
MinBackProp – Backpropagating through Minimal Solvers

Diana Sungatullina1,2

diana.sungatullina@cvut.cz
Tomas Pajdla1

pajdla@cvut.cz

1 CIIRC, CTU in Prague, Jugoslavskych partyzanu 1580/3, 16 000, Prague, Czech Republic
2 FEE, CTU in Prague, Technicka 2, 160 00 Prague, Czech Republic

ABSTRACT
We present an approach to backpropagating through minimal problem solvers in end-to-end neural network train-
ing. Traditional methods relying on manually constructed formulas, finite differences, and autograd are laborious,
approximate, and unstable for complex minimal problem solvers. We show that using the Implicit function the-
orem (IFT) to calculate derivatives to backpropagate through the solution of a minimal problem solver is simple,
fast, and stable. We compare our approach to (i) using the standard autograd on minimal problem solvers and
relate it to existing backpropagation formulas through SVD-based and Eig-based solvers and (ii) implementing the
backprop with an existing PyTorch Deep Declarative Networks (DDN) framework [GHC22]. We demonstrate our
technique on a toy example of training outlier-rejection weights for 3D point registration and on a real application
of training an outlier-rejection and RANSAC sampling network in image matching. Our method provides 100%
stability and is 10 times faster compared to autograd, which is unstable and slow, and compared to DDN, which is
stable but also slow.

Keywords
minimal solvers, epipolar geometry, backpropagation, outlier removal, implicit function theorem

1 INTRODUCTION
Recently, minimal problem solvers [Nis04, SNKS05,
KBP08, LOÅ+18, MVP22] have been incorporated
into end-to-end machine learning pipelines in camera
localization [BKN+17], image matching [WPS+23],
and geometric model estimation by RANSAC [BR19].
The key problem with using minimal problem solvers
in end-to-end neural network training is to make them
differentiable for backpropagation.

Early attempts to backpropagate through minimal
problem solvers used explicit derivative formu-
las [IVS15, DYH+18, RK18] and finite differ-
ences [BKN+17] to compute derivatives for backprop-
agation. Recent work [WPS+23] proposed computing
the derivatives using autograd. These are valid ap-
proaches, but they can still be considerably improved.
Manual differentiation is laborious and must be done
repeatedly for every new problem. Finite differences
are approximate and are prone to numerical errors.
Using autograd is also limited to relatively simple
minimal problem solvers since, for more complex

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

solvers with large templates [MVP22], differentiating
the templates becomes unstable due to, e.g., vanishing
of the gradients [BSF94].

Match
I1, I2

!
m

NN
(q)
!
s

D-RANSAC !
w

Egt
#

Solver !
Ê

J(Ê,m, igt)

∂J
∂q

∂ s
∂q ��

∂J
∂ s

∂w
∂ s ��

∂J
∂w

∂ Ê
∂w ��

DDN
IFT

∂J
∂ Ê

Figure 1: A typical end-to-end training pipeline with a
minimal problem Solver [WPS+23] that trains a Neu-
ral Network (NN) to predict correct matches. Forward
pass: Tentative handcrafted matches m between images
I1, I2 are clarified using NN [ZGZ+21] parametrized by
trained weights q , and scores s for these matches are
computed. Differentiable D-RANSAC selects a mini-
mal data sample w using the scores s; the Solver com-
putes a model Ê, which is scored by the loss J using the
correct matches m(igt) with the ground truth inlier indi-
cator igt . The groundtruth Egt is passed to the Solver to
choose the closest model. Backward pass: Gradient ∂J

∂q
for training weights q is computed by the chain rule.
The key issue is robustly and efficiently backpropagat-
ing through the Solver. We propose to use the Implicit
function theorem (IFT) directly or implement the back-
propagation via the PyTorch Deep Declarative Network
(DDN) machinery [GHC22].

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

41https://www.doi.org/10.24132/JWSCG.2024.5

Let us illustrate using the minimal problem solvers
in end-to-end neural network training for calibrated
image matching [WPS+23], Fig. 1. First, a for pair
of images I1, I2 the RootSIFT [AZ12] pre-detected
features are used to produce tentative matches m, and
the Neural Network s = NN(q ;m) computes scores s
of the matches m. The network is parameterized by
weights q , the learned pipeline parameters. Next,
the differentiable w = D-RANSAC(m,s) selects
a minimal data sample w from m using the s scores.
The sample w is passed to the Essential matrix solver
E = Solver(w), which computes up to 10 E candidates
and selects the best Ê that is closer to the known
ground truth Egt . The Solver can thus be seen as
solving a discrete optimization problem consisting
of first solving a set of polynomial equations and
then choosing the optimal one w.r.t. Egt . Having Ê, a
projection-based loss J(Ê,M, igt) is calculated from all
tentative matches m and the indicator igt of the known
correct (inlier) matches. As a function to be optimized,
the pipeline is the composition

J(w;Egt , igt)= J(Ê;m, igt)�Ê(w;Egt)�w(s;m)�s(q ;m)

where Egt , igt , and m can be seen as parameters pro-
vided by training data.

To learn weights q , the (transposed) gradient

∂L
∂q

=
∂L
∂ Ê

∂ Ê
∂w

∂w
∂ s

∂ s
∂q

of J w.r.t. q has to be calculated. Calculating ∂L
∂ Ê ,

∂w
∂ s ,

∂ s
∂q

is straightforward and efficient using autograd. Cal-
culating ∂ Ê

∂w could also be attempted by autograd. We
show that it often fails even for a simple minimal prob-
lem of computing the calibrated relative camera pose
from five image matches [Nis04]. Our main contri-
bution is to show how to calculate ∂ Ê

∂w robustly by the
existing PyTorch machinery of Deep Declarative Net-
works (DDN) [GHC22] and robustly an efficienlty us-
ing the Implicit function theorem (IFT).

