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ABSTRACT
Deep Neural Networks (DNNs) require large amounts of annotated training data for a good performance. Often
this data is generated using manual labeling (error-prone and time-consuming) or rendering (requiring geometry
and material information). Both approaches make it difficult or uneconomic to apply them to many small-scale
applications. A fast and straightforward approach of acquiring the necessary training data would allow the adoption
of deep learning to even the smallest of applications. Chroma keying is the process of replacing a color (usually
blue or green) with another background. Instead of chroma keying, we propose luminance keying for fast and
straightforward training image acquisition. We deploy a black screen with high light absorption (99.99%) to record
roughly 1-minute long videos of our target objects, circumventing typical problems of chroma keying, such as color
bleeding or color overlap between background color and object color. Next we automatically mask our objects
using simple brightness thresholding, saving the need for manual annotation. Finally, we automatically place the
objects on random backgrounds and train a 2D object detector. We do extensive evaluation of the performance
on the widely-used YCB-V object set and compare favourably to other conventional techniques such as rendering,
without needing 3D meshes, materials or any other information of our target objects and in a fraction of the time
needed for other approaches. Our work demonstrates highly accurate training data acquisition allowing to start
training state-of-the-art networks within minutes.
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1 INTRODUCTION
Modern machine learning (ML) is dominated by
deep neural networks (DNNs). Training DNNs to
state-of-the-art performance levels tends to require
large amounts of training data to perform well. In
many cases the lack of annotated data prevents the use
of these networks. In the case of object segmentation
and object detection a common approach - aside of
costly manual labeling - is to resort to rendering
to generate the required training images. To do so
3D meshes, textures, and material properties of the
target objects are required, which is another barrier
for many applications. In contrast, we only require
the availability of the objects in question, a camera,
a sufficiently large piece of special black cloth, and
some lights. We completely circumvent many of
the problems with traditional chroma keying such as
color bleeding, same foreground/background color
and similar, by utilizing a very low reflectance cloth
and demonstrate its applicability in a fast, low-cost,
high-quality setup, comparing favorably to much more
complex data generation regimen.

Our contributions are the following:

• We propose a straightforward, easy to use setup to
record high-quality training datasets for object seg-
mentation and object detection.

• We present extensive evaluation and show the per-
formance of our approach in comparison with other
conventional data generation methods that require
more information, such as meshes, textures, and ma-
terials, and/or much more processing time. To make
our results more meaningful for the research com-
munity, we do all our evaluation on the common
YCB-V dataset.

• We provide code, which automatically converts the
recordings to datasets in COCO format for use with
segmentation and 2D object detection algorithms, as
well as our black screen recordings of the YCB-V
objects.
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Figure 1: A qualitative sample of all 21 YCB-V objects, that were recorded with a handheld smartphone and our
proposed black background. It can be seen that the objects are well silhouetted against the background and can
therefore be segmented in an easy way and many typical chroma key-associated problems are circumvented.

2 RELATED WORK
2.1 Data Generation for ML
Insufficient training data is a well documented problem
in Machine Learning. In the domain of Computer Vi-
sion practitioners soon adopted rendering for data gen-
eration. Rendering has many suitable attributes, such
as perfect ground truth, potentially unlimited amounts
of data, and total control of scene composition, such as
object pose and scene lighting. [TTS+18] demonstrates
the combination of rendering on random backgrounds,
as well as realistically placed objects in 3D scenes,
while [HPH+19] shows another purely rendering-based
approach. Another very common tool for data gen-
eration is BlenderProc [DSW+20], a pipeline extend-
ing Blender that allows for physically-based render-
ing. For a long time, the gap in feature representations
between synthetic and real-world images was a prob-
lem [TFR+17, TPA+18, WGS+21]. With the use of
physically-based rendering and the emergence of large
foundation models such as CLIP [LLSH23, ODM+23,
RKH+21], this problem is greatly reduced [SHL+23].
Another problem is not to be solved that easily how-
ever: In order to render you need 3D meshes of the ob-
jects in questions. There are approaches to estimate 3D
shape [LGL+23] or additional views [VYB+24] based
on a single image, but their quality is not on par with re-
ality and their reconstruction is often purely probabilis-
tic. Reconstructing 3D meshes with traditional methods
such as photogrammetry [Sch05] is a very time con-
suming process. There is a move towards zero-shot ap-

proaches such as [NGP+23], which does not need im-
ages of the target objects for training, though still re-
quires 3D meshes.

