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ABSTRACT
Lacunar fractal structures reduce the material quantity and weight while improving some physics properties, such
as heat transfers, and preserving good mechanical properties. Nowadays, it is possible to construct such shapes
thanks to additive manufacturing. This paper focuses on automatically generating subdivision rules for fractal
lacunar structures with local topology control. The first main difficulty is guaranteeing topological consistency
while assembling different cells to build a complicated multi-lacuna structure. The second is the adaptation of such
shapes to geometric constraints like imposed boundaries. We address these questions throughout the formalism
of the Boundary Controlled Iterated Function System. Then, we analyze the lacunarity and complexity of these
structures from various geometric, topologic, and fractal measures.
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1 INTRODUCTION

Saving energy by designing lighter objects while main-
taining high physical properties is a crucial issue for
the industry. The global structure must respond to sev-
eral constraints, like mechanical resistance, energy ab-
sorption, heat transfer, and soundproofing, using a min-
imum quantity of material.

Porous metallic material is a pertinent solution for pro-
ducing lighter objects. One can obtain metal foams
from different techniques: mixtures of gas bubbles and
a molten alloy or with the sintering and dissolution
process [JZSL05] for instance. Because of the com-
plexity and the randomness of the manufacturing pro-
cess, it is challenging to guarantee expected properties
[Ban06, JWZ07]. Then, the definition, the characteriza-
tion, and the measure of the porosity arise in different
domains to study their relations with physical proper-
ties [Esp12, AC15, JWZ07].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Thanks to additive manufacturing, we can produce
lighter structures by designing controlled and structured
geometry like lattice [TMV+16]. These structures
generally fill a given volume with the minimum of
matter. The most straightforward approach generates a
strict periodic lattice as if one directly cuts the volume
in a lattice block. The lattice comes from an initial
periodic primary cell (thickened edges of a cube, 3D
cross, gyroid) duplicated along the three 3D axes. This
approach induces discontinuities at the boundaries of
the filled volume. A parameter (thickness of beams, for
instance) can also control the geometry of the initial
cell to modulate its density and generate lattices with
variable density to respond to specific physical prop-
erties [LJP+19]. Numerous surveys on this topic are
available; see [PHL20, CLLZ21, FFL+18]. Softwares
are available like [AKA21] to generate such lattices
using optimal surfaces like gyroid as primary cells
with variable density. An improvement of this method
is to consider the geometry of the volume to adapt
the lattice to its boundary to avoid discontinuities. In
[KT10], Kou et al. introduce randomness to obtain
irregular porous structures to produce variable density.
More recently, McNulty et al. [MBZ+20] and Levo
et al. [LVSZ21] propose bio-inspired approaches
introducing multi-scale structures. Topological opti-
mization also uses the multi-scale aspect. A second
optimization step introduces a micro-lattice structure in
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under-constrained parts of the macro lattice, resulting
from the first optimization step (see left Figure 1).
However, the hierarchy level is generally shallow (one
level for topological optimization and generally two
levels for bio-inspired approaches). Furthermore, they
are provided from ad-hoc implementation without
formalizing the topological subdivision process and
could be challenging to adapt to any situation.

We propose a new approach based on multi-scale
lacunar structures resulting from fractal geometry,
as shown in Figure 1 (middle and right). The mo-
tivations are: fractals appear as an optimal solution
[LC19, AALS17] or are used as a model of bio-inspired
structure for optimization [BRBH19]; fractal models
can generate a great variety of topologies with different
kinds of lacunarities and consequently interesting
multi-physics properties such as heat and mass transfer
[Pen10, Zha11, ZZ13], energy absorption [MGM+18]
or acoustical properties [AJS18, SHR97]; fractal mod-
eling encompasses standard NURBS and subdivision
surfaces, standard lattice structures, and multi-scale
lattices [GGS21].

Producing fractal structures is easy by programming
recursive algorithms. However, controlling the result-
ing shapes is more complicated. Some models like L-
system or Boundary Controlled Iterated Function Sys-
tem, associated with topological constraints, allow ac-
curate geometry control [TGM+09, GGS21] and enable
us to design varieties of lacunar structures with specific
fractal topology.

Generating a lightweight structure by an assembly of
fractal structures is a challenge. Difficulties come from
the different topologies and geometries arising from
fractal modeling while ensuring continuity to produce
well-defined printable objects. Controlling the bound-
ary topologies of cells makes the assembly process
straightforward. For our purpose, we use the BC-
IFS model. This model has the advantage of coding
the fractal topology with adjacency and incidence con-
straints, controlling the geometry and the topology in-
dependently, and defining free-form shapes according
to a set of control points.