1.1 Motivation
Minimal problem solvers can be complex. Symbolic-
numeric minimal problem solvers [EM05, Nis04,
LOÅ+18, MVP22] consist of potentially very large
templates (formulas combined with the Gauss-Jordan
elimination) to construct a matrix whose eigenvectors
provide the solutions. The size of the templates is, for
systems with a finite number of solutions and more
than three unknowns, proportional to a polynomial in
Dn, where D is the mean degree of input constraints
and n is the number of unknowns [HL11]. In practice,
it is not always necessary to construct a full Groebner
basis [CLO15], but practical automatic solver gen-
eration algorithms [KBP08, LKZ17, MVP22] still

produce very large templates for problems with more
variables. See, for example, the sizes of the templates
in [MVP22] and the related discussion there.
Therefore, backpropagating through such templates
using autograd on the fully expanded computa-
tional graph, as in [WPS+23], is generally slower
and potentially less stable. Another issue is the
backpropagation stability through large eigenvector
decompositions [DYH+18]. Backpropagation through
constraints at the optimum using the Implicit function
theorem (for active KKT constraints in semi-algebraic
cases) is much simpler, with linear complexity in the
size of the input constraints, and is stable.

1.2 Contribution
We investigate backpropagation methods through mini-
mal problem solvers in end-to-end neural network train-
ing. We show that using the Implicit function theo-
rem to calculate derivatives to backpropagate through
the solution of a minimal problem solver is simple, fast,
and stable. We provide a direct implementation of IFT
backpropagation that is stable and fast. We also show
how a stable but slower backpropagation can be im-
plemented using the existing PyTorch Deep Declarative
Networks framework [GHC22]. This second approach
may be helpful for quick testing of functionality before
a more efficient IFT backpropagation is implemented.
We compare our approach to using the standard auto-
grad on minimal problem solvers [WPS+23] and relate
it to the existing formulas for backpropagating through
SVD-based and Eig-based solvers [IVS15, DYH+18].
We demonstrate our technique on toy examples of train-
ing outlier-rejection weights for 3D point registration
and on a real application of training an outlier-rejection
and RANSAC sampling network [WPS+23] in two im-
age matching and camera relative pose computation.
Our IFT backpropagation provides 100% stability and
is 10 times faster than unstable autograd and DDN.

2 PREVIOUS WORK
The interest in backpropagating through minimal prob-
lem solvers started with attempting to develop a differ-
entiable version of RANSAC that could be used in end-
to-end learning pipelines.
In seminal work [BKN+17], a differentiable pipeline
for camera localization, including RANSAC and PNP
solver, has been suggested. The PNP solver was so ef-
ficient that it was possible to estimate the derivatives of
its output by numerical central differences. We show in
Example 1 how to easily estimate the derivatives using
the Implicit function theorem.
In [RK18], a method for robust estimation of funda-
mental matrices embedded in an end-to-end training
pipeline was proposed. The goal was to gradually learn

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

42https://www.doi.org/10.24132/JWSCG.2024.5

weights for scoring tentative matches to suppress mis-
matches in a sequence of weighted least-squares prob-
lems. Here, the fundamental matrices are computed
via SVD. Backpropagating through SVD uses deriva-
tives computed by explicit formulas derived in [IVS15].
Computing derivatives explicitly by formulas is the best
approach, but it can be laborious when done manually,
as in [IVS15]. We use this example to show in Sec-
tion 6.1 that our approach based on DDN/IFT provides
equally correct results.
Recent work [WPS+23] presents another differentiable
pipeline for image matching that includes a differ-
entiable version of RANSAC and minimal problem
solvers for fundamental and essential matrix computa-
tion. Here, the solvers may use minimal data samples,
i.e., 7 and 5 correspondences, respectively, and solve
for the matrices using symbolic-numeric algebraic
minimal problem solvers, e.g. [Nis04]. To backpropa-
gate through the minimal problem solvers, [WPS+23]
uses autograd on the templates and the following
Eigendecomposition. As explained above, this is a
possible approach for small templates but should be
replaced by our approach whenever possible. We show
in experiments, Section 6.2, that using autograd often
fails even for the relatively simple minimal problem
solver of essential matrix estimation. In contrast, our
approach based on using the Implicit function theorem
delivers 100% stable results and is 10 times faster.
Our approach relies on using the Implicit function the-
orem [Rud76], which was already used to implement
backpropagation for SVD and Eigendecomposi-
tion [IVS15, DYH+18] computation blocks of learning
pipelines. These approaches manually compute for-
mulas for Jacobians and gradients and implement
backward passes for the modules. It is the simplest,
fastest, and most robust approach currently possible.
It should be used in all final implementations.
To provide a simple but slow error-prone engineering
solution for implementing backpropagation through al-
gebraic solvers, we exploit the DDN [GHC22] that
implement a framework to backpropagate through al-
gebraic and semi-algebraic optimizers. A similar ap-
proach has been suggested in [ZGM+20], but we pre-
fer [GHC22] since it provides PyTorch framework im-
plementation.

