ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

GPU Cache Flush Minimization In Render Graph Systems

Roman Sandu

Phystech School of Applied
Mathematics and
Computer Science

Moscow Institute of Physics
and Technology
Institutskiy Pereulok, 9
Dolgoprudny, Moscow
Oblast, 141701, Russia

sandu.ra@phystech.edu

Alexandr Shcherbakov

Faculty of Computational
Mathematics and
Cybernetics
Lomonosov Moscow State
University

Moscow, 119991, Russia

alex.shcherbakov@
graphics.cs.msu.ru

ABSTRACT

Modern graphics APIs expose control over the infamously non-coherent GPU caches to application programmers
through the mechanisms of pipeline barriers and render passes. A developer is then asked to group together their
GPU computations based on memory access patterns such that cache flushes and invalidations are minimized,
but render graph systems enable automation of this process. In this paper, we study the problem of finding an
optimal execution order for a frame graph to minimize the amount of render pass breaks, which in turn minimizes
cache control operations. We formulate and analyze a novel NP-complete problem MLGP and use it to propose an
approach to render pass merging that results in 30% less render pass breaks when compared to previous works.

Keywords
frame graph, render graph, gpu, barrier, render pass, vulkan, dx12, tile based deferred renderer
decals \
opaqu e /m e
static dynamic

Transp. 1

Figure 1: A contrived sample frame graph represented through a A graph. Nodes are computations, arrows represent
causality or precedence, red edges represent barriers. Some precedence edges also require a barrier. Colors represent
unique frame buffers requested by nodes. We are interested in finding a node execution order that enables optimal

barrier batching and minimal render target changes.
1 INTRODUCTION

Frame Graphs and Cache Management

Throughout the history of computing, graphs have
proven themselves to be an exceptionally effective tool
for describing and working with computation. Most
compilers use control flow graphs as one of the interme-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

https://www.doi.org/10.24132/JWSCG.2024.8 71

diate representations of a program; several approaches
to concurrency use graphs explicitly to represent compu-
tations; various visual programming systems use graphs
as their representation of choice, including graph-based
shader authoring and gameplay programming systems
as seen in industry-standard engines like the Unreal
Engine [Epi]. Low-level graphics programming is no
exception, most engines are either in the process of mi-
grating from an immediate-style command dispatching
architecture to a frame graph [ODol7] (also known as a
render graph [Wih19]) based architecture, or have done
so several years ago. A frame graph runtime library pro-
vides its user with an explicit node abstraction, which
declaratively describes a computational atom. Different
systems chose different granularity for the computations

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

abstracted inside nodes, from single dispatches of com-
pute shaders or a fixed rendering algorithm, to an entire
pass of rendering to a fixed set of render targets. The
nodes communicate with each other through a resource
system provided by the runtime, and the set of all user-
created nodes constitute a computational graph that de-
scribes the process of computing a single application
frame which is to be presented on the screen.

It is noteworthy that a principally different graph-based
approach has recently appeared in the Godot engine
[Ban24]. Godot uses an immediate-style user-facing
API, but does not translate user-dispatched GPU com-
mands directly into low-level graphics API command
lists, instead constructing a data dependency graph from
them, which is then processed analogously to traditional
frame graphs. This approach is close in spirit to control
flow graphs used by various compilers and allows to
reap most benefits of a frame graph like system without
breaking compatibility with existing application code.

The benefits of a graph-based approach are manyfold.
User-facing frame graph systems provide a robust archi-
tectural framework for organizing graphics application
code, and both user-facing and Godot-style graph sys-
tems enable automatic optimization of various aspects
of an application: memory allocation, work scheduling,
resource management, cache management, and several
others. For this paper, we are interested in cache man-
agement and work scheduling in particular.