As said before, this formalism provides powerful tools
for designing various complicated multi-scale lacunar
structures. However, currently, designers have to de-
scribe all the topological constraints by hand, which
could be tedious. Nevertheless, once the topology is de-
fined, the model guarantees the topological coherence,
regardless of the geometric realization, which we adjust
by control points and the iteration level.

The contribution of this paper is to provide
parametrized algorithms that automatically gen-
erate a BC-IFS model of various multi-scale 2D
structures with different lacunar topological complex-
ities. Section 2 introduces the needed definitions and

properties for the BC-IFS model. Section 3 shows a
method to automatically define the subdivision rule of
a 2D cell (a face) depending on the fractal topology
of its boundary. We complete the lacunarity control
with delay subdivisions in Section 4. In Section 5, we
propose some measures to characterize the lacunarity
and the complexity of fractal structures. Section 6
concludes this article and suggests future works.

Figure 1: Left: Example of a topological op-
timization with two levels of lattice struc-
tures (©Altair Engineering). Middle: Elephant
structure (from CGAL Computing Library at
https://github.com/CGAL/cgal) built
with multi-scale lacunas. Right: part of a mechanical
system redesigned with multi-scale lacunar compo-
nents shown in Figure 2.

Figure 2: Subdivision of a truncated tetrahedron into
some truncated tetrahedrons

2 BACKGROUND: BC-IFS MODEL
The Boundary Controlled Iterated Function System
(BC-IFS) [SGGM15] model is based on Iterated
Function System [Hut81, Bar90]. A set of contractive
transformations defines an object by describing its self-
similarity property, i.e., how this set of contractions
subdivides the object into smaller copies of itself. By
iterating on this set of transformations from an initial
object (named the primitive), the obtained sequence
converges to a unique shape called the attractor. In
practice, the number of iterations is finite, giving an
approximation of the attractor.

Recurrent IFS [BEH89] or C-IFS [ZT96] control the
subdivision process using an automaton or a directed
graph specifying the subdivision of an attractor into
copies of itself or other attractors. Each state of the au-
tomaton defines a sub-attractor, and the outgoing transi-
tions define the associated subdivision rules. By defin-
ing attractors in a barycentric space, C-IFS provide
free-form fractal shapes.

Finally, Boundary C-IFS (BC-IFS) [SGGM15, GGS21]
uses additional concepts to encode the cellular decom-
position with incidence constraints: fractal volumes
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bounded by fractal surfaces bounded by fractal edges
bounded by vertices. With a set of adjacency con-
straints between subdivided cells, we define the fractal
topology of the attractor (see Figure 3). Incidence and
adjacency constraints induce constraints on the BC-IFS
transformations. They determine the topology, while
the remaining degrees of freedom control the geometry.

Figure 3: Example of definition 2D fractal topology.
Left: the cellular decomposition. Middle: the topology
subdivision. Right: the resulting attractor.

3 AUTOMATIC SUBDIVISIONS OF 2D
CELLS

To build structures composed of lacunar cells with the
BC-IFS model (see middle of Figure 1), one has to de-
fine a global shape that assembles different cells. The
assembly uses adjacency constraints to ensure a consis-
tent fractal topology at the junction of each cell with
another. Then, one has to define the subdivision rule of
each cell adapted to the wanted lacunarity (see Figures
3 and 4 for an example in 2D).

Figure 4: Subdivision of a hexahedron into six hexahe-
drons

Defining the subdivision process of each cell (including
incidence and adjacency constraints) could be challeng-
ing for many cells. We want to automatize the definition
of the subdivision process. To facilitate the assembly of
fractal structure, we change the design paradigm by de-
ducing face subdivision from imposed edges. We auto-
matically define the subdivision of a face from its edges
with a lacunarity control and deduce all incidence and
adjacency constraints.

3.1 Notation
We classify two types of edge topology: Bn edges and
Cn edges. The Bn edges subdivide into n connected sub-
edges of type Bn (see Figure 5 for an example). The Cn
edges subdivide into n disconnected sub-edges of type
Bn (see Figure 6 for an example). In practice, Bn edges
are Bézier edges, and Cn edges are Cantor edges.
We denote a fractal face by F(∂ ,E,A) with ∂ its bound-
ary, E a tuple of three edge topologies characterizing
subdivision process, and A its subdivision algorithm.