2.1 IFT end-to-end learning
The implicit function theorem (IFT) was used in sev-
eral interesting works related to using geometric opti-
mization in end-to-end learning. None of the works
deals with minimal problems, but they are very re-
lated to the tasks that are solved with minimal problem
solvers, and thus we comment on them here.
In [CPC+20], IFT is used to backpropagate through the
least-squares PNP optimization solver for end-to-end

learnable geometric vision. Explicit formulas for the
Jacobians of the PNP least-squares solvers are derived,
and it is shown that they lead to accurate and stable
backpropagation. This is an interesting work because it
presents a particular generalization of polynomial prob-
lems to rational problems but concentrates on one spe-
cific geometrical problem.

In [CWW+22], there is a method for backpropagation
through a probabilistic PNP. Technically, this approach
does not use IFT since the PNP in this formulation is not
a solution to equations, but a function providing a dis-
tribution over the domain of camera poses. The deriva-
tives of the output are thus readily computable by auto-
grad or by explicit formulas.

In [AK17], the OptNet layer for propagating through
optimization problems solved by layers of small
quadratic programs is developed using IFT. The aim
is to provide an efficient and stable backpropagation
that can be implemented on GPU. This is an interesting
work since it shows how to backpropagate through
an important class of optimization problems. However,
it can’t address general minimal problems since it
only addresses the problems specified as a quadratic
program with linear constraints.

3 USING THE IMPLICIT FUNCTION
THEOREM

Let us now explain and demonstrate how to compute
derivatives of the output of a minimal problem solver
using the Implicit function theorem.

Technically, minimal problem solvers generate so-
lutions x(a) to systems of polynomial equations
f1(a), . . . , fK(a) based on input parameters a. To
backpropagate through the minimal problem solvers, it
is necessary and sufficient to compute the derivatives
∂x
∂a at each solution x w.r.t. parameters a.

We now explain how the Implicit function theo-
rem [Rud76] can be used to implement simple,
efficient, and numerically stable computation of the
derivatives of x w.r.t. a. Let us start with the formula-
tion of the theorem itself, and then consider a simple
example.

Theorem 1 (Differentiating roots of a polynomial sys-
tem). Let H(a) = h1(x,a), . . . ,hK(x,a) be a sequence
of K complex polynomials in N unknowns x= x1, . . . ,xN
and M unknowns a = a1, . . . ,aM. Let x(b) be an iso-
lated multiplicity-one solution to H(a) in x for a := b 2
CM. Then,

∂xn(a)
∂am

(b)
�
=�

∂hk(x,a)

∂xn
(x(b),b)

�+∂hk(x,a)
∂am

(x(b),b)
�

with k = 1, . . . ,K, m = 1, . . . ,M, n = 1, . . . ,N, and [A]+
denoting the pseudoinverse [Mey01] of the (Jacobian)
matrix [A].

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

43https://www.doi.org/10.24132/JWSCG.2024.5

Proof. Informal statement: The Implicit function the-
orem is a very standard fact. Here we use it in a spe-
cial situation when functions are polynomials, since we
focus on the Computer Vision problems. The main is-
sue is thus ensuring that the assumptions of the Implicit
function theorem are satisfied. For polynomials, which
are continuous, infinitely differentiable functions, the
assumptions of the Implicit function theorem are sat-
isfied iff the solutions to the polynomials are isolated
and have multiplicity one. See Supplementary Mate-
rial, Section 9 for more details.

Let us demonstrate the above theorem with an exam-
ple of the classical computer vision P3P minimal prob-
lem of solving the absolute pose of the calibrated cam-
era [FB81].

Example 1. Consider a general configuration of
three 3D points A1,A2,A3 2 R3, their respective
calibrated image projections represented by homo-
geneous coordinates a1,a2,a3 2 R3 and the vector
x = [x1,x2,x3]> 2 C3 of the depths of the points. Stack
all 3D points and image points in a single vector
a = [A1;A2;A3;a1;a2;a3] 2 R18. The 3D points, their
projections, and depths are related by

0 = h1(x,a) = ||A1�A2||2� ||x1a1� x2a2||2

0 = h2(x,a) = ||A2�A3||2� ||x2a2� x3a3||2

0 = h3(x,a) = ||A3�A1||2� ||x3a3� x1a1||2

The calibrated absolute camera pose computation
solves for the depths x(a) as functions of the pa-
rameters a. In this example, K = 3, N = 3, and
M = 18. The polynomial system above generically has
8 multiplicity-one solutions xs(a),s = 1, . . . ,8 [FB81].
Now, we compute the derivatives of the solutions for a
generic parameter vector b. Let us first compute the
derivatives of the functions hk(x,a) w.r.t x and a

Jx(x,a) =
 ∂hk (x,a)

∂xn

�
=

2

6666664

∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

∂h3
∂x1

∂h3
∂x2

∂h3
∂x3

3

7777775
(x,a) =

= 2

2

64
�a>1 (x1a1 � x2a2) a>2 (x1a1 � x2a2) 0

0 �a>2 (x2a2 � x3a3) a>3 (x2a2 � x3a3)
a>1 (x3a3 � x1a1) 0 �a>3 (x3a3 � x1a1)

3

75

Ja(x,a) =
 ∂hk (x,a)

∂am

�
=

2

6666664

∂h1
∂a1

. . .
∂h1
∂a18

.

.

.
. . .

.

.