While the previous generation of graphics APIs have
hidden all of cache management infrastructure away
from an application programmer inside the device-level
driver, such an approach has proven itself to be quite
inefficient at times, especially on mobile tile-based de-
ferred renderer architectures, and so the new generation
of graphics APIs, including Vulkan and Direct3D 12,
delegates cache management to the application devel-
oper. Focusing on the Vulkan API, this is manifested in
two aspects: pipeline barriers and render passes. Both of
these are not exclusively cache management tools, how-
ever. A pipeline barrier is a tool that controls 3 aspects
of an application:

1) cache invalidation and flushing,

2) GPU pipeline synchronization,

3) texture layout transitions.

Render passes, on the other hand, are a tool for con-
trolling the special rendering output merging hardware
available in most GPUs. Several parts of the rasteri-
zation pipeline can be implemented in hardware more
optimally than in software via general-purpose memory
operations, including Z-testing, alpha-testing and sim-
ple rendering writes. In particular, tile-based deferred
renderer GPU architectures store the textures which par-
ticipate in the output merging stage, usually referred to
as attachments, in a special tile cache, which is never
flushed or invalidated throughout a single render pass.

https://www.doi.org/10.24132/JWSCG.2024.8

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

Obviously, any performance-sensitive program should
strive to maximize cache locality, or in other words,
minimize cache flushes and invalidations. For programs
that execute on the GPU, this problem is two-fold: cache
access must be independently optimized inside shader
code and inside the high-level command stream executed
by the GPU. The former is similar to CPU cache access
optimizations and is covered extensively in literature
(e.g. [Bav14]), while the latter is a problem that is novel
for application programmers and has been previously
solved by proprietary means inside drivers for OpenGL,
DirectX11 and similar.

Being interested in frame graphs, we focus on the lat-
ter. In terms of the Vulkan graphics API, this means
minimizing the amount of render passes and barriers
that are executed throughout a frame while preserving
the functionality and correctness of a program. Various
work items with compatible frame buffers, the sets of ac-
tive attachments, should be grouped together into render
passes. Barriers should be grouped together too, as test-
ing shows that fine-grained cache control exposed by the
Vulkan API is usually not leveraged by device drivers,
and a flush of any memory region from a certain cache
usually leads to a flush of the entire cache. Moreover, as
barriers also synchronize various GPU pipeline stages,
generally by preventing new work from being sched-
uled onto a processing unit before previous work was
completed, grouping them also minimizes the amount of
stalling throughout the frame. Finally, it must be noted
that the Vulkan API prohibits barriers from being exe-
cuted within render passes, so minimizing the amount of
render passes by grouping work together also automati-
cally minimizes the amount of grace points throughout
the frame at which a barrier may be executed, and so
naturally leads to grouping of barriers.

2 RELATED WORKS

One of the earlier public works on merging render passes
inside a frame graph is Hans-Kristian Arntzen’s Granite
engine [Arnl7]. In Granite, each node represents an
entire logical render pass that is then translated into a
Vulkan subpass. The algorithm employed for render
pass merging is executed after the graph has been sorted
into a linear execution order and tries to produce a new
ordering that greedily maximizes reasonable scoring
heuristics of subpass attachment reads being forcibly
merged with the writer pass, dependent subpasses being
as distant from each other as possible, and not ending a
pass for as long as possible. This engineering approach
to the problem fits mobile-oriented development quite
naturally, as it focuses on various subpass interactions
that often occur in mobile Vulkan-based applications,
but lacks rigorous analysis of effectiveness of the algo-
rithm.

The approach Granite takes for its user-facing API is
what may be called a coarse-grained approach, meaning

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

that each node represents an entire Vulkan-style sub-
pass, or even an entire render pass for engines that do
not target mobile devices. As far as the authors are
aware, most commercial engines take a similar approach
to their frame graph API: Unity [Tec; TAC21], Unreal
[Epi], Frostbite [ODo17], one of Activision’s engines
and AMD’s RPS [Adv] all use coarse-grained nodes.
Among these, it is publicly known that render pass merg-
ing is performed only for Activision’s Task Graph Ren-
derer, according to their talk at Rendering Engine Archi-
tecture Conference 2023 [Cha23], although algorithmic
details are not available publicly. This is to be expected,
as for a render graph runtime with coarse-grained nodes
rendering code is already grouped together based on
what render pass it belongs into, except for the case of
mobile rendering, where still manual pass management
is usually employed.

