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ABSTRACT
The automation of games using Deep Reinforcement Learning Strategies (DRL) is a well-known challenge in AI
research. While for feature extraction in a video game typically the whole image is used, this is hardly practical
for many real world games. Instead, using a smaller game state reducing the dimension of the parameter space
to include essential parameters only seems to be a promising approach. In the game of Foosball, a compact and
comprehensive game state description consists of the positional shifts and rotations of the figures and the position
of the ball over time. In particular, velocities and accelerations can be derived from consecutive time samples of
the game state. In this paper, a figure detection system to determine the game state in Foosball is presented. We
capture a dataset containing the rotations of the rods which were measured using accelerometers and the positional
shifts were derived using traditional Computer Vision techniques (in a laboratory setting). This dataset is utilized to
train Convolutional Neural Network (CNN) based end-to-end regression models to predict the rotations and shifts
of each rod. We present an evaluation of our system using different state-of-the-art CNNs as base architectures
for the regression model. We show that our system is able to predict the game state with high accuracy. By
providing data for both black and white teams, the presented system is intended to provide the required data for
future developments of Imitation Learning techniques w.r.t. to observing human players.

Keywords
Game State Detection, Computer Vision, Deep Learning, Foosball, Deep Reinforcement Learning, Imitation
Learning

1 INTRODUCTION

State detection based on Computer Vision techniques
has been used in the automation of games using Rein-
forcement Learning, cf. [22, 25]. The common way is
to take an input image stream, e.g. the whole screen in
a video game cf. [22], and predict a next action based
on a DRL system. In contrast to video games, the usage
of whole images is often not practical when automating
real-world games. In this case, using a lower dimension
abstraction of the game, for which we employ the term
game state, can be advantageous for the DRL training
and prediction. The game of Football is a good example
for the automation of complex real-world games [20].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

A better accessible scenario is found in the game of
Foosball, which provides a stable, more controllable en-
vironment, cf. [28, 29]. More concrete, the game state
can be defined as the positional shift and the rotations of
the figure rods plus the position of the ball as a function
of time. In particular, the velocities of the figure rods
and the velocity of the ball can be approximately calcu-
lated using multiple consecutive time samples. We note
that, specifically in Foosball, using the described game
state instead of an overall image reduces the parameter
space for a DRL agent significantly. In order to provide
the required state space data, a game state detection sys-
tem is needed to extract the game state and provide the
data to the DRL agent.

In this paper, we present a game state detection system
for the Foosball table shown in Fig. 1. The Foosball
table is automated using industrial motors on the black
team while the other, white team is human-controllable.
At the top of the table, a Logitech BRIO webcam is
mounted which captures the playing field in a top down
perspective. Currently, the motors report their shifts
and rotations, so the game state of the black figures is
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Figure 1: The physical Foosball table. The black
team is controlled by industrial linear and rotary mo-
tors while the white team is controlled by humans. A
Logitech BRIO webcam captures the playing field in a
top down perspective.

available as a potential ground truth. Additionally, there
exists work on the detection of the position and veloc-
ity of the ball [5]. The game state of the white figures
is unknown. Our system developed in this work is able
to detect the game state of all figures (black and white)
of the Foosball table using Deep CNN and Computer
Vision. We utilize the available game state data for the

Figure 2: A working example of our figure detection
system. The predicted positional shift and rotation an-
gle of each rod is printed above the rod. The captured
data can be used by a DRL agent through a ZeroMQ
based data provisioning system.

black figures as a ground truth to validate our system.
A working example of our system is shown in Fig. 2.
As all figures are included in the game state, our system
can also be used to capture the state of non-automated
Foosball tables. In this respect, we are preparing and
contributing to future Imitation Learning experiments
(based on matches of only human players) where the
whole state space is planned to be captured by Com-
puter Vision techniques.

The paper is structured as follows: Section 1 intro-
duces this paper and provides a brief overview of re-
lated work. In section 2 we describe our approach
to game state detection. We evaluate our system and
present results in section 3. In section 4 we conclude
the paper and present aspects of future work.