.
∂h3
∂a1

. . .
∂h3
∂a18

3

7777775
(x,a) =

⇥
K1 |K2

⇤

K1 = 2

2

64
A>1 �A>2 A>2 �A>1 0

0 A>2 �A>3 A>3 �A>2
A>1 �A>3 0 A>3 �A>1

3

75

K2 = 2

2

4
�x1(x1a1 � x2a2) x2(x1a1 � x2a2) 0

0 �x2(x2a2 � x3a3) x3(x2a2 � x3a3)
x1(x3a3 � x1a1) 0 �x3(x3a3 � x1a1)

3

5

Next we evaluate Jx(x,a) and Ja(x,a) at a generic pa-
rameter vector b= [0,0,3,2,0,3,0,6,3,�1/3,�1/3,1,

1/3,�1/3,1,�1/3,5/3,1] and, e.g., the first solution
x̂(b) = [3,3,3]

Jx(x̂(b),b) =

2

4
�1.33 �1.33 0.00

0.00 �5.33 �21.33
�4.00 0.00 �20.00

3

5

Ja(x̂(b),b) =

2

4
�4 0 0 4 0 0 . . . 0 0 0

0 0 0 4 �12 0 . . . 12 �36 0
0 �12 0 0 0 0 . . . 0 �36 0

3

5

and compute

∂ x̂n(a)
∂am

(b)
�

= �Jx(x̂(b),b)�1Ja(x̂(b),b) =

=

2

4
1.66 1.33 0 . . . 1.25 0.24 0
1.33 �1.33 0 . . . �1.25 �0.24 0
�0.33 0.33 0 . . . �0.25 �1.75 0

3

5 .

4 IMPLEMENTING MINBACKPROP
WITH IFT

The first option to implement the backpropagation for
a minimal problem solver is to use the Implicit function
theorem in a straightforward way (as in Example 1).
This has been done before, e. g., in [IVS15] for SVD
and EIG solvers. To use the Implicit function theo-
rem directly, one can construct a system of polynomial
equations, compute the derivatives of the system w. r. t.
inputs and outputs manually or with the help of a com-
puter algebra system [CSC], and follow the theorem 1
to compute the Jacobian of the output with respect to
the input. In case the system of equations is overde-
termined, one can write down the Lagrange multipliers
method and then use the IFT for the new system.

Applying the Implicit function theorem involves
inverting the Jacobian of the polynomial system
w. r. t. the output, so before inverting the Jacobian
one can check if the matrix is full-rank using SVD.
If it is not, one can randomly choose a full-rank
Jacobian from the batch to invert.

5 IMPLEMENTING MINBACKPROP
WITH DDN

The second option to backpropagate through a mini-
mal problem solver is to use a fully automatic method
to compute the derivatives. The Deep Declarative Net-
works (DDN) framework, introduced in [GHC22], pro-
vides a PyTorch implementation allowing backprop-
agation through optimization solvers, including alge-
braic, semi-algebraic (i.e., with inequalities), and non-
polynomial problems. Next, we explain how to use
the DDN framework for implementing backpropaga-
tion for minimal problem solvers.

Declarative node: The DDN framework introduces
declarative nodes that take input w into the optimal so-
lutions

ŷ(w) = arg min
y2C

f (w,y)

where C is a constraint set.

Constraint set C: For algebraic minimal problem

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

44https://www.doi.org/10.24132/JWSCG.2024.5

solvers, the set C = {y : h1(y) = 0, . . . ,hK(y) = 0} is an
algebraic variety [CLO15] consisting of a finite number
of points. Hence, in this case, the algebraic variety is
a finite set of solutions to some system of polynomial
equations H = [h1, . . . ,hK]. Assuming the genericity
of data, which is often guaranteed by having noisy
measurements, solutions to H have all multiplicity
equal to one. Hence it is easy to compute derivatives of
the solution to H w.r.t. parameters as demonstrated in
Section 3.

Loss f : The low-level loss depends on a particular
problem. DDN framework implements backpropaga-
tion for a general declarative node and thus expects
a loss function f (w,y) with non-degenerate derivatives.
For instance, in Section 6.2, thus, one must “invent”
such a loss function for minimal problem solvers
since they provide exact solutions that always satisfy
equations H exactly. A natural choice is to use the
sum of squares of the equation residuals from a subset
of H, i.e., f = Âhi2G✓H h2

i , such that the derivatives
of f are non-degenerate. A possible choice is to use
a random linear combination of some hi’s. For instance,
in Section 6.2, we use the sum of squares of the linear
constraints only to keep f simple and non-degenerate.

It is important to mention that in the pipeline
of [WPS+23], the “Solver” not only computes the so-
lutions y to a polynomial system H but also selects the
best solution ŷ by finding ŷ that is closest to the ground-
truth ygt in kŷ�ygtk2 sense. This discrete optimization
step does not influence the derivatives of ŷ w.r.t w
since, locally, small changes of w do not influence
the result of this discrete optimization as small changes
to w generically do not change the result of the discrete
optimization.

End-to-end training formulation: End-to-end train-
ing of a pipeline with a declarative node is in [GHC22]
formulated as the following bi-level optimization
problem

min
w

J(w, ŷ(w))

s. t. ŷ(w) 2 arg min
y2C

f (w,y)

with C = {y: h(y) = 0} ,

(1)

where J(w,y) is an upper-level loss, f (w,y) is a low-
level loss, h(y) are constraints, w is the input parame-
ters to the declarative node, y is the model to be esti-
mated, and C is a constraint set. The relation w 7! ŷ
is defined as a solution to the low-level optimization
problem provided by the declarative node.