Figure 5: Example of subdivisions of B2 and B3 edges.

Figure 6: Example of subdivisions of C2 and C3 edges.

The parameter ∂ is a tuple of the face’s edges in the
counter-clockwise direction. We use the following no-
tation ∂ = He0,e1, . . .eNI,ei being the i-th edge. The or-
der of the edges in ∂ is significant, up to a circular per-
mutation. We use this specific notation to facilitate the
comparison between boundaries. For instance if ∂1 =
HC3,B2,C4,B2,C2,B2I and ∂2 = HB2,C2,B2,C3,B2,C4I,
they represent the same boundary because ∂1 = ∂2 with
a circular shift of three elements.

The parameter E contains a tuple of three types of
edges (Ea,El ,Ec). The subdivision algorithm uses
these edges to define the boundary of the sub-faces.
Figure 7 shows where these edges appear after a
subdivision. The choice of these edge types directly
impacts the lacunarity.

Figure 7: Example of a subdivision process. The ad-
jacencies of the sub-faces are made along the edges Ea
in green. The edges that form the central lacuna are the
edges El in blue. The edges Ec in red are added between
two Cn sub-edges.

In this paper, we present several algorithms to define
the subdivision of a face. The parameter A defines the
algorithm used.

3.2 Algorithm
We present the algorithm A1 to automatize the defi-
nition of the subdivision rules of a fractal face from
its edges. We present other algorithms in Section 4.3.
Notice that the algorithm does not operate the subdi-
vision process. It defines the rules of subdivision and
all the adjacency and incidence constraints of the BC-
IFS model. Figure 8 describes all the steps of the algo-
rithm A1. It creates one sub-face for each pair of sub-
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edges in the corner of the face and one for each sub-
edge that is not in a corner. The algorithm defines the
incidence constraints for all sub-faces with the first (or
the two firsts) edge(s) in the boundary. It also defines
adjacency constraints between all adjacent subcells on
their Ea edges. The sub-faces have the same parameters
as the face, but their boundary differs. The algorithm
works as follows:

1. Subdivide the boundary (all the edges) of the fractal
face (a).

2. Selection of the sub-edges. The selection step takes,
in the sub-edges of the face, the next sub-edge not in
a corner, or the next two sub-edges in a corner. Each
selection leads to a sub-face creation. The boundary
of the sub-face starts with the selection. Define inci-
dence constraints between the sub-edge of the face
and the edges in selection.

3. Add to the boundary the Ec edge if the last edge in
the current sub-face boundary is a Cn edge (c).

4. Add to the boundary the edges Ea, El and Ea in this
order (d).

5. Add the Ec edge if the first edge in the sub-face
boundary is a Cn edge.

6. Repeat from step 2 until all the sub-faces are created
(no more selection).

7. Identify all sub-faces by their edges (i).

8. Define adjacency constraints between all sub-faces
on their Ea edges.

We execute the algorithm on an example with
the fractal face F(∂ ,E,A1), having a bound-
ary ∂ = HC4,B2,C2,B2,C3,B2I, and having
E = (C2,B2,B2). Figure 8 details step-by-step the
algorithm for this example. The first step subdivides
the boundary. The second step is selection. The first
selection is, for instance, the top right corner of the
cell: the two sub-edges are B2 and C4. Hence, the
boundary of the sub-face starts with ∂1 = HB2,C4I. The
third step adds an Ec edge since the last edge was a
Cn edge: ∂1 = HB2,C4,B2I. The fourth step fills the
boundary of the sub-face with the edges Ea, El and
Ea: ∂1 = HB2,C4,B2,C2,B2,C2I. The fifth step adds a
Ec edge if the first edge in the boundary is a Cn edge
(not the case for ∂1). We continue to the next sub-face.
The next selection is a sub-edge not in a corner: a C4
sub-edge. Hence, the boundary of the sub-face starts
with ∂2 = HC4I. Since the last edge in the boundary is a
Cn edge, the third step adds the Ec edge: ∂2 = HC4,B2I.
The fourth step adds the edges Ea, El and Ea to the
boundary: ∂2 = HC4,B2,C2,B2,C2I. The fifth step adds
the Ec edge since the first edge is a Cn edge. Finally,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Algorithm A1 to define the subdivision rule
of a face from its edges.

∂2 = HC4,B2,C2,B2,C2,B2I, and we continue so on for
all the sub-faces.