1.1 Related Work
Several studies conducted research in automating a
Foosball table. The sub-process of game state detection
is a key part of the automation process [11, 13, 29].
While the detection of the ball is a necessity for a
rudimentary automation of a Foosball table, Enos et
al. [7] and Gashi et al. [9] note the importance of
the detection of the figures to enable a dynamic game
play. Due to the focus on the basic automation, most
studies do not attempt the figure detection in their
work. Bambach et al. [3] and Horst et al. [15] only
examined the game state detection without addressing
the actual automation process. In contrast, Gashi et
al. [9], Rohrer et al. [24] and Zhang et al. [31] only
addressed the automation by extending already existing
automated Foosball tables and using the established
state detection methods.

The automation Hardware is usually built around lin-
ear and rotary motors to control the rods with addi-
tional sensors to measure the shift and rotation, cf.
[5, 17, 21, 29]. Over time, the research shifted from rule
based algorithms, cf. [29, 30], towards DRL based ma-
chine learning models, cf. [5, 9, 24]. Imitation Learning
methods were also used to improve the early rule based
approaches [31].

All above studies use a camera and computer vision
techniques to detect the game state. Mohebi [21] de-
scribes additional methods for the ball state detection,
including the usage of Bluetooth, a touch sensible
screen as the playing field and a grid of light emitters
and detectors. Most studies, however, rely on color
segmentation based approaches to detect a distinct
colored ball, cf. [3, 7, 11, 18, 26]. The state of the
figures is often not considered. Weigel et al. [29]
implemented a rudimentary figure detection system
which they discarded in their next iteration [28].
Bošnak et al. [4] proposed the usage of visual marker
patterns to detect the rotation of the rods. Janssen
et al. [17] used a MRI scanner to detect figures in
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a 3D scan but only used this information to enhance
the ball detection system. Mohebi [21] proposed the
usage of additional sensors for the figure detection.
Other studies addressed the figure detection by using
a similar color segmentation approach as already used
for the ball detection, cf. [1, 21]. In contrast, Horst et
al. [15] concentrated their work on detecting the game
state of an automated Foosball table by implementing
a proof-of-concept for the midfield, human-played
figures. Their setup includes the utilization of the
YOLOX object detector [10] to find the individual
figures and a custom regressor network to predict the
rotation angle.

1.2 Contributions
In this work, we present a figure detection system for
the physical automated Foosball table used by Horst et
al. [15], De Blasi et al. [5] as well as [9, 24], the later
two references focusing on the DRL part. Our work ex-
tends previous work of Horst et al. [15] who derived a
first proof-of-concept using CNN-based Computer Vi-
sion methods.
Our contributions can be summarized as follows. (a)
We created and verified a ground truth dataset for the
training of a CNN-based detection model; (b) We de-
rive an improved figure detection system by basing on
end-to-end learning; further, the new system is able to
detect all white figures and additionally the black, com-
puter controlled figures. (c) In the developed end-to-
end setup, we trained and evaluated multiple feature
extractor backbones, including ResNet [12], MobileNet
[16] and EfficientNet [27]; (d) We propose a data provi-
sioning system based on ZeroMQ [14]. Concerning (a)
we use accelerometers and the motors of the Foosball
table to measure the rotations of the rods. Addition-
ally, we derive the shift by utilizing traditional CV tech-
niques. While [15] captured all data in one video using
OLED screens to display the rotation of the rods, we
discard the screens and OCR step by directly reading
from the micro-controller, therefore reducing complex-
ity and fixing noted issues. Concerning (b) we discard
the YOLOX object detector [10] which was used in [15]
to detect each individual figure. Instead, we aim for an
end-to-end regressor network for shift and rotation de-
tection on a per-rod basis. Additionally, we extend and
refine the ideas of [15] to include all figures of the Foos-
ball table and to fix issues noted there. Furthermore, we
contribute to the DRL research started by De Blasi et
al. [5] and extended by Rohrer et al. [24] and Gashi et
al. [9]. In particular, by deriving the whole state space
(including the black figures), we are preparing for Im-
itation Learning approaches which require a system to
extract the game state of pre-recorded human matches
(including both black and white figures).
In contrast to other previous research, color based ap-
proaches, cf. [1, 3, 26, 29], are not applicable since

Figure 3: Measuring the rotational shift relative to the
ground (α) using a two-axis accelerometer. Since the
gravitational force of 1g is fixed and due to the orthog-
onal alignment of the X and Y axis, the measured accel-
erations on those axis are proportional to the sine and
cosine of α .

the figures are not colored with distinguishable col-
ors. While we also use additional sensors for creating a
ground truth, a similar approach to Mohebi [21] is not
applicable due to a non-permanent hardware modifica-
tion constraint. We use state of the art deep CNN for the
game state detection which removes the need for a cali-
bration step ahead of time and creates a more robust and
stable system in contrast to traditional CV techniques.

