two
distinct methodologies, allowing for a comparison between traditional and
modern approaches. The first method involves direct management of user
credentials, where information is collected during registration and saved into
the database for authentication at login. This traditional approach, while
effective, introduces complexities related to maintaining system security and
ensuring that user data remains uncompromised, including a correct way to
save the user’s password using the recommendations of OWASP.

In contrast, the second method leverages a comprehensive IAM system,
in this case Keycloak. This approach streamlines user registration, pass-
word changes, allowing email verification, and incorporates advanced se-
curity features such as MFA. It enables seamless integration with various
IDPs like banking systems, eGovernment platforms, Azure Active Direct-
ory, AWS Cognito, and others, including the possibility of connecting with
another Keycloak instance. The chief advantage of this approach is the IAM
system’s capability to manage user data independently, which means that
user authentication is not handled by the core application itself, but by the
keycloak IAM, with the application relying on it as a trusted IDP for au-
thentication purposes. However, it is crucial for the application to regard
the IDP as a secure and reliable source, aligning with the Trust Management
principles discussed in section (4.6).

The second approach, the integration of the IAM tool into the demo
application, as well as many of the advantages resulting from the analysis
discussed in the theoretical part of this thesis, brought many advantages

84

that were considered to be very useful. Including the delegation of user
management to the keycloak itself, reducing the need to maintain user cre-
dentials in a separate database, and creating an admin portal where it would
be possible to maintain users in general. There is a high probability that
the SPADe itself will be extended for use cases that would require reimple-
mentation of the current solution if the IAM had not been used. Using the
IAM tool brings many benefits that many existing solutions offer, including
Identity Federation.

85

6 Testing and Quality
Assurance of The Demo
Application

Ensuring the security and integrity of applications in today’s digital land-
scape is crucial. This chapter focuses on evaluating the security measures
implemented within the demo application, serving as a proof of concept. A
crucial aspect of this evaluation involves conducting thorough penetration
testing to identify and rectify potential vulnerabilities that could compromise
the application’s security. To achieve this, a careful selection of penetration
testing tools was undertaken, aimed at uncovering weaknesses that need to
be addressed. For the purposes of this master’s thesis, the main tool selected
is ZAP proxy testing tool.

Identified vulnerabilities could include, but are not limited to, the fol-
lowing:

• XSS vulnerabilities that allow attackers to inject malicious scripts.

• Misconfigurations in server setups (Nginx or Apache) that could lead
to unauthorized access.

• CSRF vulnerabilities that could trick a user into performing uninten-
ded actions.

• Use of outdated or vulnerable libraries that introduce security flaws
into the application.

• Improperly configured HTTP headers that could expose the applica-
tion to various attacks.

But how exactly is software security testing defined by other sources?
The page provided by ZAP1 defines the process as follows

“Software security testing is the process of assessing and testing a system to
discover security risks and vulnerabilities of the system and its data. There
is no universal terminology but for our purposes, we define assessments as
the analysis and discovery of vulnerabilities without attempting to actually

1https://www.zaproxy.org/getting-started/

86

https://www.zaproxy.org/getting-started/

exploit those vulnerabilities. We define testing as the discovery and attemp-
ted exploitation of vulnerabilities.[61]”

6.1 ZAP Proxy
The ZAP is a free, open-source tool for security testing of web applications.
It works as an intercepting proxy between a browser and web app, examin-
ing and modifying data to identify security vulnerabilities. ZAP functions
both independently and as a daemon, compatible with various environments
and network proxies. Designed for users ranging from novice developers to
security experts, it supports all major operating systems and Docker, with
extensibility through add-ons from the ZAP Proxy Marketplace. The open-
source nature of ZAP encourages community involvement in its development,
enhancing its features and addressing security needs [61] .

6.1.1 Vulnerabilities Identified and Addressed by ZAP
Proxy Tool

This subsection outlines vulnerabilities identified by the ZAP Proxy tool in
the demo application. Given the complexity of web application development,
it is possible for initial builds to contain security gaps as developers may not
cover everything since the beginning. Here, not only are the detected vulner-
abilities listed, but also the applied fixes are briefly explained. For detected
issues deemed non-critical or irrelevant to the application’s security posture,
a reason why is provided for choosing not to address them. It is important
to note that while ZAP offers valuable insights and recommendations, not
all flagged items may constitute actionable security risks.