2.2 Significance of Reliable Data

The use of modern DNNs in computer vision improved
solutions for a large variety of challenging tasks,
provided sufficient training data. A prominent modern
example would be Segment Anything (SAM), which is
able to segment a very large amount of different objects
in the wild [KMR+23]. However, ML processes come
with significant risks and difficult to detect silent
failures, if not handled correctly [HJS+20]. This is
especially crucial in settings, where reliability and
robustness is mandatory, such as in an industrial,
clinical or dangerous contexts, which in turn can
task-invalidate large unsupervised networks like SAM,
due to its own limitations. One predominant challenge
is, that trustworthy ML models need high-quality base
data [LTH+22]. Many datasets are not task suited
due to their size, inherent bias, dirtiness, or even just
partial unfairness\incorrectness [WRSL23]. While
these issues can be partly mitigated or worked around
[RHW19, WRSL23], the relevant techniques introduce
new layers of complexity and potential error sources.
Albeit, all of these challenges can be overcome with
manual labour and diligence, this can lead to the
preemptive end for startups [BIRS22] and drive up cost
for large companies.
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2.3 Chroma Keying
Chroma Keying is a well established movie produc-
tion technique from the 1920’s, to segment objects
in front of fixed mono-color backgrounds. In the
beginning, a variety of different colors and shades
like black/white, yellow, blue and green were popular
[Fos10, Ram15]. Over time, the color green became
the predominant background color for a variety of
pragmatic reasons. It is easily distinguishable from
human skin, rarely occurs outside of nature, does not
require much lighting and is favourable for modern
digital camera sensors because of higher sensitivity.
However, some significant challenges remain: Green
objects lead to falsely segmented foreground, which
can also happen as a byproduct of color-bleeding or
reflection. These effects strongly reduce segmentation
quality for reflective materials, such as in metallic,
transparent, and bright objects. Furthermore, object
borders can become fuzzy due to lighting and merging
effects with the background. While there are tech-
niques to remedy drawbacks of conventional green
screen, like color-unmixing [AAPS16], specialised
capturing processes [BRS+22], color spill neutraliza-
tion [GKTB10], threshold optimization [PJS17] and
multiple background colors [SB96], they open up new
problems and do not yet completely solve the inherent
challenges while introducing additional capturing
and/or post-processing effort.

2.4 Differentiation from similar works
LeCun et al. [LHB04] use a gray turn table to record
objects and rely on chroma keying to replace fore-
and background, while Dirr et al. use a white back-
ground [DBGD24]. Though a brighter background, like
grey or white, would also satisfy the idea of luminance
keying, they have major drawbacks in comparison to
99,99% light absorption black. First of all, they intro-
duce far greater challenges for correct lighting condi-
tions, arising from background shadows, background
reflections and possible fuzzy edges, due to light scat-
tering. Furthermore, it is harder to differentiate brighter
object colors with bright backgrounds. In some cases,
e.g. metallic or transparent objects, a non-black back-
ground is also prone to light shining partly through an
object, reflections and refractions. These challenges
are all naturally solved by our proposed solution, as
no light is reflected or visible on the background by
any relevant measure. Knauthe et al. use a captur-
ing system, which foregoes a background for a white
light source in a turn-table setup, which diminishes
some of the challenges of a normal white background
[KKvB+22]. However, this setup is very constrained
in its rotation invariant use-case, due to the difficul-
ties of building suitable shaped large light backgrounds.
Agata et al. introduce dual color checker pattern back-
grounds [AYK07, YAK08]. While this approach solves

foreground\background color confusion, the other is-
sues presented earlier still persist. Additionally, the
method requires more specialized backgrounds and in-
troduces further complexity in the processing step, such
as parameter tuning. Jin et al. developed a deep learn-
ing method for automatic real-time green screen keying
[JLZ+22]. However, it is still limited by shadows and
green spilling and requires a deep learning method with
all inherent benefits and challenges.

3 APPROACH
3.1 Chroma and Luminance Key
We propose a simple yet effective data recording pro-
cess: we place the objects on a very low-reflectance
cloth, and record around 1-minute long video clips with
a smartphone. These clips are processed via a cut and
paste process, that uses the easily masked objects and
places them on random backgrounds. Details on the
processing are discussed in section 3.3.