Figure 9 details five steps to intuitively understand the
A1 algorithm’s logic. An intuitive idea allows us to
quickly create other algorithms based on the same prin-
ciple. We introduce some algorithms in Subsection 4.3.
The idea of the algorithm is the following:

1. Subdivide all edges (b).

2. Add two Ec edges between the sub-edges of the Cn
edges (c).

3. Add El edges in the center of the face to create the
lacuna (d).

4. Add the Ea edges between the external boundary and
the central lacuna (e).

5. Identify all sub-faces by their edges (f).

3.3 Convergence
The algorithm defines the subdivision rule of a face into
sub-faces. It can induce sub-faces with unspecified sub-
division rules. Applying the algorithm recursively pro-
vides the subdivision rules for all sub-faces that appear
during the process. For any initial face, a finite number
of faces can appear over the recursion. All sub-faces
contain only edges from the base face or the parameter
E of the face (Ea, El , and Ec). Each sub-face contains
a limited number of edges. The maximum is seven: a
pair (Cn,Cn) of sub-edges in the corner, two edges Ec,
and the three interior edges (two Ea and one El). The
minimum is four: one Bn sub-edge (not in a corner) and
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(a) (b) (c)

(d) (e) (f)

Figure 9: Intuitive algorithm to define the subdivision
process of a face from its edges.

the three interior edges. Since there are a finite number
of edge types and each sub-face has a finite number of
edges, there are a finite number of different sub-faces.
Hence, the recursion is guaranteed to terminate.

3.4 Lacunarity control

One can control the lacunarity by choosing the types
of edges Ea, El , and Ec. Depending on that choice,
one face often appears that subdivides into copies of
itself. For instance the face F0(∂0,E,A1) with ∂0 =
HC2,B2,C2,B2,C2,B2I and E = (C2,B2,B2) always ap-
pears in the sub-faces of all faces F(∂ ,E,A1) after
some iterations, regardless the boundary ∂ . Figure 10
shows the face F0 subdivision.

Figure 10: Subdivision of the face F0(∂0,E,A1) with
∂0 = HC2,B2,C2,B2,C2,B2I and E = (C2,B2,B2). It
subdivides into six faces F0.

In the other cases, two or more faces appear, each
subdividing into copies of themselves and copies of
the other faces. Let be the faces F1(∂1,E,A1) and
F2(∂2,E,A1) with ∂1 = HC2,B2,C2,B2,C2,C2I, ∂2 =
HC2,C2,C2,C2,B2,C2,C2I, and E = (C2,B2,C2). It is
an example where F1 subdivides into four sub-faces F1
and two sub-faces F2, whereas F2 subdivides into five
sub-faces F2 and two sub-faces F1. There is no face
subdividing into several copies of itself, but there is
a cycle between two faces. These faces appear in the
sub-faces of all faces F(∂ ,E,A1) after some iterations,
regardless the boundary ∂ .

4 DELAYED SUBDIVISIONS
We introduce a delay in subdivisions to have structures
with faces with different local iteration levels. Without
delay (left of Figure 11), the size of the lacunas might
be tiny on the small face compared to the ones of the
bigger faces. The delay allows us to have a uniform la-
cunarity when the size of the cells is not uniform (right
of Figure 11). On the other hand, when faces have the
same size, the delay induces a different lacunarity (see
Figure 14). Hence, we propose delay subdivisions and
some improvements in the presented algorithm to han-
dle them.

Figure 11: A fractal structure made of five faces with-
out delay (left) and with delay (right). The central face
is smaller than the others, but with a delay in its sub-
division, its lacunas are not very small compared to the
other lacunas.

4.1 Definition
A face with a delay in its subdivision is a face that
induces no lacuna after its subdivision but has only
its edges subdivided to preserve the consistency of
the structure if the face shares an edge with another
face. We denote the delay by an exponent d ≥ 2.
The face Fd(∂ ,E,A) subdivides into only one face
Fd−1(∂ ′,E,A) with the boundary ∂ ′ that contains
the subdivided edges of ∂ . The sub-edges of Cn
edges are unconnected, so we add two Ec edges
between each sub-edges. The Figure 12 explains the
delay subdivision of the face F2 with a boundary
∂ = HC4,B2,C2,B2,C3,B2I. The sub-face boundary
∂ ′ = HC4, B2, B2, C4, B2, B2, C4, B2, B2, C4, B2, B2, C2,
B2, B2, C2, B2, B2, C3, B2, B2, C3, B2, B2, C3, B2, B2I.