Gradients for minimal problem solvers: To mini-
mize the loss J(w, ŷ) in (1) via the gradient descent,

SVD

gradients of SVD

SVD

DDN / IFT

(a) Explicit gradients (b) Implicit gradients

Figure 2: The figure demonstrates the backpropaga-
tion for the toy example for the 3D point registra-
tion with an outlier. The forward pass is the Kab-
sch algorithm [Kab76] (SVD) and remains the same
for both explicit and implicit methods. The backward
pass is performed explicitly via the closed-form gradi-
ents of SVD [IVS15] (a) and implicitly, using the Deep
Declarative Networks (DDN) [GHC22] and the Implicit
function theorem (IFT) (b).

we need to compute DJ(w, ŷ)1. In our formulation,
the loss function J(w, ŷ) does not depend on w explic-
itly. Therefore

DJ(w, ŷ) = Dy J(w, ŷ)Dŷ(w) . (2)

The gradients Dy J(w, ŷ) are the gradients computed be-
fore the declarative block and the Dŷ(w) are the gradi-
ents through the solution of the low-level optimization
problem.

Declarative node specification: The important fea-
ture of the DDN framework is that one does not have
to provide formulas for the derivatives explicitly. It
is enough to specify a declarative node by defining
the loss f (w,y) and the constraints H = [h1, . . . ,hK].
The backward pass based on the derivatives is then au-
tomatically computed by the DDN framework. This
makes the implementation of backpropagation through
minimal problem solvers easy and robust.

6 EXPERIMENTS
In our experiments, we compute the Dy(w) for a so-
lution of a minimal problem in three ways. First, we
compute the gradients using the closed-form solution
and backpropagate explicitly using autograd. Secondly,
we compute the gradients Dy(w) via the Implicit func-
tion theorem and backpropagate through a solution by
using them directly. Finally, we use the Deep Declar-
ative Networks framework to implement the backprop-
agation by specifying a suitable optimization problem.
Our experiments show that the derivatives of a solution

1 Here we use the notation from [GHC22] where DJ(w, ŷ) de-
notes the total derivative dJ(w,ŷ(w))

dw of loss J(w, ŷ(w)) w.r.t. w
when ŷ(w) is considered a function of w, Dw J(w, ŷ) means
partial derivatives ∂J(w,ŷ)

∂w of J(w, ŷ) w.r.t. w when ŷ is con-

sider fixed, and Dŷ J(w, ŷ) means partial derivatives ∂J(w,ŷ)
∂ ŷ

of J(w, ŷ) w.r.t. ŷ when w is consider fixed.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

45https://www.doi.org/10.24132/JWSCG.2024.5

(b)(a)

Figure 3: A toy example for the 3D point registration problem with an outlier: (a) visualization of four points
before and after rotation R with inlier/outlier weights w, blue points denote inliers, and the magenta point is
the outlier; (b) the weight for the outlier (left) and the weight for an inlier (right) during the optimization. The red
color indicates explicit computation of the gradients, the blue color denotes backpropagation with the DDN, and
the green color is backpropagation with the IFT. One can see that the gradients computed with the DDN and the IFT
approximate the gradients of SVD computed in closed form.

to the minimal problem can be computed implicitly;
they accurately approximate the derivatives computed
explicitly, leading to more stable results.
We consider two types of experiments to show the ef-
fectiveness of the proposed method. Firstly, we con-
sider a toy example for the 3D point registration with an
outlier. We chose this task since a solution to the min-
imal problem during the forward pass can be com-
puted using SVD, and the gradients of SVD can be
computed both explicitly, using the closed-form solu-
tion, and implicitly, using the Implicit function theo-
rem and the Deep Declarative Networks. Secondly, we
incorporate our MinBackProp into the existing state-
of-the-art epipolar geometry framework, backpropagate
through it, and compare the results on the real data.
Our main goal is to show that we obtain equivalent
behavior of the whole learning pipeline as the base-
line [WPS+23] but in a more stable and efficient way.
Note that we do not aim to improve the learning task
of [WPS+23] but demonstrate better computational ma-
chinery for solving it.

6.1 3D Point Registration with an Outlier
Given two sets P and Q of 3D points, a point pi 2 P
corresponds to the point qi 2 Q, i = 1, . . . ,N, where N
is the number of points. We want to find a rotation ma-
trix R 2 R3⇥3: qi = Rpi, 8i. Given the ground-truth
rotation matrix Rtrue 2 R3⇥3, we define the weights wi,
i = 1, . . . ,N, for each correspondence pi $ qi to mark
inliers and outliers. To find R and w = [w1, ...,wN], let
us consider a bi-level optimization problem:

min
w

J(R̂(w))

s. t. R̂(w) 2 arg min
R2 SO(3)

f (w,R)

s. t. h(R) = 0 .

(3)

Where J(R̂(w)) is the upper-lever loss:

J(R̂(w)) = arccos

tr
�
R̂(w)RT

true
�
�1

2

!
, (4)

measuring the angle of the residual rotation [HZ03] and

f (P,Q,w,R) = f (w,R) =
1
N

N

Â
i=1

wi kRpi�qik2
2 , (5)

is the low-lever loss, and h(R) is as the constraint

h(R) = RT R� I = 0 . (6)

The low-level minimization problem (5) is known as
Wahba’s problem [Wah65].
Forward pass. During the forward pass, we solve
the low-level optimization problem and compute
the value of J(R̂(w)). The low-level optimization
problem is solved by the Kabsch algorithm [Kab76],
which includes the computation of SVD of a matrix
constructed from coordinates P and Q. The forward
pass is the same for both DDN/IFT and SVD lay-
ers (Fig. 2).
Backward pass. During the backward pass, we
compute all the derivatives with respect to the input
and parameters via the chain rule and update the vector
w. The backward pass is different for the SVD and
the DDN/IFT layers, and we compare these three
methods on the toy example below.
A toy example. Let us consider a toy example to com-
pare the gradients computed explicitly and implicitly
given a forward pass fixed for both methods. Given four
random points in 3D space, we transformed the points
with an identity transform Rtrue and corrupted one
correspondence, for instance p1$ q1. We want to find
the rotation matrix R along with inlier/outlier mask w
(see Fig. 3 (a)) given the correspondences pi $ qi.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

46https://www.doi.org/10.24132/JWSCG.2024.5

Method AUC@5� AUC@10� AUC@20�

—-RANSAC [WPS+23] 0.41 0.45 0.5
MinBackProp DDN 0.4 0.44 0.49
MinBackProp IFT 0.41 0.45 0.5

Table 1: The average AUC scores for essential ma-
trix estimation of —-RANSAC [WPS+23] and Min-
BackProp (ours) over 12 scenes of the PhotoTourism
dataset [JMM+20], under different thresholds. Our
method shows the same result as —-RANSAC.