The following vulnerabilities were detected by ZAP:

• Vulnerability 1: Cloud Metadata Potentially Exposed

• Vulnerability 2: Cookies Lacking the HttpOnly Flag

• Vulnerability 3: Cookies Missing the SameSite Attribute

• Vulnerability 4: Content Security Policy (CSP) Header Not Set

• Vulnerability 5: Anti-CSRF Tokens Check

Implemented corrections for these vulnerabilities are as follows:

87

6.1.2 Corrections For Vulnerabilities
Correction for Vulnerability 1

This vulnerability is related to a misconfigured Nginx server that could po-
tentially provide too much information that could be exploited. The vulner-
ability is described in more detail here: https://www.zaproxy.org/docs/
alerts/90034/. However, this vulnerability is mainly related to cloud pro-
viders where this application is not hosted, the fix was to add additional
information to the Nginx configuration, which may look like this:

1 # Disabled the display of Nginx Version Number
2 server_tokens off;
3

4 server {
5 listen 80;
6 ...
7

8 # automatic redirect to 403
9 # if an attacker tried to abuse this vulnerability

10

11 location / latest /meta -data/ {
12 return 403;
13 }
14 ...
15 }
16

17 # Reverse proxy to core instance (scalable - HA)
18 server {
19 listen 8080;
20

21 location / {
22 if ($http_host ~* "^(\d+\.) {3}\d+$") {
23 return 403;
24 }
25

26 # 4. Disable Unnecessary HTTP methods
27 if ($request_method !~ ^(GET| OPTIONS |POST| UPGRADE)$) {
28 return 405; # Method Not Allowed
29 }
30

31 # 5. Disable TRACE and TRACK
32 if ($request_method = TRACE) {
33 return 405; # Method Not Allowed
34 }
35

36 # 6. Modify Nginx Web Server Configuration /SSL for X-
XSS protection

88

https://www.zaproxy.org/docs/alerts/90034/
https://www.zaproxy.org/docs/alerts/90034/

37 add_header X-XSS - Protection "1; mode=block";
38

39 if ($http_host = " 169.254.169.254 ") {
40 return 403;
41 }
42

43 proxy_pass http://back -end /;
44 proxy_http_version 1.1;
45 proxy_set_header X-Forwarded -Proto $scheme ;
46 }
47

48 location / latest /meta -data/ {
49 return 403;
50 }
51

52 }

Listing 6.1: nginx.conf file

However, as strongly recommended on the official Nginx site2 and also in
the OWASP Foundation, the main protection is not to use this in any case
to block the Cloud Metadata Attack:

1 # Don 't ever use 'proxy_pass ' like this!
2 location / {
3 proxy_pass http :// $host; # To repeat : don 't do this!
4 }

Correction for Vulnerability 2

This vulnerability was caused by sending the Cookie in a HTTP header
with a CSRF Token to prevent CSRF attacks from the server to the client
without setting the so-called HTTP only flag. The fix is illustrated by the
snippet of the code:

1

2 ResponseCookie cookie = ResponseCookie
3 .from(CSRF_PARAMETER_NAME , key)
4 . httpOnly (true)
5 . secure (false)
6 . maxAge (Duration . ofHours (2))
7 . sameSite ("Lax")
8 .build ();

Listing 6.2: Creation of Reponse Cookie Correctly

2https://www.nginx.com/blog/trust-no-one-perils-of-trusting-user-input/

89

https://www.nginx.com/blog/trust-no-one-perils-of-trusting-user-input/

Note that the secure is set to false. This is due to the omission of TLS.
Otherwise it should be set to true, as this flag ensures that the cookie is only
sent via HTTPS.

Correction for Vulnerability 3

This vulnerability was fixed at the same time as vulnerability no. 2 above.
As the cookie should be set on a specific site to avoid a false cross-site request
(CSRF) attack. The code snippet shows how to set the cookie to be sent
only on the same site (sameSite method). The “Lax” option ensures that
the cookie is not sent in cross-domain GET requests.

Correction for Vulnerability 4

Considering the nature of the application and the measures in place, it
seems unlikely that the application is vulnerable to XSS attacks. This is
because there are no apparent opportunities for Hypertext Markup Lan-
guage (HTML) injection within the application, and no critical endpoints
have been identified that might allow such vulnerabilities to be exploited by
external parties. Additionally, areas of potential concern, such as the chat
room, have undergone thorough testing and have mechanisms in place to
ensure that all text is appropriately escaped. From the admin’s perspect-
ive, viewing saved messages appears to be secure, as these too are properly
escaped. Therefore, most of the CSP vulnerabilities identified by the ZAP
Proxy Tool may not pose a significant risk or cause any tangible harm to
the application.