2 GAME STATE DETECTION
In the following, we present our approach to detecting
the game state of a Foosball game. Relying on previous
work on detecting the ball [5], we focus on detecting the
figures. More precisely, we detect the positional shifts
and rotations of the figures. This amounts to detecting
the shift and rotations of the corresponding rods since
the relative position and the angles do not change within
the rod. The velocities of the figures can be calculated
through consecutive shifts and rotations. First, we de-
scribe our approach to creating a ground truth dataset
using accelerometers and the motors of the Foosball ta-
ble. Afterwards, we develop end-to-end regressor mod-
els basing on widely used CNN backbones as feature
extractor networks.

2.1 Dataset Creation
The training of our end-to-end regressor network re-
quires the presence of a dataset consisting of the shifts
and rotations of all rods of our Foosball table. For the
white, human controlled rods, the shift and rotation val-
ues are not available. In contrast, the motors which con-
trol the black rods report their state. We use the reported
state as a ground truth to verify our dataset creation sys-
tem.

The shift of the white rods can be calculated using tra-
ditional Computer Vision techniques. In contrast, the
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rotation cannot be validated with traditional CV meth-
ods due to different perspectives and no ground truth
being available. Therefore, our approach includes the
usage of accelerometers to measure the rotation in the
real world. An accelerometer measures the linear accel-
eration on a defined axis. When fixed to a specific point,
the gravitational force is a linear acceleration which can
be measured by an accelerometer. Using two orthogo-
nal axis, the relative tilt to the ground can be calculated,
cf. [8, 23]. As shown in Fig. 3, the measured acceler-
ation A is related to the angle α: AX ,OUT

AY,OUT
= 1g×sin(α)

1g×cos(α) =

tan(α) which results in α = tan−1(
AX ,OUT
AY,OUT

) with AX ,OUT

as the measured acceleration on the X axis and AY,OUT
as the measured acceleration of the Y axis. The default
rotation is defined as a figure standing vertically with
the head up. The rotation is measured as 0 degrees in
the default rotation while the motors of the black figures
report 180 degrees as default. Therefore, the measured
rotations are shifted to also use a default rotation at 180
degrees.

Figure 4: The hardware used to measure the rota-
tion of the white figures. Four GY-521 modules
with MNPU6050 accelerometers on 3D-printed mounts
were screwed on top of the rods. The accelerome-
ters are connected to an ESP32 based micro-controller
via an I2C connector. Additionally, we included a
WS2812B-based LED strip to indicate the internal tim-
ing and a button to calibrate the zero-point of the ac-
celerometers.

We validated two different types of accelerometers,
namely the MPU6050 on GY-521 breakout boards and
the ADXL345. By measuring the rotation of the black
rods with those sensors we could verify the measure-
ments and estimate errors between the actual rotation
and the measurements. We found that the MPU6050
sensor measured the rotation with a higher accuracy but
still had a mean absolute error of around 5 degrees with
outliers between 20 and 25 degrees. We also observed
that some of the sensors tested had calibration errors
which where visible in a systematic deviation between

the real and measured rotation angle. To minimize the
deviation between the measurements and the real rota-
tion in our ground truth, we rejected the corresponding
sensors. Fig. 4 shows an image of our measurement
hardware.

Wait 0.4 
seconds

Read 
measurements

•Accelerometers

•Motors

•Camera image

Save data

•Append image to
video

•Append sensor
data to CSV file

Random 
movement of

the black figures

Start

End

Figure 5: Our proposed dataset capturing process. One
iteration of the process corresponds to one frame taken
by the camera. While the black figures are moved auto-
matically, the white figures need to be moved manually
during the dataset capturing to get a versatile set of dif-
ferent shifts and rotations.