We start with the uniform distribution of weights w
and initialize them with 1/N. The developments of
the values of w for an inlier and the outlier during
the optimization are shown in Fig. 3 (b). We opti-
mize the weights w using the gradient descent with
the learning rate of 0.1 for 30 iterations. The values
of w for the outlier decrease to 0 and the values of w
for inliers increase. One can see that the gradients
calculated implicitly approximate the gradients of SVD
computed in closed form well.

One can find one more toy example for the fundamental
matrix estimation (8-point) in the Supplementary Mate-
rial, section 10.

6.2 Training Outlier Detection in Epipo-
lar Geometry Estimation

Our second experiment is incorporating our Min-
BackProp into the existing state-of-the-art epipolar
geometry pipeline with real data. For that pur-
pose, we consider a fully-differentiable framework
—-RANSAC [WPS+23] that exploits the 5-point
algorithm [Nis04] for essential matrix estimation
and evaluates it on the RootSIFT [AZ12] features
of the PhotoTourism dataset [JMM+20]. Figure 1
illustrates the architecture of —-RANSAC and the way
how we integrate our MinBackProp in it. We adopt all
the formulations and processing of [WPS+23], except
for the backpropagation through the minimal problem
solver (red rectangle in Fig. 1).

Given a pair of images I1 and I2 and a set of tentative
correspondences m = [qi, q̃i] computed from the Root-
SIFT features, the inlier indicator igt , and the ground
truth essential matrix Egt . The goal is to train a Neural
Network (NN) [ZGZ+21] with parameters q that pre-
dicts importance scores s during inference. In Fig. 1,
D-RANSAC indicates differentiable Gumbel Softmax
sampler, w denotes a minimal sample used as input into
the Solver, and J is the loss function.

In accordance with eq. (1), we formulate our bilevel op-
timization problem as follows. The upper-level objec-
tive J is the symmetric epipolar distance over the inlier
set igt of matches mi = [qi, q̃i], Ê is the predicted model

Method stable runs (%) backward time (s)
—-RANSAC [WPS+23] 20 34.4
—-RANSAC⇤ 30 34.5
MinBackProp DDN (ours) 100 37.6
MinBackProp IFT (ours) 100 3.6

Table 2: Stability metrics for 1K training of the baseline
—-RANSAC [WPS+23] and our MinBackProp meth-
ods for the essential matrix estimation. —-RANSAC⇤
denotes implementation of —-RANSAC [WPS+23]
without dropping non-real values in the solver during
the forward pass. Our MinBackProp is much more sta-
ble compared to the —-RANSAC and —-RANSAC⇤ and
MinBackProp IFT ten times faster than the baseline.

to be estimated, and l̃i = Êqi, li = ÊT q̃i are the epipolar
lines

J(Ê,m, igt) =
1
|igt | Â

i2 igt

✓
1

l2
i1 + l2

i2
+

1
l̃2
i1 + l̃2

i2

◆�
q̃T

i Êqi
�2 ,

(7)
while the low-level objective is the “invented” loss con-
sisting of the algebraic error of the constraints (which
is always evaluated to zero but provides non-singular
Jacobians, see the discussion in section 5)

Ê(w) 2 arg min
E2R3⇥3

1
5

5

Â
i=1

�
q̃T

i Eqi
�2

s. t. 2EET E� tr
�
EET �E = 0 ,

kEk2 = 1 ,

(8)

where wi = [qi, q̃i] is a pair of matches from a min-
imal sample normalized by the intrinsic matrix pixel
coordinates, and E is an essential matrix. The same
equations eq. (8) are used to construct the polynomial
system for the Implicit function theorem and compute
the derivatives w. r. t. Ê and [qi , q̃i] and the Jacobian
∂ Ê
∂w , respectively. See Supplementary Material, sec-
tion 11 for more details.
As in the section 6.1, we retain the forward pass for
the MinBackProp unchanged. However, we modify
the computation of gradients during the backward pass.
Instead of computing the gradients explicitly by the au-
tograd as in —-RANSAC, we exploit the Deep Declara-
tive Networks and the Implicit function theorem.
For training, as in —-RANSAC, we use correspon-
dences of the St. Peter’s Square scene of the Photo-
Tourism dataset [JMM+20], consisting of 4950 image
pairs, with split 3 : 1 into training and validation, while
the rest 12 scenes remain for testing.
To show the effect of our method, we perform two types
of experiments. First, we want to show that our method
does not decrease the baseline quality. Secondly, we
want to show that computing the gradients via the Im-
plicit function theorem is more stable and does not
cause runtime errors during the backward pass when
autograd tries to invert a singular matrix.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

47https://www.doi.org/10.24132/JWSCG.2024.5

For the first experiment, the testing protocol is as fol-
lows: the scores s are predicted by the trained NN, and
the model E is estimated by MAGSAC++ [BNIM20].
Table 1 shows the Area Under the Recall curve (AUC),
AUC scores are averaged over 12 testing scenes for dif-
ferent thresholds. The essential matrix E is decomposed
into R and t using SVD and maximum error between R
and Rgt and t and tgt is reported. We train all three ap-
proaches for 10 epochs. One can see in Table 1 that
our MinBackProp obtained the same scores as the —-
RANSAC, showing that it does not decrease the quality
of the baseline.