It is also important to note that most applications used by many users
may suffer almost daily from XSS attacks, as there is no way to secure all
the possibilities that may occur in very large systems that perform many
operations and offer many functionalities, including data insertion and data
manipulation in general. Therefore, a quick reaction to feedback from users
and proper monitoring of the systems are key practices in any system to
increase the robustness of the system. Proper monitoring can help to identify
problems in the system more easily or in some cases it can prevent attacks
by early detection.

Correction for Vulnerability 5

The CSRF attack prevention was done by adding another database, the
Redis database, which is used as a CSRF token store that is shared across all
instances of the core application that can be load balanced. As this approach

90

may be primitive and not suitable for real production, for demonstration
purposes, the ReactJS client calls the core application for a new CSRF token
each time the client’s application context changes (the client visits another
page on the ReactJS or refreshes the page). This token is then sent from the
ReactJS application to the server with each request, otherwise the client is
not authorized to make API calls and must re-login to the application. The
token is sent as a cookie in the HTTP header. How the cookie is created
is illustrated in the Correction for Vulnerability 2 code snippet. Each
generated token is stored in the Redis database and then checked against
the token sent by the client to see if it is valid.

The place at code where this CSRF layer protection is added in is defined
in Spring Security Filter Chain. The definition looks like this:

1 http
2 .csrf(e -> {
3 e. csrfTokenRepository (redisCsrfTokenRepository);
4 e. ignoringRequestMatchers ("/v1/chat /**", "/v1/

auth/ validate ");
5 })

Listing 6.3: Security Filter Chain CSRF protection Setup

There are also other ways to handle CSRF protection. One of them is to
integrate the OWASP CSRFGuard package, or to set a custom csrf token
for each form used on the site.

91

7 Conclusion

This thesis focused on an exploration of microservices architecture, dealing
with the mechanisms of communication between services and the pivotal role
of cybersecurity, particularly emphasizing the Application Security Verific-
ation Standard (ASVS) made by Open Web Application Security Project
(OWASP) . It showcased various cybersecurity methodologies through a
demonstration application, covering critical areas such as authentication,
authorization, protocols for secure access, encryption, hashing, secure data
transfer, Identity and Access Management (IAM), and Trust Management
(TM). These components collectively ensure the safe delegation of trust and
authorization across services.

The demonstration application, illustrating a microservices architecture,
utilized websockets for real-time communication and Representational State
Transfer Application Programming Interface (REST API) for standard in-
teractions. The analysis of authentication methods and protocols revealed
the complexity and potential security pitfalls of manual implementation
versus the benefits of employing a comprehensive Indentity and Access Man-
agement (IAM) solution like Keycloak. Through practical application, the
thesis compared protocols like OpenID Connect (OIDC) and Security As-
sertion Markup Language (SAML), ultimately integrating OpenID Connect
(OIDC) into the SPADe project for its robust security features and ease of
use.

In assessing the quality and security of the demo application, the Zed
Attack Proxy (ZAP) tool was employed to identify and mitigate critical vul-
nerabilities. This process of testing and refining ensures that the application,
while proof of concept, adheres to some security standards.

For future work in this field, the emphasis on established and tested se-
curity practices cannot be overstated. Adopting methodologies recommen-
ded by authoritative sources such as Open Web Application Security Pro-
ject (OWASP) and National Institute of Standards and Technology (NIST)
is crucial. These sources provide up-to-date guidance, ensuring applications
are not only reliable but also secure against potential breaches, thereby safe-
guarding sensitive data, perhaps effectively, as today all applications running
especially in remotely accessible environments, like cloud environments, have
to face the reality that there is a high probability that even if it is a small
application, it may (but does not necessarily have to) be subject to some
kind of attack mentioned in the section 4.7.3.