An alternative approach is what can be referred to as
fine-grained nodes. With this approach, each node rep-
resents a computation that may be smaller than a single
pass or subpass, and hence each pass in the resulting
GPU command stream consists of commands recorded
by multiple nodes. Consider an opaque G-buffer ren-
der pass. Coarse-grained approach suggests that there
should exist a single node responsible for this pass that
dispatches rendering of multiple systems, plugins or
modules, while a fine-grained approach suggests that
any system that needs to render opaque geometry to the
G-buffer should create its own node with its own «vir-
tual» render pass and let the frame graph runtime merge
these nodes into a single pass. This approach provides
architectural benefits to the developer:

— no additional event-like system needs to be employed
to make passes present in the engine by default cus-
tomizable by optional subsystems;

— if desired, it is possible for an optional subsystem to
forcibly break a render pass mid-way to read an inter-
mediate result of rendering without modifying other
code, for example, to create a hierarchical culling Z-
buffer [GKM93] that contains only static geometry.

Note that in the case of fine-grained nodes, it is cru-
cial for the runtime to have a robust render pass merg-
ing algorithm, as a single logical pass might consist of
dozens of subsystem nodes. On the other hand, while
coarse-grained nodes do nott technically require such an
algorithm, it is still desirable to have one, as extensibil-
ity of passes being handled outside of the frame graph
runtime can lead to subsystems creating passes that are
identical to other existing passes throughout a project’s
long lifetime or when the code that creates the initial
pass is inaccessible for the developer.

As for the algorithmic problems described in this paper,
to the best of authors knowledge, they are completely
novel and have not been tackled previously.

https://www.doi.org/10.24132/JWSCG.2024.8

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

Our Contribution

We focus on fine-grained frame graph runtimes and
attempt to solve the render pass merging problem, al-
though our results can also be applied to coarse-grained
runtimes, or even Godot-like render graphs. We con-
sider only the simplest case of each resulting render
pass being constrained to have a single subpass, leaving
multi-passes for future work. We formulate a rigor-
ous statement of the minimal lambda graph partition
problem that we consider to be general enough to be
applicable to any frame graph system, the solution to
which is then used to produce a node execution order
that is optimal in its amount of render pass breaks. This
problem is then analyzed and shown to be NP-complete
even under some sensible regularity conditions. Finally,
we present a greedy approach for solving this problem
that results in graph execution orders that have about
30% less render passes than a baseline approach that
closely matches that of the Granite engine.

3 EARLY STREAK SEGMENTATION
Mathematical model

For the purposes of this paper, the following mathemati-
cal model of a frame graph will be used.

Definition 1. A A-graph is a tuple (V,P,C,L), where
(V, P) is a directed acyclic graph, (V,C) is an undirected
graph,and L:V — N.

The set V represents nodes present in a frame graph;
the set of directed edges P represents precedence order
between nodes, constraining possible execution orders;
the set of undirected edges C models pairs of nodes that
are in conflict with each other and require a barrier to be
executed between them; and finally the label function L
represents unique frame buffers used by each node, or
more generally, any mutually exclusive global state that
is expensive to change on the target platform. A possible
frame graph of an application represented through this
definition can be seen on figure 1.

Informally, the problem we are trying to solve is as
follows. Find a topological sort of (V, P) and a partition
of it into as few contiguous sequences as possible, such
that within each sequence there are no conflicting nodes
and all labels are the same.