The capturing process, as illustrated in Fig. 5, consists
of four steps which are repeated. First, we move and
rotate the black rods randomly to get diverse states. As
the white rods are not connected to motors, those were
moved manually by hand. Next, the system waits 0.4
seconds to let the motors finish their movements. This
reduces the risk of motion blur and a faulty state re-
ported by the motors, as they report their final posi-
tion and not their current shift. Afterwards, the mea-
surements of the motors and the accelerometers are re-
trieved and a snapshot of the webcam is captured. In
the last step, the camera image is appended to an MP4-
encoded video and the measurements are saved in a
CSV file. This process is repeated N times to get N indi-
vidual game states with a corresponding camera image
in the dataset. The resulting dataset contains the posi-
tions and rotations of the black rods, the rotations of the
white rods and the camera image.

For deriving the positional shifts of the white rods in
the data setup we use a traditional Computer Vision ap-
proach. We start by defining a one pixel wide column
in the center of each rod and applying a binary thresh-
olding. We search for connected groups of black pix-
els in this column to find the rubber stoppers which are
mounted at each end of the rods. Using those stoppers
we can find the center of each rod. We calculate the
actual shift by converting the offset between the cen-
ter of the table and the center of the rod from pixels
to mm. We validated this approach by calculating the
shifts of the black rods. We observed, that the reported
shift sometimes differs from our calculations. As illus-
trated in Fig. 6, our calculations were more accurate.
We conclude, that the rods were still moving when the
image was taken resulting in an offset between the re-
ported and the actual shift. The observed motion blur
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pattern, as shown in Fig. 6, confirms this assumption.
While the images are not blurred, the rods contain a
vertical motion blur but no horizontal bluring. Since
this motion blur will also be present when detecting the
game state of a real Foosball game, we keep the faulty
images in the dataset but use our calculated shift as our
ground truth.

Figure 6: Outliers with a high deviation between the
calculated shift (red line) and the reported shift (green
line). While the motors report the final shift of the rod,
regardless if the rod is still moving, the calculation is
based on the current image. Therefore, the calculated
shifts are more accurate.

Summing up, the derived data set consists of 500 im-
ages containing the corresponding shifts and rotations
of the black and white figures. Due to our automated
data capturing process using the accelerometers for the
measurement of the rotations and an automated CV pro-
cess for the shift calculation, we were able to avoid
a manual labeling process. We note however, that in
some occasions, minor manual adaptions were neces-
sary to accommodate small deviations in the camera
angle. The positions and rotations of the black figures
are uniformly distributed. Due to the manual movement
of the white rods, the positions and rotations could not
reach a uniform distribution and include some bias to-
wards specific values, c.f. Fig. 7. Albeit not attempting
to detect the ball, we included it in the dataset to get
more realistic images.

2.2 End-to-End Regressor Networks
For the game state detection on our Foosball table, we
propose the utilization of common state-of-the-art Im-
age Classification models like ResNet [12], Efficient-
Net [27] and MobileNet [16] as a backbone for feature
extraction. As the shifts and rotations of the rods are
continuous numerical variables, the problem at hand
constitutes a regression problem. Thus, classification

Figure 7: Distribution of the rotation of the black and
white goalkeepers. The black goalkeeper was moved
randomly by the computer which results in a uniform
distribution of measured rotation angles. In contrast,
the white goalkeeper was moved manually by hand re-
sulting in a non-uniform distribution with a bias to spe-
cific angles. This effect is also present on the other
white rods.

models/networks which typically consist of a feature
extractor backbone and a classification head cannot be
used directly. However, we may reuse the feature ex-
tractor (cf. [2]; which mostly consists of convolutional
layers) and replace the classification head with a cus-
tomized regression head. This approach fits within the
idea of fine-tuning on a downstream task using parts
of a neural network trained for another task on a large
set of training data; in particular, we here use already
proven feature extractor architectures trained for classi-
fication on ImageNet [6].

To account for the periodicity of angles, we decided to
use eiϕ = (cosϕ,sinϕ) as variable for regression, i.e.,
we predict the sine and cosine of the angles. Addi-
tionally, the shift is scaled to a range of -1 to 1 which
balances the influence of the shift, the sine and the co-
sine. Ultimately, as a regression head, we used a linear
layer with an output dimension of three and no activa-
tion function to predict the values (s,cosϕ,sinϕ) where
the symbol s denotes the shift.