3.1.1 Chroma Key with Green Screen

For comparison, we include recordings and experi-
ments with the more common chroma keying approach.
Arguably the most common colors are blue and green,
with green being the most widely used color. Therefore
we include a green screen in our evaluation.

3.1.2 Luminance Key with Black Screen

We propose Luminance Keying for fast and straightfor-
ward data acquisition for machine learning. This tech-
nique utilizes the brightness difference between an ob-
ject and the background, instead of a designated color
as with chroma keying. In practice, this is possible due
to a textile background, which absorbs 99,99% of vis-
ible light. This leads to high contrast between object
and background, even for very dark objects, allowing
for high quality masking as illustrated in Figure 1. The
recording process is exactly the same as with the con-
ventional green screen described in section 3.1.1.

3.2 Baselines and Experiments
For our evaluation we include different data sources, all
visualized in Figure 2: First, we include the real-world
recordings of the YCB-V dataset as used in the promi-
nent BOP Challenge [SHL+23]. However, there is a
problem with the YCB-V test images: one could argue,
that the limited number of scenes and camera poses
reduces the expressiveness in terms of generalization.
Therefore we also evaluate on the physically-based
rendering (pbr) dataset provided by BOP. This dataset
uses the reconstructed textures, leading to a high
similarity in appearance compared to the real images,
but has a much wider range of camera poses, object
configurations, and lighting situations. These two
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(a) REAL (b) RBG (c) PBR (d) PBG

(e) PBR-rTex (f) CHROMA (g) LUMA (Ours)
Figure 2: Samples from a subset of our evaluated training datasets. REAL are real images, RBG are real images
with replaced backgrounds, PBR are physical based renderings, PBG are physical based renderings with back-
ground replacement, PBR-rTex are PBRs with randomized textures and CHROMA, as well as LUMA (Ours)
stand for different capturing methods.

datasets, namely REAL and PBR, are used as a base-
line on which all other data sources have to be tested.
Also, we test all of our approaches on in-distribution
samples, that is, on disjoint splits from the dataset, i.e.
when training on our luminance images, we test on
REAL, PBR, as well as on a disjoint set of luminance
images. This should serve as a measure on how well an
experiment generalizes to out-of-distribution samples.
In more detail we use the following data representa-
tions:
Real-world images (REAL). Real-world recordings
as described above.
Real-world images with background replacement
(RBG). Real-world recordings. To test the influence of
our background replacement script, we apply it to the
real images as well. This gives us an idea on how much
performance we loose because of our simple crop and
paste approach of data generation.
Physically-based renderings (PBR). PBR renderings
with reconstructed textures, realistic object placement,
and light transport, as well as a high degree of camera
and object pose variation.
Physically-based renderings with background
replacement (PBG). Same as above, but again using
background replacement for measuring its influence on
performance.
Physically-based renderings with randomized
textures (PBR-rTex). To simulate cases in which
geometry is available, though we lack realistic textures

and materials, we include a set of pbr images with
randomized surface attributes. Namely we randomize
texture and surface details such as reflectance behavior.
Chroma key images using green screen (CHROMA).
A set of green screen recordings to illustrate what re-
sults one can expect from using run-of-the-mill chroma
keying methods. We use the green screen for segmen-
tation and paste the crops on random photographs.
Luminance key images using black screen (LUMA).
Our proposed method. A set of recordings utilizing the
low-reflection black screen. Again, we have to crop
and paste the objects on random backgrounds using
our replacement script.