92

Used Shortcuts

AD Active Directory. 32

AES Advanced Encryption Standard. 24

AMQP Advanced Message Queuing Protocol. 18

API Application Programming Interface. 11, 14, 34, 46, 62, 63, 91

APIs Application Programming Interfaces. 16, 29, 62

ASVS Application Security Verification Standard. 19, 20

AWS Amazon Web Services. 42, 44, 66, 84

CI/CD Continuous Integration/Continuous Delivery. 64

CSP Content Security Policy. 87, 90

CSRF Cross-Site Request Forgery. 62, 68, 71, 86, 87, 89–91

DAP Directory Access Protocol. 57

DDoS Distributed Denial of Service. 62

DES Data Encryption Standard. 24

DoS Denial of Service. 60, 62

GDPR General Data Protection Regulation. 19

gRPC gRPC Remote Procedure Calls. 14, 15

GUI Graphical User Interface. 70

HA High Availability. 72

HMAC Hash-Based Message Authentication Codes. 23, 24

HTML Hypertext Markup Language. 90

HTTP Hypertext Transfer Protocol. 14, 16, 46, 66, 69, 86, 89, 91

HTTPS Hypertext Transfer Protocol Secure. 28, 48, 90

93

IAM Identity and Access Management. 10, 19, 28, 42, 43, 53, 59, 60, 66,
74–76, 80, 82, 84, 85

IBM International Business Machines Corporation. 42

ID Identifier. 50

IDP Identity Provider. 32, 49, 51–53, 76, 84

IDs Identifiers. 32

IETF Internet Engineering Task Force. 27, 46

IoT Internet of Things. 18

IP Internet Protocol. 32, 35, 57, 61

IT Information Technology. 35

JWT JSON Web Token. 46, 50, 59, 63, 66, 68, 69, 73, 74, 78, 79

KYC Know Your Customer. 29

LDAP Lightweight Directory Access Protocol. 43, 49, 57

MAC Media Access Control. 61

MFA Multi-Factor Authentication. 43, 84

MQ Message Queue. 14, 15, 17, 18

MQTT Message Queuing Telemetry Transport. 18

NCSC National Cyber Security Centre. 30

NFC Near Field Communication. 40

NIST National Institute of Standards and Technology. 10, 20, 28, 30, 41,
61, 70

OAuth Open Authorization. 46, 47, 50

OIDC OpenID Connect. 42, 44, 49–51, 60, 63, 64, 66, 69, 70, 75, 77, 79,
81, 82

OP OpenID Connect Provider. 49, 50

94

OWASP Open Web Application Security Project. 10, 19, 20, 23, 28–32,
60, 61, 70, 73, 84, 89, 91

PKI Public Key Infrastructure. 36

RBA Risk-Based Authentication. 28, 30, 33, 40, 41, 44, 59, 70, 82

RBAC Role-Based Access Control. 42, 59

REST Representational State Transfer. 14–17

REST API Representational State Transfer Application Programming In-
terface. 63, 73, 76

RP Relying Parties. 49

SAML 2.0 Security Assertion Markup Language. 42, 49, 51, 52, 63, 66,
72, 75, 77, 81

SOA Service Oriented Architecture. 11, 12, 14

SP Service Provider. 52, 53, 81

SPA Single Page Application. 48, 81

SQL Structured Query Language. 23, 60, 62, 74

SSH Secure Shell Protocol. 37

SSL Secure Sockets Layer. 21, 27, 28, 37

SSO Single Sign-On. 35, 43, 50, 60, 63, 66, 72, 81

STOMP Streaming Text Oriented Messaging Protocol. 18, 63, 68, 69

TLS Transport Layer Security. 14, 21, 24, 26–28, 37, 80, 90

TM Trust Management. 10, 59

URI Uniform Resource Identifier. 48, 53, 66

URL Uniform Resource Locator. 16, 31, 60

USB Universal Serial BUS. 40

VoIP Voice Over IP. 27

95

XML Extensible Markup Language. 51–53

XSS Cross-Site Scripting. 60, 62, 86, 90

ZAP Zed Attack Proxy. 31, 64, 86, 87, 90

96

Bibliography

[1] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert,
“Microservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[2] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, “Microservices in agile
software development: a workshop-based study into issues, advantages, and
disadvantages,” in Proceedings of the XP2017 Scientific Workshops, ser. XP
’17. New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3120459.3120483

[3] R. Chandramouli, “Microservices-based application systems,” NIST Special
Publication, vol. 800, no. 204, pp. 800–204, 2019.

[4] Microsoft, “Design interservice communication for microservices,”
https://learn.microsoft.com/en-us/azure/architecture/microservices/
design/interservice-communication, accessed: 2024-05-02.

[5] V. Surwase, “Rest api modeling languages-a developer’s perspective,” Int.
J. Sci. Technol. Eng, vol. 2, no. 10, pp. 634–637, 2016.