To mitigate the problem of perspective distortion,
which occurs due to the wide field-of-view of the
camera, we use an individual regressor model per rod,
resulting in 8 models which are trained and inferred
sequentially. Each regressor uses a pre-defined cutout
of the overall camera image. We custom-trained the
8 models using four different base architectures from
ResNet18, ResNet50 [12], EfficientNetV2 [27] and
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MobileNetV3 [16] as feature extractors. The weights
of the feature extractors are initialized using transfer
learning with the provided ImageNet1K [6] weights of
the base models from PyTorch. The custom regression
head is initialized randomly. Each regressor is trained
over 50 epochs using the MSE loss function and the
Adam optimizer [19] with a fixed learning rate of
0.001. During the training process, we used 80 % of
our dataset (400 images) to train the CNNs and 20 %
(100 images) for validation.

2.3 Data Provisioning System
As our work contributes to the automation of our Foos-
ball table using DRL or Imitation Learning techniques,
a data provisioning system needs to be implemented
which should (a) use standardized formats; (b) be eas-
ily accessible with a minimal need of further Hard- or
Software; (c) not introduce high latency into the sys-
tem. We propose a publish-subscribe messaging system
based on ZeroMQ [14] which satisfies those require-
ments.

Regressor Pipeline ZMQ Pub/Sub

Live Dashboard

Student A

Student B

Figure 8: The proposed game state detection pipeline
including the data provisioning system. Due to the uti-
lization of ZeroMQ, multiple clients can connect and
receive the game state data simultaneously.

The data producer side of the pipeline, in which the
shift and rotation is predicted, publishes the JSON-
formatted results through a ZeroMQ TCP socket. A
client can then connect to this socket, subscribe to the
messages and decode the JSON data. An illustration
of the data provisioning system with multiple example
clients is shown in Fig. 8. While this approach intro-
duces some latency, it also has other major advantages.
Firstly, multiple clients can connect to the socket simul-
taneously. Secondly, the TCP-based socket can also be
shared through a network. This enables the possibility
of the permanent installation of a dedicated game state
detection server accessible to researchers. This would
free resources for possible DRL experiments, as the
game state detection must not be executed on the same
hardware. The option of multiple connected clients al-
lows for different simultaneous experiments as long as
the actual Foosball table hardware is not required.

3 EVALUATION
As we utilized multiple feature extractor backbones for
our regression model, we evaluate the performance of

the overall system per feature extractor based on the
prediction accuracy measured as Mean Absolute Error
(MAE) and the inference time. We define the following
criteria:

a) The MAE for the shift should not exceed 11 mm.
The feet of the figure is 22 mm wide, so an error in
the positional shift of ± 11 mm would still result in a
straight shot. Since every rod has different shift lim-
its, the percentage range per rod varies between ±
8.5 % for the defender and ± 20 % for the midfield
rod.

b) The MAE for the rotation should not exceed 42 de-
grees. A figure is able to block a shot if the feet
of the figure are below the highest point of the ball.
This is given at a maximum rotation of ± 47 degrees.
Due to small rotations of the figure on impact with
the ball, we deduct an offset of 5 degrees. There-
fore, a figure which is predicted to stand vertically
would be able to stop the ball up to an error of ± 42
degrees.

c) The inference time should be lower than 16.6 ms.
Since our present camera is only able to record at
60 FPS, this is the limit which we consider to be
real-time. Ultimately, the system should be as fast
as possible to provide as much information to the
DRL systems as possible. A shorter inference time
is therefore generally preferred.

3.1 Quantitative Evaluation
Evaluation of the Prediction Quality. We compare
the results using a ResNet18, a ResNet50 [12], an Ef-
ficientNetV2 [27] and a MobileNetV3 [16] where we
use an individual regressor model per rod as detailed in
Section 2.2.