The second experiment aims to demonstrate the
stability of the proposed MinBackProp compared
to the —-RANSAC. For this purpose, we perform
the following experiment. Both methods are trained
for 10 epochs, and 10 random runs are performed.
We measure the percentage of runs which finished
10 epochs training without any runtime errors dur-
ing the backpropagation. The results are reported
in Table 2. Our method is 100% stable compared to
the baseline, which is 30% stable, and it is also ⇥10
faster. —-RANSAC⇤ denotes the implementation of
the original —-RANSAC without dropping non-real
solutions during the forward pass of the solver since
to backpropagate the gradients with the DDN, we
need to find at least one solution to the optimization
problem, so in case the solver can not find any real
solution, we return the one from the previous iteration.
We also measured the stability of the —-RANSAC⇤
to be sure that this minor change does not contribute
to the stability of our method.

All the experiments were conducted on NVIDIA
GeForce GTX 1080 Ti with CUDA 12.2 and Pytorch
1.12.1 with Adam optimizer [KB15], learning rate
10�4 and batch size 32.

7 CONCLUSION
We have presented a new practical approach to back-
propagating through minimal problem solvers. Our
MinBackProp allows backpropagation either using
the Deep Declarative Networks machinery, which
brings stability and easy use, or using the Implicit func-
tion theorem directly, which on top of stability, also
speeds up significantly the backward pass. Through
synthetic examples, we have shown the applicability of
our method on a wide variety of tasks. Furthermore,
we compared MinBackProp against the state-of-the-art
relative pose estimation approach from [WPS+23] and
have shown 100% stability compared to 70 � 80%
failure rate of the autograd approach, while speeding
up the computation 10 times. Our method opens up
a promising direction for efficient backpropagation
through hard minimal problems.

See Supplementary Material for additional technical
details. The code is available at https://github.
com/disungatullina/MinBackProp .

ACKNOWLEDGMENTS
This work has been supported by the EU H2020
No. 871245 SPRING project.

8 REFERENCES
[AK17] Brandon Amos and J. Zico Kolter. Opt-

net: Differentiable optimization as a layer
in neural networks. In Doina Precup
and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on
Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learn-
ing Research, pages 136–145. PMLR,
2017. 3

[AZ12] Relja Arandjelović and Andrew Zisser-
man. Three things everyone should know
to improve object retrieval. In 2012
IEEE Conference on Computer Vision
and Pattern Recognition, pages 2911–
2918, 2012. 2, 7

[BKN+17] Eric Brachmann, Alexander Krull, Se-
bastian Nowozin, Jamie Shotton, Frank
Michel, Stefan Gumhold, and Carsten
Rother. Dsac – differentiable ransac for
camera localization. pages 2492–2500,
07 2017. 1, 2

[BNIM20] Daniel Barath, Jana Noskova,
Maksym Ivashechkin, and Jiri Matas.
MAGSAC++, a fast, reliable and accu-
rate robust estimator. In Conference on
Computer Vision and Pattern Recogni-
tion, 2020. 8

[BR19] Eric Brachmann and Carsten Rother.
Neural-guided ransac: Learning where to
sample model hypotheses. pages 4321–
4330, 10 2019. 1

[BSF94] Yoshua Bengio, Patrice Y. Simard, and
Paolo Frasconi. Learning long-term de-
pendencies with gradient descent is dif-
ficult. IEEE Trans. Neural Networks,
5(2):157–166, 1994. 1

[CLO98] David Cox, John Little, and Donald
O’Shea. Using Algebraic Geometry.
Springer, 1998. 1

[CLO15] David A. Cox, John Little, and Donald
O’Shea. Ideals, Varieties, and Algo-
rithms: An Introduction to Computational
Algebraic Geometry and Commutative
Algebra. Springer, 2015. 2, 5

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

48https://www.doi.org/10.24132/JWSCG.2024.5

https://github.com/disungatullina/MinBackProp
https://github.com/disungatullina/MinBackProp

[CPC+20] Bo Chen, Álvaro Parra, Jiewei Cao, Nan
Li, and Tat-Jun Chin. End-to-end learn-
able geometric vision by backpropagating
pnp optimization. In 2020 IEEE/CVF
Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 8097–
8106. Computer Vision Foundation /
IEEE, 2020. 3

[CSC] Ltd. Cybernet Systems Co. Maple.
http://www.maplesoft.com/products/maple/.
4

[CWW+22] Hansheng Chen, Pichao Wang, Fan Wang,
Wei Tian, Lu Xiong, and Hao Li. Epro-
pnp: Generalized end-to-end probabilistic
perspective-n-points for monocular ob-
ject pose estimation. In IEEE/CVF Con-
ference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pages 2771–
2780. IEEE, 2022. 3

[DYH+18] Zheng Dang, Kwang Moo Yi, Yinlin Hu,
Fei Wang, Pascal Fua, and Mathieu Salz-
mann. Eigendecomposition-free training
of deep networks with zero eigenvalue-
based losses. In Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair
Weiss, editors, Computer Vision - ECCV
2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018,
Proceedings, Part V, volume 11209 of
Lecture Notes in Computer Science, pages
792–807. Springer, 2018. 1, 2, 3