[6] R. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.
[Online]. Available:
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[7] What is a message queue? Accessed: 2024-03-20. [Online]. Available:
https://aws.amazon.com/message-queue/

[8] “What are message queues,” accessed: 2024-03-20. [Online]. Available:
https://www.ibm.com/topics/message-queues

[9] Cloudflare, “What is serverless computing?”
https://www.cloudflare.com/learning/serverless/what-is-serverless/,
accessed: 2024-04-04.

[10] CloudAMQP, “Rabbitmq and websockets, part 1: Amqp, mqtt, and
stomp,” https://www.cloudamqp.com/blog/
rabbitmq-and-websockets-part-1-amqp-mqtt-stomp.html, 2023, accessed:
2024-05-02.

[11] Owasp application security verification standard. [Online]. Available:
https://owasp.org/www-project-application-security-verification-standard/

97

https://doi.org/10.1145/3120459.3120483
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://aws.amazon.com/message-queue/
https://www.ibm.com/topics/message-queues
https://www.cloudflare.com/learning/serverless/what-is-serverless/
https://www.cloudamqp.com/blog/rabbitmq-and-websockets-part-1-amqp-mqtt-stomp.html
https://www.cloudamqp.com/blog/rabbitmq-and-websockets-part-1-amqp-mqtt-stomp.html
https://owasp.org/www-project-application-security-verification-standard/

[12] “OWASP API Security Top Ten 2019,”
https://owasp.org/API-Security/editions/2019/en/0x11-t10/, 2019,
accessed: 2024-02-25.

[13] “OWASP API Security Top Ten 2023,”
https://owasp.org/API-Security/editions/2023/en/0x11-t10/, 2023,
accessed: 2024-02-25.

[14] GeeksForGeeks, “What is hashing?”
https://www.geeksforgeeks.org/what-is-hashing/, 2024, accessed:
2024-05-02.

[15] OWASP, “Methods for enhancing password storage,”
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_
Sheet.html#methods-for-enhancing-password-storage, accessed:
2024-05-02.

[16] GeeksForGeeks, “Hash functions in system security,”
https://www.geeksforgeeks.org/hash-functions-system-security/, 2024,
accessed: 2024-05-02.

[17] A. Alessandrini, “Hashing, salts and pepper,” https://www.linkedin.com/
pulse/hashing-salts-pepper-andrea-alessandrini-kjvqf/, 2023, accessed:
2024-05-02.

[18] Cloudflare, “What is encryption?” accessed: 2024-05-02. [Online]. Available:
https://www.cloudflare.com/learning/ssl/what-is-encryption/

[19] GeeksForGeeks, “Difference between aes and des ciphers,”
https://www.geeksforgeeks.org/difference-between-aes-and-des-ciphers/,
2023, accessed: 2024-05-02.

[20] Cloudflare, “What is asymmetric encryption?”
https://www.cloudflare.com/learning/ssl/what-is-asymmetric-encryption/,
accessed: 2024-05-02.

[21] M. C. Kate Brush, “asymmetric cryptography,” https:
//www.techtarget.com/searchsecurity/definition/asymmetric-cryptography,
2024, accessed: 2024-05-02.

[22] Okta, “Hmac (hash-based message authentication codes) definition,”
https://www.okta.com/identity-101/hmac/, 2023, accessed: 2024-05-02.

[23] N. Gupta, “Symmetric vs. asymmetric encryption – what are differences?”
https://www.ssl2buy.com/wiki/
symmetric-vs-asymmetric-encryption-what-are-differences, accessed:
2024-04-06.

98

https://owasp.org/API-Security/editions/2019/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://www.geeksforgeeks.org/what-is-hashing/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#methods-for-enhancing-password-storage
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#methods-for-enhancing-password-storage
https://www.geeksforgeeks.org/hash-functions-system-security/
https://www.linkedin.com/pulse/hashing-salts-pepper-andrea-alessandrini-kjvqf/
https://www.linkedin.com/pulse/hashing-salts-pepper-andrea-alessandrini-kjvqf/
https://www.cloudflare.com/learning/ssl/what-is-encryption/
https://www.geeksforgeeks.org/difference-between-aes-and-des-ciphers/
https://www.cloudflare.com/learning/ssl/what-is-asymmetric-encryption/
https://www.techtarget.com/searchsecurity/definition/asymmetric-cryptography
https://www.techtarget.com/searchsecurity/definition/asymmetric-cryptography
https://www.okta.com/identity-101/hmac/
https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences
https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences

[24] SavvySecurity, “What is the difference between a digital signature and a
digital certificate,” https://cheapsslsecurity.com/blog/
digital-signature-vs-digital-certificate-the-difference-explained/, accessed:
2024-04-06.