When faced with this problem, the first approach that
comes to mind is choosing the next node to be executed
to have the same frame buffer as the previous one, which
is close to Granite’s approach. It must however be noted
that depending on the algorithm chosen for topologically
sorting, the optimal solution may not be achievable at
all. Both a depth-first and breadth-first traversal based
topological sorting algorithms are restricted in the set
of possible orders of traversals, and the optimal order
may lie outside this restricted set. This motivates us to

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Figure 2: Simplest example where baseline Granite-like
approach fails. Colors represent different frame buffers
(including lack thereof), dashed outline represents the
set of nodes among the which the algorithm must make
a choice, node A already being scheduled as the first one.
If C is selected as the next node to be executed, the next
one has to be B, and so the resulting order is A,C, B,D
and the algorithm has failed to merge C and D into a
single pass.

always prefer Kahns algorithm [Kah62], which enables
achieving any valid topological sort order from a graph
by varying the strategy of selecting the next node to be
processed. And so the first naive algorithm in its fullness
would be using Khans topological sorting algorithm and
prioritizing nodes with the same frame buffer as the last
processed node when choosing the next node to process.
This, however, does not yield satisfactory results on
relatively straightforward examples, e.g. figure 2, which
motivates the following formalization of the problem.

Definition 2. A condensation of a directed graph with
respect to a partition of the node set V =V U..UVy
is a directed graph (W, Q), where W =(1,...,s) and Q =
{G.)1 eV, IweV,(w)ePrix jj.

Definition 3. Call a partition of the node set correct for
a A-graph if it satisfies the following:

1) Vi,Vv,w e V,A(v) = A(w);

2) Yi,Yv,we V;,{v,w} ¢ C;

3) and the condensation w.r.t. to it is acyclic.

The subsets V; constituting the partition will be referred
to as buckets.

Definition 4. The problem of finding a correct parti-
tion of minimal size s is called minimal lambda graph
partition and denoted as MLGP.

The statement of MLGP can informally be understood
as partitioning a frame graph into render passes before
it is sorted, and correctness conditions correspond to the
fact that it should be possible to produce a node execu-
tion order with render passes corresponding precisely to
partition buckets.

In presence of a minimal partition for the lambda graph,
a corresponding execution order can be achieved as
shown in algorithm 1. This algorithm is de-facto equiva-
lent to sorting the condensation graph first and then sort-
ing nodes within each partition set according to edges
from P afterwards.

https://www.doi.org/10.24132/JWSCG.2024.8

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

Next, note that when an optimal solution to the initially
stated informal problem of sorting the graph while min-
imizing the amount of render pass breaks is available,
a correct partition that will yield the same amount of
passes when sorted with algorithm 1 can clearly be con-
structed. Hence constructing a minimal partition and
then sorting the graph while using it will indeed solve
the initial informal problem.

This mathematical statement is not exclusive to render-
pass related problems, as each set of the partition simply
represents a contiguous streak of nodes that can be exe-
cuted with no barriers or global state changes (e.g. frame
buffer changes) as represented by L. Following this line
of thought, we call this approach early streak segmen-
tation, as opposed to segmenting the graph into streaks
mid-flight while sorting it.

Analysis of MLGP

First of all, MLGP € NP, as checking the correctness of
a partition can be done in polynomial time. Moreover,
clearly,

Claim 1. MLGP is NP-complete.

Proof. Observe that a correct partition of a lambda
graph (V,@,C,id) is equivalent to finding the chromatic
number of (V,C). m|

Algorithm 1 Modification of Khan’s algorithm that
builds an execution order based on a correct partition of
a A-graph.
forveVdo
D,, < out-degree of v in (V, P)
end for
fori—1to sdo
E; < num. edges (v,w) e Ps.t. v¢ ViandweV;
end for
F « nodes with out-degree 0
R «— empty list
Denote V! =i whenveV;
repeat
v« any element w of F's.t. Ey-1 =0
if R not empty then '
p < last element of R
v « any element of F'N V;l
end if
Append vto R
for w —» vdo
Decrement D,
Decrement E vyl
if D,, = 0 then
Addwto F
end if
end for
until no elements remain in F
return R

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

B ol

Figure 3: The construction described in claim 2. The
initial graph is V' ={0,1,2,3}, E’ = {{0,2},{1,2},{2,3}}.
Nodes in V’ are depicted through dashed rectangles,
and the corresponding A graph nodes are located inside
the rectangles, where colors represent different labels.
The maximal anti-clique is {0,1,3}, and merging the
corresponding nodes pairwise minimizes the partition.