[EM05] Mohamed Elkadi and Bernard Mourrain.
Symbolic-numeric methods for solving
polynomial equations and applications,
pages 125–168. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005. 2

[FB81] Martin A. Fischler and Robert C. Bolles.
Random sample consensus: A paradigm
for model fitting with applications to im-
age analysis and automated cartography.
Commun. ACM, 24(6):381–395, 1981. 4

[GHC22] Stephen Gould, Richard Hartley, and Dy-
lan Campbell. Deep declarative networks.
IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(8):3988–
4004, 2022. 1, 2, 3, 4, 5

[Har95] R. I. Hartley. In defence of the 8-point
algorithm. In Proceedings of the Fifth
International Conference on Computer
Vision, ICCV ’95, page 1064, USA, 1995.
IEEE Computer Society. 2

[HL11] AMIR HASHEMI and DANIEL

LAZARD. Sharper complexity bounds
for zero-dimensional groebner bases and
polynomial system solving. International
Journal of Algebra and Computation,
21(05):703–713, 2011. 2

[HZ03] Richard Hartley and Andrew Zisserman.
Multiple View Geometry in Computer Vi-
sion. Cambridge, 2nd edition, 2003. 6

[IVS15] Catalin Ionescu, Orestis Vantzos, and
Cristian Sminchisescu. Matrix back-
propagation for deep networks with struc-
tured layers. In 2015 IEEE International
Conference on Computer Vision (ICCV),
pages 2965–2973, 2015. 1, 2, 3, 4, 5

[JMM+20] Yuhe Jin, Dmytro Mishkin, Anas-
tasiia Mishchuk, Jiri Matas, Pascal Fua,
Kwang Moo Yi, and Eduard Trulls. Image
matching across wide baselines: From pa-
per to practice. International Journal of
Computer Vision, 2020. 7, 3

[Kab76] W. Kabsch. A solution for the best ro-
tation to relate two sets of vectors. Acta
Crystallographica Section A, 32(5):922–
923, Sep 1976. 5, 6

[KB15] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimiza-
tion. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on
Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 8

[KBP08] Zuzana Kukelova, Martin Bujnak, and
Tomas Pajdla. Automatic generator of
minimal problem solvers. In European
Conference on Computer Vision (ECCV),
2008. 1, 2

[LKZ17] Viktor Larsson, Zuzana Kukelova, and
Yinqiang Zheng. Making minimal solvers
for absolute pose estimation compact and
robust. In International Conference on
Computer Vision (ICCV), 2017. 2

[LOÅ+18] Viktor Larsson, Magnus Oskarsson, Kalle
Åström, Alge Wallis, Zuzana Kukelova,
and Tomás Pajdla. Beyond grobner bases:
Basis selection for minimal solvers. In
2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 3945–3954, 2018. 1, 2

[Mey01] Carl D. Meyer. Matrix Analysis and Ap-
plied Linear Algebra. SIAM: Society
for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001. 3, 1

[MVP22] Evgeniy Martyushev, Jana Vráblíková,

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

49https://www.doi.org/10.24132/JWSCG.2024.5

and Tomás Pajdla. Optimizing elimi-
nation templates by greedy parameter
search. In IEEE/CVF Conference on
Computer Vision and Pattern Recogni-
tion, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 15733–15743.
IEEE, 2022. 1, 2

[Nis04] David Nistér. An efficient solution to the
five-point relative pose problem. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, 26:756–770, 2004. 1,
2, 3, 7

[RK18] Rene Ranftl and Vladlen Koltun. Deep
fundamental matrix estimation. In The
European Conference on Computer Vi-
sion (ECCV), 2018. 1, 2

[Rud76] Walter Rudin. Principles of Mathematical
Analysis. McGraw-Hill, 1976. 3, 1

[SNKS05] Henrik Stewénius, David Nistér, Fredrik
Kahl, and Frederik Schaffalitzky. A min-
imal solution for relative pose with un-
known focal length. In 2005 IEEE Com-
puter Society Conference on Computer
Vision and Pattern Recognition (CVPR
2005), 20-26 June 2005, San Diego, CA,
USA, pages 789–794. IEEE Computer So-
ciety, 2005. 1

[SR13] I.R. Shafarevich and M. Reid. Basic Alge-
braic Geometry 1: Varieties in Projective
Space. SpringerLink : Bücher. Springer
Berlin Heidelberg, 2013. 1

[Wah65] Grace Wahba. A least squares estimate of
satellite attitude. SIAM Review, 7(3):409–
409, 1965. 6

[WPS+23] Tong Wei, Yash Patel, Alexander
Shekhovtsov, Jiri Matas, and Daniel
Barath. Generalized differentiable ransac.
In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision
(ICCV), pages 17649–17660, October
2023. 1, 2, 3, 5, 6, 7, 8

[ZGM+20] Qianggong Zhang, Yanyang Gu, Mateusz
Michalkiewicz, Mahsa Baktashmotlagh,
and Anders P. Eriksson. Implicitly de-
fined layers in neural networks. CoRR,
abs/2003.01822, 2020. 3

[ZGZ+21] Chen Zhao, Yixiao Ge, Feng Zhu, Rui
Zhao, Hongsheng Li, and Mathieu Salz-
mann. Progressive correspondence prun-
ing by consensus learning. In Proceedings
of the IEEE/CVF International Confer-
ence on Computer Vision., 2021. 1, 7

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.32, No-1-2, 2024

50https://www.doi.org/10.24132/JWSCG.2024.5