We also introduce the notion of delay in the subdivision
process of edges, also denoted by an exponent d ≥ 2.
The edge subdivides into only one sub-edge of type
Xd−1

n . Hence, the geometry of the edge does not change
over iterations while the edge has a delayed subdivision
(i.e., while d ≥ 2).

4.2 Example
One can combine a delayed subdivision on a face with
a delayed subdivision on all its edges to create a global
delay in the face subdivision process. It creates a sub-
face that does not change the face’s shape since it adds
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Figure 12: Algorithm to find the subdivision of a de-
layed face depending on its edges.

no lacuna inside the face, and the boundary does not
change because of the delay on each edge. One can
also mix delayed and non-delayed edges for one face to
make a junction between a face having a global delay
and a face having no delay at all.

For instance, we build a structure with three faces
F2

0(∂
′
0,E,A1), F1(∂1,E,A1) and F0(∂0,E,A1)

with ∂0 = HC2,B2,C2,B2,C2,B2I, ∂ ′
0 the same

as ∂0 but with a delay for each edge, ∂1 =
HC2,B2,C2

2 ,B2,C2
2 ,B2,C2

2 ,B2I, and E = (C2,B2,B2).
Figure 13 shows a scheme of this structure. The faces
F2

0 and F0 behave as the same face, but F2
0 has a delay

of one iteration level because there is a delay in the
face subdivision and also in all its edges subdivisions.
The middle face F1 connects the faces F2

0 and F0 with
its shared edge C2 with the face F0 and its shared edge
C2

2 with the face F2
0 .

At the first iteration level of the structure, the face F0
subdivides into six sub-faces F0 (see Figure 10). How-
ever, the face F2

0 subdivides into one sub-face F0; a de-
lay appears here. Figure 14 shows the structure’s third,
fourth, and fifth iteration levels. We use adjacency con-
straints to make the junctions between the faces. Each
face has a consistent subdivision thanks to the definition
of all adjacency and incidence constraints (by the algo-
rithm). Hence, the structure is consistent at all iteration
levels.

4.3 Other subdivision algorithms
The presented algorithm A1 creates sub-faces with a
shared edge (Ea) between two adjacent sub-faces. The
adjacency edges start from the lacuna to the junction of
two Bn edges (see Figure 9), but there are other solu-
tions. For instance, Figure 15 shows several ways to
subdivide the face F0. The sub-faces depend on how
the algorithm places the adjacency edges from the cen-
tral lacuna on the boundary. The algorithm A1 places
the adjacency edges at the junction between two Bn
edges (middle of Figure 15). The algorithm A2 places
the same adjacency edges as A1 but also on all corners
(right of Figure 15). When some edges of a face have a

Figure 13: (Above) Scheme of a structure with three
faces. The left one is the same as the right one but with
a delay in its subdivision. The middle face makes the
links between them. (Below) The structure’s subdivi-
sion.

Figure 14: From top to bottom, the second, third, and
fourth iteration levels of the extruded structure pre-
sented in Figure 13.

delayed subdivision, there are also several ways to sub-
divide the face, as shown in Figure 16. The algorithm
A1 places the adjacency edges at the junction between
two Bn edges (top right of Figure 16). The algorithm
A2 places the same adjacency edges as A1 but also on
all corners (bottom left of Figure 16). The algorithm
A3 places the same adjacency edges as A1 but also on
corners surrounding an edge with a delay subdivision
(bottom right of Figure 16). When a face has no delay
edges, A3 and A1 generate the same subdivision rule.

Choosing the suitable algorithm would depend on the
specific application. However, to limit the number of
face types, one has to stick to the same algorithm across
all iterations rather than changing it at each level. Alter-
natively, one can use one algorithm when dealing with
faces containing edges that have a delay in their sub-
division and another algorithm for faces without such
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Figure 15: Different subdivisions of the face F0 with a
boundary ∂0 = HC2,B2,C2,B2,C2,B2I.

Figure 16: Different subdivisions algorithm of a face F

with a boundary ∂ = HC3,B2,C2
2 ,B2,C2,B2I.

edges. There are a lot of possibilities to define the
subdivision algorithm. The key is to ensure that when
the algorithm is applied repeatedly, it leads to already-
known faces (no creation of new face topologies). Note
that for a structure containing several faces, one can use
a different algorithm for each face in order to vary the
subdivision. Figure 17 shows an example of two faces
having the same boundary but a different algorithm.