[25] Geeksforgeeks, “Difference between hashing and encryption,” https:
//www.geeksforgeeks.org/difference-between-hashing-and-encryption/,
2023, accessed: 2024-05-02.

[26] cloudflare, “Introduction to ssl/tls,”
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/,
accessed: 2024-04-06.

[27] “What is identity and access management (iam)?” accessed: 2024-03-23.
[Online]. Available:
https://www.oracle.com/cz/security/identity-management/what-is-iam/

[28] N. I. of Standards and Technology, “Guideline for identifying an
information system as a national security system,” National Institute of
Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST SP 800-59,
2003, adapted from CNSSI 4009 for Authentication.

[29] OWASP Foundation, “Authentication Cheat Sheet,” https://
cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html,
n.d., accessed: 17-02-2024.

[30] “API2:2023 Broken Authentication - OWASP API Security Project,” https:
//owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/,
accessed: 2024-02-29.

[31] S. Agarwal, “Best practices for username and password authentication,”
2024, accessed: 2024-03-25.

[32] “Password Storage Cheat Sheet - OWASP Cheat Sheet Series,”
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_
Sheet.html, accessed: 2024-03-03.

[33] “What is ip address authentication?” accessed: 2024-03-25. [Online].
Available: https://connect.ebsco.com/s/article/
What-is-IP-Address-Authentication?language=en_US

[34] “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,”
https://datatracker.ietf.org/doc/html/rfc5280, 2008, accessed: 2024-03-04.

99

https://cheapsslsecurity.com/blog/digital-signature-vs-digital-certificate-the-difference-explained/
https://cheapsslsecurity.com/blog/digital-signature-vs-digital-certificate-the-difference-explained/
https://www.geeksforgeeks.org/difference-between-hashing-and-encryption/
https://www.geeksforgeeks.org/difference-between-hashing-and-encryption/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.oracle.com/cz/security/identity-management/what-is-iam/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://connect.ebsco.com/s/article/What-is-IP-Address-Authentication?language=en_US
https://connect.ebsco.com/s/article/What-is-IP-Address-Authentication?language=en_US
https://datatracker.ietf.org/doc/html/rfc5280

[35] “Structure of an ssl (x.509) certificate,”
https://dev.to/wayofthepie/structure-of-an-ssl-x-509-certificate-16b, 2020,
accessed: 2024-05-01.

[36] “X.509 authentication service,”
https://www.geeksforgeeks.org/x-509-authentication-service/, 2023,
accessed: 2024-05-01.

[37] “Cryptography Cheat Sheet,” https://cheatsheetseries.owasp.org/
cheatsheets/Cryptographic_Storage_Cheat_Sheet.html, OWASP, 2021,
accessed: 2024-03-04.

[38] P. Pullanieswaran, “Webauthn - a short introduction,” 2024, accessed:
2024-03-25.

[39] A. Dagnelies, “Webauthn - passwordless registration/login flows,”
https://dev.to/dagnelies/webauthn-flows-51ic, 2022, accessed: 2024-04-06.

[40] S. Wiefling, L. Lo Iacono, and M. Dürmuth, “Is this really you? an
empirical study on risk-based authentication applied in the wild,” in ICT
Systems Security and Privacy Protection, G. Dhillon, F. Karlsson,
K. Hedström, and A. Zúquete, Eds. Cham: Springer International
Publishing, 2019, pp. 134–148.

[41] “Identity and access management (iam) technologies and tools,” accessed:
2024-03-23. [Online]. Available: https:
//clearskye.com/identity-and-access-management/iam-technologies-tools

[42] IETF, “The oauth 2.0 authorization framework,”
https://tools.ietf.org/html/rfc6749, 2012.

[43] Okta, “What is oauth 2.0?”
https://auth0.com/intro-to-iam/what-is-oauth-2, accessed: 2024-05-01.

[44] Oracle, “Oauth 2.0,” https://docs.oracle.com/cd/E82085_01/160027/
JOS%20Implementation%20Guide/Output/oauth.htm, accessed:
2024-05-01.

[45] auth0, “Authorization code flow with proof key for code exchange (pkce),”
https://auth0.com/docs/get-started/authentication-and-authorization-
flow/authorization-code-flow-with-pkce.

[46] OpenID Foundation, “Openid connect,” https://openid.net/connect/, 2022.