Calculating chromatic numbers for arbitrary graph is
known to be a notoriously hard problem, and so some
regularity conditions must be enforced on A-graphs that
we are to consider. Inspired by other fields of study, as
well as our observation of graphs of various applications,
we formulate a requirement analogous to lack of data
races inside a multi-threaded program.

Regularity condition 1. Y{v,w} € C,v > wVw v,
where ~» denotes reachability. In other words, any con-
flict is ordered by precedence edges.

We have observed this restriction to be sensible for actual
applications, and so have enforced it in the design of
the user API for our frame graph runtime. One case
where enforcing it has proven to be a problematic is
careless superfluous usage of decompressed read-only
depth attachments in legacy code, but such problems can
and should be resolved on the application programmer
side and not inside a frame graph runtime, as they lead
to performance issues in any case due to decompressing
and recompressing the depth buffer.

This condition is not enough to make the problem
tractable, although the proof is less trivial.

Claim 2. Even under the regularity condition 1, MLGP
is NP-complete.

Proof. We shall present a polynomial time reduction of
the maximal anti-clique problem to MLGP. Consider
an arbitrary graph (V’, E’). The construction is then as
follows:

D V=Uer vk

2) E=Ugpee 07 v). 090Dk

3) C=0;

4) LOO) = L)) =i.

A visual representation of this construction in a simple
case is shown in figure 3.

Observe that any partition that satisfies the first 2 cor-
rectness conditions essentially selects a subset of V' by

https://www.doi.org/10.24132/JWSCG.2024.8

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

either merging the two nodes corresponding to some
initial vertex or leaving them in separate partition buck-
ets. Moreover, the set of vertices in V’ whose pairs of
nodes were merged form an anti-clique as long as the
third correctness condition is satisfied, as otherwise a cy-
cle would form in the condensation precisely along the
edges generated for an initial edge in E” that prevented
the set from being an anti-clique. On the other hand, for
any anti-clique in (V’, E”), the corresponding partition is
correct by construction. Finally, note that the size of an
anti-clique S and the size of the partition s are related as
|S|=1V|-s. Hence, finding a minimal correct partition
would indeed yield an anti-clique of maximal size in the
initial graph. O

This fact, however, should not discourage one from try-
ing to solve MLGP in practice, as the construction pre-
sented above, per our informal observations, is a charac-
teristic representation of cases where a greedy approach
presented below fails to construct a minimal partition.
On the other hand, the construction is contrived, as such
configurations rarely occur in practice and make little
sense from the standpoint of computational graphs.

Greedy Algorithm

We propose a greedy algorithm that is based on the idea
of stacks, but to justify it we require some additional
facts about optimal solutions. Below, the notation ~»
is used to represent reachability along edges P or along
edges of the condensation graph, and Vil is used to de-
note buckets whose nodes all have L(v) = [. Note also
that the contents of this subsection all assume regularity
condition 1 to hold.

Figure 4: A visualization of the proposed approach. Cir-
cled nodes and thick arrows represent the condensation
graph, # and w are nodes which are yet to be added
into one of the sets, possibly a new one. Thin arrows
represent precedence, red ones among them correspond
to conflicts. Nodes and sets are laid out according to
their labels as 3 stacks. Admissible sets for # and w are
depicted using a green dashed outline. If the «deepest is
best» greedy bucket selection strategy is used, w must
be placed before u to avoid creating a new bucket.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Claim 3. In a minimal correct partition of a A graph, for
any two buckets V/ and V% with nodes in both having

the same labels, either V! ~» Vj. or Vj. > VI

Proof. If two such buckets are not ordered, we are able
to merge them together into a single bucket, which
would contradict minimality. The resulting partition will
still satisfy the first two correctness conditions, as the la-
bels match, and any conflict between their nodes would
have resulted in a path between them due to regularity
condition 1. Finally, a cycle occurring in the condensa-
tion after the merge would imply a path between the two
buckets, which is a contradiction. m]