Figure 17: Two faces F1(∂ ,E,A1) and F2(∂ ,E,A2)
with the same boundary ∂ = HB2,B2,B2,B2,B2I and the
same E = (B2,B2,B2). The algorithm A2 (left) creates
more lacunas than A1 (right).

5 MEASURES ON FRACTAL STRUC-
TURES

To evaluate the variability of the lacunarity, one can use
several measures like relative density [JWZ07], area, or
length of boundary (perimeter). However, these mea-
sures strongly depend on the iteration level. To char-
acterize fractal structures, evaluating the evolution of
the area and the perimeter is convenient from one it-
eration to the following. The fractal dimension is es-
pecially recommended for such a structure. We pro-
pose an additional measure that characterizes the topo-
logical complexity of such structures. For the rest
of the article, F0 is the face F0(∂0,E,A1) with ∂0 =
HC2,B2,C2,B2,C2,B2I and E = (C2,B2,B2). Its geo-
metric realization is in Figure 18.

Figure 18: First five iteration levels of the face F0 we
use for all geometry based measures. Top-left image is
the primitive.

5.1 Area and perimeter
For lacunar fractal structures, the area Ai decreases, and
the perimeter Pi increases with each iteration. We look
at how these values are changing through iteration lev-
els. For instance, with the face F0, we compute Ai and
Pi for all iterations. To normalize the results and see
the factor FA (respectively FP) multiplying the area (re-
spectively the perimeter) at each iteration, we compute
Ai/A0 and Pi/P0. Table 1 contains the values for the
area and the perimeter of the face F0 for the iteration
levels 0 to 5. Figure 19 (respectively 20) shows the vari-
ation of the area (respectively the perimeter) through it-
eration levels. We have FA = 0.76 and FP = 1.97, mean-
ing the area decreases by 24% while the perimeter in-
creases by 97% for each iteration level.

i Ai Pi ln(Ai/A0) ln(Pi/P0)
0 234.90 61.61 0 0
1 174.49 97.96 -0.30 0.46
2 132.50 185.63 -0.57 1.10
3 100.92 381.78 -0.84 1.82
4 76.92 807.93 -1.12 2.57
5 58.64 1725.87 -1.39 3.33

Table 1: Area and perimeter of the face F0 for each
iteration level i.

5.2 Relative density
We compute the relative density [JWZ07] of a fractal
structure at different scale levels by using an image of
that structure and a mask with variable size. The idea
is to have a local evaluation of the matter quantity. We
drag the mask over the image for each pixel of the struc-
ture and count the number of pixels belonging to the
structure after the mask application. Then, we divide
the value by the surface of the mask. Finally, we color
the image’s pixel at the mask’s center depending on the
relative density found (between 0 and 1) using the col-
ormap in Figure 21. Figure 22 contains the resulting
image for the third iteration level of the face F0 for dif-
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Figure 19: For each iteration level, the logarithm of the
area over the area of the primitive for the face F0. The
area decreases by 24% for each iteration level.

Figure 20: For each iteration level, the logarithm of the
perimeter over the perimeter of the primitive for the
face F0. The perimeter increases by 97% for each it-
eration level.

ferent mask sizes. Figure 23 contains the relative den-
sity for the structure in Figure 13. The structure’s left
side has a higher density than the right side because of
the delay in subdivision. The additional iteration adds
more lacunas on the right side, reducing the relative
density.

Figure 21: The colormap we use for the relative density.
A value of 0 is mapped on the blue and a value of 1 is
mapped on the red. Any other value between 0 and 1 is
mapped linearly between blue and red.

5.3 Fractal dimension
Using the box-counting algorithm, we compute the
fractal dimension and note it Dbox [Man85]. The fractal
dimension is the slope of the line when we plot the
values of ln(Nε) on the Y-axis against the value of
log(1/ε) on the X-axis. We note ε the size of the
boxes and Nε the number of boxes of size ε that cover
the geometry. For a given geometry, we set it in a
squared grid of size one by one. We start with a box
size of 1/16 since bigger box sizes are insignificant.
We use the geometry of the face F0 (in Figure 18) to
compute all geometry-based measures. With the fifth

Figure 22: Relative density on the third iteration level
of the face F0 for different mask sizes. In the reading
direction, the mask sizes are 21, 51, 101, 151, 201 and
251 pixels. The image has a size of 825×953 pixels.