[47] Mozilla, “Openid connect,”
https://infosec.mozilla.org/guidelines/iam/openid_connect.html, accessed:
2024-05-01.

100

https://dev.to/wayofthepie/structure-of-an-ssl-x-509-certificate-16b
https://www.geeksforgeeks.org/x-509-authentication-service/
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://dev.to/dagnelies/webauthn-flows-51ic
https://clearskye.com/identity-and-access-management/iam-technologies-tools
https://clearskye.com/identity-and-access-management/iam-technologies-tools
https://tools.ietf.org/html/rfc6749
https://auth0.com/intro-to-iam/what-is-oauth-2
https://docs.oracle.com/cd/E82085_01/160027/JOS%20Implementation%20Guide/Output/oauth.htm
https://docs.oracle.com/cd/E82085_01/160027/JOS%20Implementation%20Guide/Output/oauth.htm
https://openid.net/connect/
https://infosec.mozilla.org/guidelines/iam/openid_connect.html

[48] NHS, “Openid connect (oidc) overview,” https:
//digital.nhs.uk/services/care-identity-service/applications-and-services/
cis2-authentication/guidance-for-developers/openid-connect-overview,
2023, accessed: 2024-05-01.

[49] N. Kushwaha, “Understanding openid connect (oidc),”
https://www.learncsdesign.com/understanding-openid-connect-oidc/,
accessed: 2024-05-01.

[50] L. Kakavas, “Saml authentication and the elastic stack,”
https://www.elastic.co/blog/
how-to-enable-saml-authentication-in-kibana-and-elasticsearch, 2018,
accessed: 2024-05-01.

[51] Fortinet, “Kerberos authentication,”
https://www.fortinet.com/resources/cyberglossary/kerberos-authentication,
accessed: 2024-04-06.

[52] E. Kost. (2024) What is ldap? how it works, uses, and security risks.
Accessed: 2024-03-04. [Online]. Available:
https://www.upguard.com/blog/ldap

[53] “Lightweight directory access protocol (ldap),”
https://www.geeksforgeeks.org/lightweight-directory-access-protocol-ldap/,
2019, accessed: 2024-05-01.

[54] M. Blaze, J. Ioannidis, and A. D. Keromytis, “Experience with the keynote
trust management system: Applications and future directions,” in Trust
Management, P. Nixon and S. Terzis, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 284–300.

[55] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,”
in Proceedings 1996 IEEE Symposium on Security and Privacy, 1996, pp.
164–173.

[56] “Input validation cheat sheet,” accessed: 2024-03-22. [Online]. Available:
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_
Sheet.html

[57] “So what is cloudflare,” accessed: 2024-03-22. [Online]. Available:
https://www.cloudflare.com/learning/what-is-cloudflare/

[58] Keycloak, “Keycloak documentation,”
https://www.keycloak.org/documentation.html, 2024, accessed: 2024-03-29.

101

https://digital.nhs.uk/services/care-identity-service/applications-and-services/cis2-authentication/guidance-for-developers/openid-connect-overview
https://digital.nhs.uk/services/care-identity-service/applications-and-services/cis2-authentication/guidance-for-developers/openid-connect-overview
https://digital.nhs.uk/services/care-identity-service/applications-and-services/cis2-authentication/guidance-for-developers/openid-connect-overview
https://www.learncsdesign.com/understanding-openid-connect-oidc/
https://www.elastic.co/blog/how-to-enable-saml-authentication-in-kibana-and-elasticsearch
https://www.elastic.co/blog/how-to-enable-saml-authentication-in-kibana-and-elasticsearch
https://www.fortinet.com/resources/cyberglossary/kerberos-authentication
https://www.upguard.com/blog/ldap
https://www.geeksforgeeks.org/lightweight-directory-access-protocol-ldap/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www.cloudflare.com/learning/what-is-cloudflare/
https://www.keycloak.org/documentation.html

[59] S. Choudry, “Why you wouldn’t use saml in a spa and mobile app,”
https://www.identityserver.com/articles/
why-you-wouldn-t-use-saml-in-a-spa-and-mobile-app, 2022, accessed:
2024-05-02.

[60] M. Grigutytė, “What is bcrypt and how does it work?”
https://nordvpn.com/blog/what-is-bcrypt/, 2023, accessed: 2024-03-31.

[61] zap, “Getting started,” https://www.zaproxy.org/getting-started/,
accessed: 2024-04-07.