Table 1 shows our evaluation results for the shift detec-
tion. Considering the MAE averaged w.r.t. all rods, all
feature extractor backbones passed the defined objec-
tive – they were below the predefined thresholds above.
The shift detection is more accurate on rods which have
a smaller movement range (e.g. the midfield rod) than
on rods with a high movement range (e.g. the defense
rod). Further, the predictions for the white rods have a
higher accuracy than those for the black rods. We be-
lieve that a possible explanation for this finding can be
that, in the training data, the shifts of the black rods fol-
low a uniform distribution while the white rods (which
were moved manually by hand) are distributed non-
uniformly. Examining each rod individually, both re-
gression networks based on the RestNet18 and on the
ResNet50, stay within the predefined error tolerance,
whereas the networks based on the MobileNetV3 and
EfficientNetV2 backbones exceed the requirement on
the white defender. Further, the ResNet18 based model
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Feature Extractor Black Rods White Rods Average
Goal Defense Midfield Striker Goal Defense Midfield Striker

ResNet18 2.94 4.02 1.23 1.6 2.94 7.42 2.2 8.68 3.88
ResNet50 2.4 4.02 1.35 2.77 4.5 6.49 1.91 7.83 3.91

MobileNetV3 7.68 9.35 3.01 7.32 9.06 11.94 3.89 6.78 7.38
EfficientNetV2 9.82 5.97 2.06 3.75 5.5 12.73 4.47 8.53 6.6

Table 1: Mean absolute error of the predicted shift in mm per rod and feature extractor.

Feature Extractor Black Rods White Rods Average
Goal Defense Midfield Striker Goal Defense Midfield Striker

ResNet18 1.23 1.47 0.88 1.38 12.64 13.93 4.96 10.93 5.93
ResNet50 1.34 1.43 0.97 1.33 8.33 5.44 4.06 9.91 4.10

MobileNetV3 3.46 2.18 1.72 4.35 17.86 22.96 7.69 21.21 10.18
EfficientNetV2 6.31 2.14 2.29 1.69 14.26 25.32 13.59 28.68 11.79

Table 2: Mean absolute error of the predicted rotation angle in degrees per rod and feature extractor.

performed slightly better on average than the ResNet50
based model. In our opinion, these observations indi-
cates that further training data is necessary to use the
full potential of deeper networks.
In Table 2, we provide the mean absolute errors of the
rotation angle prediction. Overall, all models achieved
the required maximum average error of ± 42 degrees
having large margins to the defined threshold. Similar
to the shift prediction, the estimate for the white rods
had higher MAEs compared to the black rods. In con-
nection with this, we observe that, in addition to the
non-uniform sampling, the rotation angle of the black
rods is restricted to the range between 120 and 240 de-
grees (motor constrains) while the white rods can ro-
tate freely. Therefore, the white rods have a higher
range of possible values which can also explain the
worse prediction accuracy. Furthermore, the ground
truth data contains a mean error of ± 5 degrees due
to the measurements with the accelerometers. As al-
ready observed in the shift detection, the ResNet based
models yield lower MAE values compared to the Mo-
bileNetV3 and EfficientNetV2 based models.
Evaluation of the Inference Time. The inference
times of the models were evaluated on four different
systems: System A: Apple MacBook Pro 2018 with
Intel Core i7 processor and AMD Radeon Pro 560X
GPU; System B: Apple MacBook Pro 2021 with Ap-
ple M1 Pro processor; System C: PC with AMD Ryzen
9 5900X processor and NVIDIA RTX 3080 GPU; Sys-
tem D: Cloud VM with AMD EPYC-Milan processor
and NVIDIA A100 80G PCIe GPU. All systems use
the GPUs, either through the Metal Performance Shader
(MPS) backend or through NVIDIA CUDA. The mod-
els were trained using PyTorch 2.1.0 and Torchvision
0.16.0 in a Python 3.9 environment.
Table 3 summarizes the mean and median inference
times on the different systems. The inference times
are measured as overall inference time and the infer-

ence time per rod. The overall time should roughly be
about 8 times the inference time per rod, as all rods are
inferred sequentially. Additionally, the corresponding
FPS are calculated. Overall, the ResNet18 based model
performed the best with the lowest inference time of
86.18 ms median on system C, thus achieving only 11.6
FPS which is significantly lower than the desired 60
FPS. The other evaluated CNN architectures could not
achieve at least 10 FPS on average. The slightly better
prediction quality of the ResNet50 based regressor is
-in our opinion- not enough to justify the higher infer-
ence time of an additional 33.14 ms on the same hard-
ware compared to the ResNet18 based model. If the se-
quential execution would be parallelized, the ResNet18
based model would probably achieve the desired 60
FPS considering the median inference time per rod of
10.77 ms on system C. The ARM-based MacBook (sys-
tem B) would then also achieve the goal with 13.38 ms
median inference time.