Figure 23: Relative density on the fractal structure in
Figure 13 for a mask size of 101 pixels. The image has
a size of 2607×953 pixels.

iteration level, we compute that the face has a fractal
dimension of Dbox = 1.65. Table 2 contains the values
for each size of boxes, and Figure 24 represents the
corresponding line.

ε ln(1/ε) ln(Nε)
1/16 2.77 4.96
1/32 3.47 6.09
1/64 4.16 7.28
1/128 4.85 8.46
1/256 5.55 9.62
1/512 6.24 10.71
1/1024 6.93 11.80

Table 2: Box-counting method on the fifth iteration of
the face F0.

5.4 Topological measure of fractals
One cannot use the Euler-Poincaré characteristic to
characterize the topology of a fractal structure because
of the infinite increase of the number of lacunas. To
address this question, we suggest computing the ratio
limit between the number of lacunas and the sum of
the number of lacunas and sub-faces. This measure
does not depend on the geometric realization. For
a given iteration level, we consider the space as a
partition composed of sub-faces and lacunas. We
quantify the ratio of the space lacunas occupy. Then,
the topological measure of a fractal is the limit of this
ratio when the iteration level tends to infinity. This ratio
gives information on the number of created lacunas
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Figure 24: For the fifth iteration of the face F0, the slope
of the curve gives Dbox = 1.65.

as a function of created sub-faces along the iterative
process.

For a given iteration level i, we note the number of la-
cunas (respectively number of sub-faces) NL

i (respec-
tively NC

i ). We compute them recursively. For the prim-
itive (when the iteration level is zero), there is no lacuna
(NL

0 = 0). For the first iteration level, a no-delayed face
has a central lacuna that counts as one lacuna. It can
also have lacunas in its boundary due to Cn edges. We
consider that each Cn edge creates n− 1 half lacunas.
When the iteration level is more than zero, NL

i is the
face’s number of lacunas at the first iteration level plus
the number of lacunas of each sub-face at the previous
iteration level.

About the number of sub-faces, when the iteration level
is zero, there is one face. For any other iteration level,
the number of sub-faces is the sum of the number of
sub-faces for each sub-face at the previous iteration
level. When the subdivision of a face F gives n sub-
faces F, we compute the number of sub-faces with the
equation 1 and the number of lacunas with the equation
2.

NC
i = ni (1)

NL
i = NL

1 +n×NL
i−1 (2)

For instance, we compute the values of NC
i and NL

i for
the face F0. Figure 10 describes this face subdivision.
When there is no iteration, NL

0 = 0 and NC
0 = 1. The

face has three C2 edges, each of which induces one-
half lacuna at the next iteration level. Hence at the
first iteration level, NL

1 of F0 = 1+ 3× 0.5 = 2.5. The
subdivision of F0 gives six sub-faces F0, hence NC

1 of
F0 = 6. For the second iteration level, we have NL

2 of
F0 = 2.5+6×2.5 = 17.5 and NC

2 of F0 = 6×6 = 36.
Since the subdivision of F0 gives six sub-faces F0, we
could compute NC

2 as 62 that is also 36.

Let the ratio Ri be:

Ri =
NL

i

NC
i +NL

i

Table 3 indicates the topology-based measures of F0 for
the first five iteration levels. The curve of the ratio Ri of
F0 for the first ten iteration levels is in Figure 25. Notice
that the ratio has a finite limit. We found that the limit
depends only on the parameter E of the face. The al-
gorithm creates more and more characteristic faces that
depend on these parameters. Hence, the limit R of Ri
when i tends to the infinity of any face depends on the
limit R of the specific faces that appear due to the sub-
division algorithm. For a characteristic face that subdi-
vides into itself and from equations 1 and 2, we have
the following formula:

R = lim
i→+∞

Ri =
NL

1

NL
1 +NC

1 −1

For instance, with the face F0, the limit is:

R =
2.5

2.5+6−1
=

1
3

i NL
i NC

i Ri
0 0 1 0
1 2.5 6 0.294
2 17.5 36 0.327
3 107.5 216 0.332
4 647.5 1296 0.333
5 3887.5 7776 0.333

Table 3: Topology-based measures NL
i , NC

i and Ri of
the face F0 for the iteration levels i from 0 to 5.

Figure 25: The ratio Ri of the face F0 for the iteration
levels from 0 to 10.

5.5 Discussion
We created some faces that subdivide in themselves to
study the impact of the algorithms and their parameter
E in the lacunarity. The faces are the following:

• F0.