For this reason, we only try to construct partitions that
have this property of buckets corresponding to a certain
label being linearly ordered. This fact will also hence-
forth be abuse to assume that the notation Vil indexes
buckets in this exact linear order, and soi < j & Vl.[an Vj.

For each label [, the sequence of Vi’ is what we refer to
as a stack. The proposed algorithm will then try to itera-
tively take nodes in a topological order of v<w & verw
and attempt to place each node into one of the buckets
in the stack without violating correctness conditions of
the partially built condensation graph. Figure 4 should
be referred to for visual intuition of these definitions and
claims, as well as the algorithm itself.

Definition 5. When adding a new node v with L(v) =1,
having only outgoing precedence edges and possibly
some conflict edges, into an existing A-graph and its
partition, we call a bucket Vl.l admissible if:

1) no nodes in Vl.l conflict with v;

2) for each previously existing node w € Vj, such that

w « v, it holds that j < i;
3) for each previously existing node w € Vj., such that

1# 1" and w « v, it holds that V! ¢ vj

Claim 4. Admissibility is monotonic along the stacks.
In other words, if Vl.l is not admissible for v, then Vj < i,
Vj is not admissible too.

Proof. Observe that thanks to regularity condition 1, a
conflict implies that there is an edge from v to some node
in Vl.’. Inadmissibility due to violating the first condition
then makes Vj. inadmissible per the second condition. If
Vl.l failed the second condition, clearly, Vi will too due
to claim 3, and same reasoning holds for violating the
third condition. O

This fact greatly aids in efficient implementation of algo-
rithms, as a lot of bucket candidates can be immediately
eliminated.

Finally, observe that if a minimal partition of the graph is
already known, it is possible to reconstruct it by growing

https://www.doi.org/10.24132/JWSCG.2024.8

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

bucket stacks, iterating nodes in topological order and
placing them only into admissible buckets, as a node
being placed in an inadmissible bucket will definitely
result in an incorrect partition. The only questions that
remain is what exact order should nodes be considered
in and what admissible bucket should be chosen. As
we have shown the problem to be NP-complete, only
heuristic approaches make sense, and the heuristics we
have chosen is to use an arbitrary order and always
prefer the «deepest» admissible bucket, i.e. the one
with the smallest index. This is motivated by the fact
that a sequence of buckets can accommodate an entire
sequence of nodes which are not ordered with anything
else but each require a barrier between them, which is
a case that does indeed occur in practice for nodes that
do compute dispatches. However, in our synthetic tests
other «static» strategies like choosing the topmost or
the midway admissible bucket did not have a significant
influence on the results. Finally, the pseudo-code for the
algorithm is shown in figure 2.

Algorithm 2 Proposed greedy solution to MLGP.

1: for /in the image of L do

2: S < empty list

3: end for

4: F < nodes with in-degree 0

5: Chose any topsort order s.t. v<w & vevw

6: for v eV in chosen order do

7: Mo

8: for w — v do

9: W « bucket previously chosen for w

10: Add all buckets reachable from W to M ex-
cluding W itself

11: end for

12: V, « deepest bucket in S ;) \ M

13: if 3w eV, s.t. (v,w) € C then

14: V, < next bucket in S 1)

15: end if

16: Put v into V,

17: if V, ill-defined then

18: Create new bucket and append it to S ;)