Albeit providing a higher performing GPU, system D
could not reach a better performance compared to the
other systems. Our conjecture is that the system is
CPU-bottle-necked due to the sequential execution of
the rods. We observed an average GPU utilization of
40 % on system C and 7 % on system D which sup-
ports this assumption. While all systems except the
cloud VM showed only small deviations of 0 to 3 %
between the median and mean inference times, system
D resulted in high deviations of 9.51 % for the Effi-
cientNetV2 based model and 14 to 18 % for the other
models. The outliers in the inference times could in-
dicate lower performing storage resulting in more time
needed to move data between RAM and the GPU.

3.2 Qualitative Evaluation
In a qualitative evaluation and live tests on the Foosball
table, we observed overall accurate results, e.g. illus-
trated in Fig. 2. There were several issues, in particular
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Backbone System Inference Time (ms) Inf. per Rod (ms) FPS
Mean Median Mean Median Mean Median

ResNet18

MacBook Pro 2018 (Sys. A) 288.51 286.27 36.06 35.78 3.47 3.49
MacBook Pro 2021 (Sys. B) 108.03 107.11 13.50 13.38 9.26 9.34

Gaming PC (Sys. C) 88.88 86.18 11.11 10.77 11.25 11.60
Cloud VM (Sys. D) 126.23 106.94 15.78 13.36 7.92 9.35

ResNet50

MacBook Pro 2018 (Sys. A) 581.58 573.85 72.69 71.72 1.72 1.74
MacBook Pro 2021 (Sys. B) 182.79 182.45 22.84 22.80 5.47 5.48

Gaming PC (Sys. C) 120.83 119.32 15.10 14.91 8.28 8.38
Cloud VM (Sys. D) 130.77 114.60 16.34 14.32 7.65 8.73

MobileNetV3

MacBook Pro 2018 (Sys. A) 497.21 501.49 62.14 62.58 2.01 1.99
MacBook Pro 2021 (Sys. B) 156.76 156.44 19.59 19.55 6.38 6.39

Gaming PC (Sys. C) 117.00 115.93 14.62 14.29 8.55 8.63
Cloud VM (Sys. D) 122.81 105.14 15.35 13.14 8.14 9.51

EfficientNetV2

MacBook Pro 2018 (Sys. A) 1538.96 1496.68 192.36 187.08 0.65 0.67
MacBook Pro 2021 (Sys. B) 402.34 400.27 50.29 50.03 2.49 2.50

Gaming PC (Sys. C) 249.31 245.97 31.16 30.74 4.01 4.07
Cloud VM (Sys. D) 235.70 215.24 29.46 26.90 4.24 4.65

Table 3: Mean and Median inference time for different feature extractor backbones on the different systems. All
systems utilized GPU acceleration through either NVIDIA CUDA or Apple MPS. While the Cloud VM (system
D) has the highest theoretical GPU performance, not all backbones could benefit from this. Instead, the lower
performing RTX 3080 from system C resulted in a shorter median inference time for the small ResNet18 based
model and almost equal times for the ResNet50 and MobileNetV3 based models. All systems except the cloud
VM showed only small deviations between the mean and median inference time.

concerning lightning conditions and blur which we dis-
cuss next.

Dependence of the Prediction Quality on the Light-
ning Conditions. As illustrated in Fig. 9, the predic-
tion accuracy is highly dependent on the lighting con-
ditions which cannot be controlled. Our training data
was captured with natural light in the summer while we
tested the system in the winter with predominantly arti-
ficial light. As seen in Fig. 9, the artificial light (in the
right images of each example) results in harder shadows
with a brighter playing field, especially at the edges of
the field. In contrast, the natural light showed only soft
shadows. A more diverse dataset with different lighting
conditions including natural and artificial light would
improve the consistency of the system and provide a
more generalized prediction model.

Dependence of the Prediction Quality on Blur. We
observed an influence of blur in the images on the pre-
diction accuracy. Since we use a standard webcam
without any modifications, the exposure time and focus
cannot be fixed. Commonly, a webcam uses a variable
exposure time to control the brightness of the image, as
the aperture is fixed. Therefore, in a darker scenario,
the webcam uses a longer exposure time to get a bright
image. The long exposure time can, however, result in
motion blur especially on the fast moving figures of the
Foosball table. Additionally, the variable focus leads
to an automatic re-focusing of the camera which results
in overall blurred images. In Fig. 10, the predicted
rotation on the blurred, right images deviates about 11

degrees in a) and 20 degrees in b) compared with the
same physical rotation in the non blurred counterparts
in the left images.