• F1(∂1,E1,A1) with ∂1 = HC2,C2,C2,C2,C2,C2,C2I
and E1 = (C2,C2,C2).

• F2(∂2,E2,A1) with ∂2 = HB2,B2,B2,B2,B2I and
E2 = (B2,B2,B2).
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• F3(∂3,E1,A2) with ∂3 = HC2,C2,C2,C2,C2I.

• F4(∂4,E2,A2) with ∂4 = HB2,B2,B2,B2I.

• F5(∂5,E3,A2) with ∂5 = HB3,B3,B3,B3I and E3 =
(B3,B3,B3).

Figure 26 contains the faces at the fourth iteration level.
Table 4 lists those faces with the value of NL

1 , NC
1 ,

limi→+∞ Ri, the factors FA and FP, and the fractal di-
mension at the fourth iteration level of the cells.

Figure 26: Some characteristic faces that subdivide into
themselves. (Top left) The face F0. (Top middle) The
face F1. (Top right) The face F2. (Bottom left) The face
F3. (Bottom middle) The face F4. (Bottom right) The
face F5.

Face NL
1 NC

1 R FA FP Dbox
F0 2.5 6 0.33 0.76 1.97 1.72
F1 4.5 7 0.43 0.76 2.09 1.74
F2 1 5 0.20 0.85 1.69 1.82
F3 3.5 10 0.28 0.79 2.58 1.77
F4 1 8 0.12 0.75 1.92 1.72
F5 1 12 0.08 0.81 2.40 1.77

Table 4: List of measures for each face in Figure 26.
There are the number of lacuna and the number of sub-
faces at the first iteration, the R value that is the limit of
Ri when i tends to infinity, the factors FA and FP, and
the fractal dimension.

Globally, the set of parameters we used to provide the
different fractal faces impacts our topological measure
R. The values depend on the subdivision algorithm and
the parameter E. They reflect the specificity of the face
lacunarity.

On the other hand, geometry measures are more deli-
cate to interpret because they depend on geometric re-
alization. However, we can observe that for two faces
having an identical value of FA, the value of FP is higher
when the parameter E contains the most Cn edges. Intu-
itively, Cn edges induce lacunas while Bn edges induce
no lacunas.

Generally, the higher the fractal dimension, the higher
the FA and the lower the FP, even if the fractal di-
mension is relatively homogeneous for these examples.

However, for an identical value of FA, the fractal dimen-
sion increases with the value of FP.

6 CONCLUSION AND FUTURE
WORK

Automatic construction of fractal structures while con-
trolling the lacunarity is challenging because of the va-
riety and complexity of possible topologies.
We propose an automatic method defining the topology
of fractal faces’s subdivision, depending on the topol-
ogy of their boundary and additional parameters con-
trolling the lacunarity. Our method presents three main
advantages. First, a few intuitive sets of parameters de-
fine the type of lacunarity. Second, we base our con-
struction on the BC-IFS model, which codes the topol-
ogy of the fractal structure. It ensures the consistency
of the limit fractal topology and over iterations. The
resulting model can be exported in STL format and di-
rectly printed in additive manufacturing (see Figure 27).
This topological approach allows us to adapt the lacu-
nar geometry to intended applications. Third, as we de-
fine a lacunar face from its boundary, we can directly
create complicated assemblies without additional con-
straints, with each face being defined from the edges of
its neighborhood faces.

Figure 27: 3D print of the fractal structure presented in
Figure 13 and 14.

We complete this approach by introducing a delay in
the subdivision process, allowing the cohabitation in an
assembly of different iteration levels of an identical la-
cunar fractal. We use this extension to produce a ho-
mogeneous lacunarity over faces with different sizes or
to manage variation lacunarity. We can extend this ap-
proach by proposing additional subdivision algorithms
and introducing more than one main lacunar, for exam-
ple.
We analyze the lacunarity of the resulting structures by
evaluating and proposing different measures for geo-
metric and topologic characteristics.
Future works focus on an automatic process to subdi-
vide volumes. It is more complicated than faces since
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the adjacency of two volumes is on faces, with more
topology possibilities than edges. As for faces, we
can subdivide each volume edge (faces) and create sub-
volumes for each sub-face. However, there could be
several adjacency faces and lacuna faces for each sub-
volume. The complexity induced by the topological
cellular decomposition of 3D fractal structures needs
deep analysis to identify, parametrize, and automatize
the subdivision process while guaranteeing topological
consistency.
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