19: end if

20: end for

21: return All buckets in S

4 EXPERIMENTAL RESULTS

The proposed algorithm was implemented in python
with O(|V[?) time complexity and o(V]») space com-
plexity. Random graphs were then used for comparing
the proposed approach with a baseline and random sort-
ing. The graph of one of released games that we have
access to was observed to have a 0.025 probability of
having an edge between two nodes, a 0.013 probability
of having a conflict between nodes, and 0.2 proportion

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

T
140 | | — Random
—— Baseline
—— Ours
120 -
100 -
s
=
3
< 80|
I
2
2 60|
40 -
20
0 | | | | | | |
0 20 40 60 80 100 120 140
Node count

Figure 5: Comparison of proposed streak segmentation approach to baseline and random choice, less is better.
For each graph size a sample set of 100 random graphs was generated and test results were averaged, confidence

intervals shown as painted regions around plots.

of nodes having a unique frame buffer. The node count
of this graph exceeds 100, which is characteristic of fine-
grained systems. A sequence of sets of random graphs
was then generated, distributed according to these pa-
rameters and three node sorting approaches were tested,
see figure 5. As one might expect, randomized sort-
ing results in render pass count being proportional to
node count. For the baseline approach, Granite-like ea-
ger prioritization of continuing the current pass while
sorting nodes using Khan’s algorithm was chosen. The
plots demonstrate that the suggested approach gives a
significant improvement over the baseline of 30% on
average. It is also surprising that the proposed algorithm
results in lower standard deviation, which implies more
predictable performance with respect to changes in the
graph when used in practice.

Currently, two live-service games with principally dif-
ferent fine-grained frame graphs are available to us, one
targeted at desktop computers, one at mobile devices.
Both games currently use manual barrier placement to
achieve best possible performance, and furthermore, the
latter uses manual Vulkan render pass placement. To
move away from this manual approach, a robust ren-
der pass merging algorithm was required, and when we
attempted to do so using Granite’s approach, we have
observed the result to be less optimal than the manual
approach, which made it impossible for us to gather
practical performance data from mobile devices before

https://www.doi.org/10.24132/JWSCG.2024.8

a robust pass merging algorithm was devised and tested
in isolation.

However, we were able to preliminarily integrate the
algorithm into the desktop title and observe that it likely
constructs the optimal render pass segmentation for the
current frame graph of the game. The graph consists
of 171 nodes and uses 36 unique frame buffers on ul-
tra graphics presets. By randomizing the node sorting
order and recompiling the graph 10000 times, we ob-
served the streak (render pass) count to vary from 54
to 58 with mean u = 56.22 and variance o> = 0.6 when
no render pass merging approach is used. As nodes
are declared in an unspecified order due to being dis-
tributed between various modules, plugins and subsys-
tems of an application, any of these results might occur
in practice, which leads to undesirable non-deterministic
performance. When the baseline approach is used, the
graph is sorted to have 54 streaks independent of further
order randomization, which alleviates non-deterministic
performance concerns. But with the proposed approach,
the streak count decreases to exactly 52 independent
of randomization, which is explained by situations as
shown on figure 2 being present in the graph. The fact
that randomization could not lower the streak count to
52 throughout the 10000 iterations can be explained by
the fact that the amount of correct topological orders for
a graph behaves asymptotically as O(n!) in general, mak-

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

ing the probability of the optimal order being selected at
random increasingly small.

It must be noted that this frame graph has a reasonable
amount of legacy code which is yet to be integrated with
the frame graph runtime, and so results are expected to
improve in the future as more knowledge about the ren-
derer’s structure and more node reordering opportunities
are made available to the runtime.

The preliminary C++ implementation of the algorithm
stores reachability info of the condensation graph in a bit
matrix and heavily uses SIMD instructions to alleviate
the high asymptotic complexity of the algorithm, which
results in partitioning being executed in under 200 us on
desktop PCs.