102

https://www.identityserver.com/articles/why-you-wouldn-t-use-saml-in-a-spa-and-mobile-app
https://www.identityserver.com/articles/why-you-wouldn-t-use-saml-in-a-spa-and-mobile-app
https://nordvpn.com/blog/what-is-bcrypt/
https://www.zaproxy.org/getting-started/

Attachments

103

A Description of the directory
structure of the submitted
file

Directory/File Description
Application_and
_libraries/

Main folder containing all application-specific subfolders
and configuration files.

1 -
Demo_Application/

Contains subdirectories for the components of the demo
application and a Docker Compose file to automate the
build and run process:

apache-saml Setup files for Apache with Shibboleth SP, used in Docker.
backend Java and resource files of the core application, including

secrets and Docker configuration.
broker Source code and Maven project files.
frontend ReactJS project files, Nginx configuration, and Docker

setup.
imports Contains Keycloak exported realms automatically

imported during the Docker Compose up phase.
docker-
compose.yml

Automates the entire application setup and deployment.

2 - SPADe_SPAWn/ Contains subdirectories for the SPADe and SPAWn
applications along with Docker Compose configurations:

imports Keycloak realms for automatic import during Docker
Compose up.

mssql Dockerfile and scripts for setting up the MSSQL
environment.

spade Spring Boot application with necessary Docker setup files.
spawn ReactJS application with Docker and Nginx

configurations.
docker-
compose.yml

Automates the building and running of the application.

Poster/ Contains PDF and Publisher files of the project poster.
Text_thesis/ Source files and the compiled PDF document of the thesis.

104

Directory/File Description
Readme.txt Provides general information about the project setup and

usage.

105

B Images of the graphical user
interface of the demo
application

Figure B.1: Main Page

Figure B.2: Signature Test Page - HMAC

106

Figure B.3: Signature Test Page - RSASSA

Figure B.4: Chat Room

107

Figure B.5: Chat Settings - Authentication

Figure B.6: Chat Settings RBA - User Without Roles

108

Figure B.7: Chat Settings RBA - Casual User

Figure B.8: Chat Settings RBA - Admin User

109

Figure B.9: Login Page

Figure B.10: Signup Page

110

	Introduction
	Microservices (SOA)
	Definition and Characteristics of Microservices
	Advantages and disadvantages
	Advantages
	Disadvantages

	Commonly used approaches in communication

	Communication Between Microservices
	Rest API
	Advantages and Disadvantages of REST API

	Message Queue
	Definition and Characteristics of Message Queue
	Message Queue Protocols

	Security Approaches and Risks
	Application Security Verification Standard (ASVS)
	ASVS Overview
	ASVS Related Risks

	Data Protection Techniques: Encryption and Hashing
	Essentials of Data Security
	Hashing
	Attacks to Hashes
	Encryption

	Transport Layer Security (TLS) / Secure Sockets Layer (SSL)
	Definition of TLS / SSL
	Importance in Cybersecurity

	Identity and Access Management (IAM)
	Authentication
	Process of Authentication
	User Identification and Management
	Username & Password Authentication
	IP Address Authentication
	X.509 Certificates
	WebAuthn
	Risk-Based Authentication (RBA) Method
	Authorization Overview
	Process of Authorization
	Recommendations for Effective Authorization
	Identity and Access Management Technologies

	Authentication and Authorization Protocols
	JSON Web Tokens (JWT)
	Open Authorization (OAuth) 2.0
	OpenID Connect (OIDC)
	Security Assertion Makrup Language (SAML) 2.0
	Kerberos
	LDAP in Cloud Computing Environments

	Trust Management
	Trust Management Technologies

	Further Security Practices
	Input Validation
	Common Attacks on the Internet
	Common Security Risks and Attacks

	Practical Implementation
	Introduction of the Applications
	Design and Architecture
	Brief Description of Components
	Docker
	Keycloak
	Overview of the Core Application
	Simple Broker
	ReactJS Application for User Interface
	Databases
	Nginx
	Apache Web Server

	Chosen Authentication Protocol For SPADe Project
	Authentiction and Authorization
	User Management in the SPADe

	Illustration of Implemented Security Approaches
	Authentication
	Authorization
	Message Signing
	Encryption and Hashing
	User Management and Trust Management

	Testing and Quality Assurance of The Demo Application
	ZAP Proxy
	Vulnerabilities Identified and Addressed by ZAP Proxy Tool
	Corrections For Vulnerabilities

	Conclusion
	Used Shortcuts
	Bibliography
	Description of the directory structure of the submitted file
	Images of the graphical user interface of the demo application