3.3 Training
We demonstrate the applicability of our approach on
the 2D object detection use case and train YOLOX
[GLW+21] networks.
Data Generation using cut and paste background re-
placement. To achieve technically good replacement re-
sults, we use a variety of probabilistic mechanisms that
are applied during the replacement process inspired by
[DMH17]. First, based on the masks provided, we fil-
ter out all objects in an image that are overlapped by
others. This is trivial for luma, because there is no
overlap during the acquisition, giving us near-perfect
masks. In addition, we also make sure that the objects
are not cut off at the edge of the image and finally do
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a crop, centered around the object. Next we apply ran-
dom affine transformations such as scaling, rotation and
translation to the objects where the variable scaling, ro-
tation and translation ensures variety in the appearance
of the objects. After this process, the objects are placed
on the background image based on randomly generated
positions. We allow an overlap among objects of up
to 20% in order to come closer to the real scenarios of
YCB-V and make the network learn to deal with oc-
clusion. For bleding and to remove jaggies, the object
masks are eroded and Gaussian noise is applied. As
for the backgrounds we used random crops of images
from the 50k HQ-data set [YCT+23]. Random crop-
ping prevents the same background from being used
more than once. Parameterization. To evaluate the
practicability of our proposed method, we do an exten-
sive comparison of different training sets. As shown
in [HLWK18] freezing the backbone layers is useful
for reducing the impact of domain shift. Since we in-
troduce additional domain discrepancy with our back-
ground replacement, we add freezing to our evaluation
of training from scratch, and using COCO-pretrained
weights for initialization. As for the parameterization
of YOLOX, we stick closely to the values and process
as presented in their paper [GLW+21]. Most impor-
tantly for our comprehensive quantitative analysis we
train model size "tiny" with image size 512x512, batch
sizes of 64, half precision, multiscale range of 13, and
for 300 epochs.

4 RESULTS
We report quantitative results on the common YCB-V
object set and show samples of the achievable visual
quality of the approach. In addition we show some
problems of chroma keying, which luminance keying
does not have in section 4.2.

4.1 Quantitative Results
In our first experiments we looked into answering the
question, whether we want to train from scratch or
load pre-trained weights, as well as whether to freeze
the backbone. For a comprehensive list of all results,
especially for unfreezed backbones, please refer to our
tables presented in the appendix. Here we report results
when freezing the backbone, as these led to best perfor-
mance with our cut and paste background replacement.
For evaluation we report both the Average Precision
(AP) and the Average Recall (AR) metric in Tables 1
and 2. Since the currently available set of YCB-V ob-
jects has three modified objects (002_master_chef_can
has a modified texture, for 019_pitcher_base the color
changed from blue to a transparent color with a red
lid, and for 035_power_drill there are some slight
changes to the model), we report results on the subset
of unchanged objects and call it YCB-V18, as well as

the results of the complete set.
As expected training and evaluating on REAL lead to
best performance overall. This is no surprise since,
among all data representations tested, features in the
REAL training set are closest to the features found in
the REAL test set. Physically-based rendering (PBR)
comes in second place. The good performance of PBR
can be explained with the photo-realistic depiction,
wide range of physically-correct object placements,
and lighting variations. Surprisingly the PBR set with
randomized textures has very poor performance, far
worse than expected. While we assumed a big drop,
the extent might have to do with model size and might
be less pronounced with more trainable parameters. As
the 4 remaining approaches all build upon the cut and
paste approach, we can directly compare the quality
of the segmentation, as well as image fidelity. Here
we find an outlier in the PBG (real photographs with
background replacement) set: it under-performs the
other approaches by a wide margin. Our assumption
is that the reason is the comparatively poor masking
quality. Masks are not pixel perfect and sometimes
include background pixels or pixels belonging to an
occluding object. Mask quality is no problem for RBG
(pbr images with background replacement), having
perfect masks by virtue of complete scene knowledge,
but we argue RBG is held back by other problems,
some similar to the ones found with chroma keying
with color bleeding being the most obvious. Realistic
light transport is a feature in fully rendered scenes, but
becomes a detriment with cutting and pasting. Also,
the textures, while being high fidelity, are not as good
as real photographs. Finally, comparing LUMA with
CHROMA we see an outperformance of more than
11% on both YCB-V18, as well as on the complete
YCB-V set.

4.2 Qualitative Results
We depict some of the problems of chroma keying in
Figure 3 and show the quality of our approach in Fig-
ure 1. In direct comparison with chroma keying using
the green screen we note a significant improvement in
mask quality. At the same time the process becomes no-
ticeably faster and less error-prone since we do not have
to match a specific color when thresholding to generate
our masks. This problem is illustrated in Figure 4.