S CONCLUSION

A seemingly simple problem of merging render passes
appears to have much more depth to it than we initially
anticipated. Implementing a two-pass approach of first
partitioning the graph and only then sorting it enables
saving almost a third of render pass breaks on synthetic
tests, and hence tile cache flushes in practice. Moreover,
although we initially started with render pass merging,
we quickly found out that the rigorous problem state-
ment through A-graphs naturally allows for grouping of
barriers too, and is applicable not only to nodes that are
parts of render passes, but to compute nodes too, as a
contiguous streak of nodes without is a general enough
to handle both.

Future Work

It is reasonable to think that the current version of the
algorithm can be improved further. Time complexity
can likely be improved without loss of quality, as well
as the C++ implementation speed. Furthermore, it is
reasonable to think that there are render pass breaks to
be saved by using more advanced heuristics for choice
of next node to be bucketed and choice of the bucket.

More work in the direction of handling multi-passes is
to come, i.e. render passes that consist of multiple sub-
passes. Technically, any two nodes that do rendering and
do not require a barrier on any paths between them in
P can be merged together into a single render pass with
two subpasses, even if their frame buffers completely
different, but it is not clear how such an approach would
affect performance, so we suspect that heuristics rep-
resented mathematically as a label «closeness» metric
will be required. Subpass attachment reads is another
optimization that is crucial for mobile performance but
is yet to be incorporated into our approach.

Finally, we are interested in applying profile guided op-
timization to render pass merging, as well as to render
graph runtimes in general. Different execution orders
may be optimal for different platforms, and so mea-
suring GPU timings of node execution and then using

https://www.doi.org/10.24132/JWSCG.2024.8

Journal of WSCG
http://www.wscg.eu

Vol.32, No-1-2, 2024

them as guides for a hybrid merging algorithm may lead
to complete elimination of manual command list level
cache optimizations from daily lives of rendering engi-
neers, enabling development of applications at a higher
abstraction level and increasing productivity.

6 REFERENCES

[Adv] Inc. Advanced Micro Devices. AMD Render
Pipeline Shaders source code. URL: https ://
github . com/GPUOpen - LibrariesAndSDKs /
RenderPipelineShaders.

[Arn17] Hans-Kristian Arntzen. Render graphs and
Vulkan — a deep dive. 2017. urL: https : //
themaister.net/blog/2017/08/15/render-
graphs-and-vulkan-a-deep-dive/.

[Ban24] Dario Banini. GPU synchronization in Godot
4.3 is getting a major upgrade. 2024. URL: https:
// godotengine . org/article /rendering -
acyclic-graph/.

[Bav14] Louis Bavoil. In: (2014).

[Cha23] Francois Durand Charlie Birtwistle. “Task
Graph Renderer at Activision talk at REAC confer-
ence”. Rendering Engine Architecture Conference.
2023.

[Epi] Inc. Epic Games. Unreal Engine Render Depen-
dency Graph. urL: https://docs.unrealengine.
com/5.0/en-US/render-dependency-graph-
in-unreal-engine/.

[GKM93] Ned Greene, Michael Kass, and Gavin Miller.
“Hierarchical Z-buffer visibility”. In: Proceedings of
the 20th annual conference on Computer graphics
and interactive techniques. 1993, pp. 231-238.

[Kah62] A. B. Kahn. “Topological sorting of large
networks”. In: Commun. ACM 5.11 (Nov. 1962),
pp. 558-562.

[ODo17] Yuriy O’Donnell. “FrameGraph: Extensible
Rendering Architecture in Frostbite”. Game Devel-
opers Conference. 2017.

[TAC21] Natalya Tatarchuk, Sebastian Aaltonen, and
Timothy Cooper. “Unity Rendering Architecture”.
SIGGRAPH 2021 REAC. 2021.

[Tec] Unity Technologies. Unity render graph system.
URL: https://docs.unity3d. com/Packages/
com.unity.render-pipelines.core@10.2/
manual /render - graph-writing-a-render-
pipeline.html.

[Wih19] Graham Wihlidal. “Halcyon: Rapid innovation
using modern graphics”. Reboot Develop. 2019.