Additionally, we observed a high influence of occluded
figures and / or general unknown items in the images,
e.g. by placing a hand inside the camera frame. This
risk cannot be eliminated and should be addressed in
the future.

4 CONCLUSION, DISCUSSION AND
FUTURE WORK

In this paper, we presented a CNN based figure detec-
tion system for a semi-automatic Foosball table: the
black team was controlled by motors and the white team
was controlled by human players. More precisely, we
first created and verified a ground truth dataset for train-
ing CNN-based detection models. Then, we have de-
rived an improved figure detection system by basing on
end-to-end learning. This contrasts the previous work
[15] where an intermediate object detection step utiliz-
ing a YOLO detector was used. Further, we included
the detection of all white figures and additionally the
black figures in the detection system. We trained and
evaluated our approach using various feature extrac-
tor backbones, including ResNets, MobileNets and Ef-
ficientNets. Finally, we proposed a data provisioning
system based on ZeroMQ.

We demonstrated that our system is able to detect the
shifts and rotations of all figures based on a camera
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Figure 9: Examples for the influence of lighting con-
ditions on the prediction accuracy. Each example is
shown with natural light conditions (the same as in the
training data) on the left and artificial light conditions
on the right with a similar rotation angle. The artificial
lighting results in harder shadows and a brighter back-
ground compared to the natural light. While the images
in a) and b) predict the correct rotation in both light-
ing conditions, the examples in c) and d) show extreme
examples of a deviation from the actual rotation in the
artificial lighting conditions. In all cases, the position is
predicted within the given boundaries.

image in a top-down perspective. The shift and rota-
tion detection of our system satisfy our defined require-
ments for all figures. Using the ResNet18-based model,
we achieved mean absolute errors of 3.88 mm for the
position and 5.93 degrees for the rotations of all figures.

While the overall accuracy of the system satisfies the re-
quirements we defined, some limitations remain. First,
concerning stability, we observed that the lighting con-
ditions and image blur can have significant influence
on the prediction accuracy. Second, the present system
does not achieve a game state detection in real-time,
i.e. at 60 FPS. Means to address these issues could be
as follows: Concerning speed, one possible solution is
the parallelization of the regression models which are
currently inferred sequentially. As shown in this paper,
the inference time for one rod would achieve a real-time
detection at 60 FPS. Concerning the stability of the sys-
tem, one potential approach is the modification of the
hardware of the Foosball table. It appears to be most
promising to switch to another, manually controllable
camera, as the current webcam shows clear drawbacks.

A further limitation is found in the Foosball table it-
self. The motors controlling the black rods are subject
to a rotation limitation between 120 and 240 degrees on
the driver level. This safety feature cannot be overwrit-
ten without modifying the hardware and should remain
to reduce the maximum velocity of the ball. A manu-
ally played Foosball table does not have this issue. The

a) b)

207°
-60 mm

218°
-59 mm

127°
6 mm

237°
11 mm

Figure 10: Two extreme examples for the influence of
blurred images on the prediction quality. The left im-
ages of a) and b) are non blurred versions with the
same positions and rotations as in the right images. The
blurred images are a result of the camera performing a
re-focusing of the whole image. We observed this ef-
fect to occur every 30-60 seconds.

same approach as described in Sec. 2.1 could be ap-
plied to generate a corresponding dataset including full
360 degree rotational movement of the black rods.

One aspect of future research is to further develop the
system w.r.t. real-time capabilities and robustness such
that it can be directly used in the automation process,
i.e., provide the necessary information on the game
state to the future RL agent controlling the non-human
player in a robust way in real-time. Another line of
future research is to employ (developments of) the pro-
posed system for Imitation Learning. To this end, we
plan to employ our game state detection system for cap-
turing real Foosball games played by humans. This
would improve the training of a DRL agent by reduc-
ing the need for On-Policy and / or simulation data.
We note that for the creation of an Imitation Learning
dataset, real-time detection is not necessary.
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