4.3 Discussion
We see a noticable drop in performance related to our
background replacement. This is to be expected since
we remove relevant cues for the 3D scene understand-
ing, such as global illumination, shadows, color bleed-
ing, and realistic occlusion. However, when consider-
ing the subset of data representations utilizing the back-
ground replacement, namely REAL, PBR, CHROMA,
and LUMA, we see the overperformance of LUMA.
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TRAIN SET: PBR-rTex PBR PBG REAL RBG CHROMA LUMA (Ours)

002_master_chef_can* 0.19/1.47/- 44.65/62.13/44.65 21.74/53.56/17.35 6.29/73.76/73.76 2.2/2.84/0.0 9.54/46.75/1.56 11.74/46.17/3.64

003_cracker_box 0.09/0.0/- 46.86/20.65/46.86 16.33/5.15/14.3 12.54/43.34/43.34 10.06/9.65/0.0 5.31/10.2/0.02 13.68/20.9/0.51

004_sugar_box 0.23/0.02/- 32.95/48.36/32.95 11.77/44.75/13.03 5.62/49.54/49.54 9.37/9.26/66.26 9.42/38.23/0.13 14.97/52.64/0.48

005_tomato_soup_can 0.08/0.3/- 38.04/55.53/38.04 9.59/59.13/10.47 5.75/70.21/70.21 9.44/9.43/78.67 4.73/36.42/0.46 10.27/29.17/1.42

006_mustard_bottle 0.65/0.14/- 38.86/78.2/38.86 14.19/76.07/7.38 10.68/88.82/88.82 12.7/12.45/9.72 16.75/73.42/2.48 17.63/79.9/5.3

007_tuna_fish_can 0.24/0.2/- 45.98/70.77/45.98 11.04/65.36/19.02 12.55/79.35/79.35 10.69/10.74/72.85 5.8/53.93/0.23 11.34/60.97/1.15

008_pudding_box 0.11/0.0/- 28.54/4.48/28.54 17.19/1.2/22.23 1.77/6.64/6.64 9.88/9.84/0.0 4.05/2.43/1.16 5.46/0.92/2.5

009_gelatin_box 0.11/0.0/- 36.82/71.21/36.82 15.61/5.73/22.94 6.11/65.41/65.41 11.61/11.12/66.94 2.26/0.52/0.6 1.33/0.55/2.41

010_potted_meat_can 0.31/0.27/- 36.28/37.64/36.28 11.4/18.3/11.33 4.04/54.23/54.23 9.06/9.04/40.73 1.29/0.27/2.83 11.52/26.22/0.88

011_banana 5.79/6.58/- 34.84/54.24/34.84 14.91/40.67/20.34 15.62/50.18/50.18 14.18/14.28/88.81 17.17/51.06/3.16 14.95/48.64/0.63

019_pitcher_base* 4.27/3.12/- 54.15/55.57/54.15 1.08/29.29/0.55 13.56/80.89/80.89 0.0/0.0/0.0 6.68/0.38/0.67 6.28/0.32/0.09

021_bleach_cleanser 0.92/2.56/- 33.82/43.58/33.82 8.23/36.19/6.22 2.42/61.31/61.31 2.09/2.15/8.35 8.03/47.44/1.56 10.53/54.61/5.26

024_bowl 2.14/0.22/- 54.84/46.75/54.84 4.96/0.01/5.24 9.04/56.9/56.9 2.47/1.93/0.0 0.06/0.21/0.08 6.99/14.44/1.3

025_mug 0.18/3.3/- 46.37/58.14/46.37 10.89/1.87/1.72 4.0/67.35/67.35 3.01/3.01/0.0 5.45/31.17/1.02 2.04/14.37/0.05

035_power_drill* 0.3/0.0/- 23.28/13.26/23.28 3.24/0.76/1.39 2.28/43.72/43.72 0.0/0.0/0.0 3.87/5.71/0.03 4.46/13.23/0.04

036_wood_block 2.1/0.37/- 45.99/24.57/45.99 15.57/8.22/14.56 8.42/34.06/34.06 5.85/5.8/0.0 10.28/12.75/0.64 14.1/17.32/2.53

037_scissors 0.67/0.0/- 19.32/5.48/19.32 0.67/0.16/3.42 5.98/1.96/1.96 1.36/1.32/0.0 1.4/0.33/0.69 1.35/0.52/0.01

040_large_marker 0.04/0.0/- 16.1/47.65/16.1 2.54/22.2/9.52 1.83/56.73/56.73 0.47/0.41/8.58 0.87/31.87/0.23 0.16/5.42/0.4

051_large_clamp 0.85/0.0/- 18.2/47.43/18.2 0.07/0.25/2.5 2.96/6.4/6.4 0.07/0.09/0.01 1.85/0.28/2.01 2.93/17.75/0.07

052_extra_large_clamp 0.38/0.17/- 19.27/7.21/19.27 0.01/0.0/2.45 2.38/9.8/9.8 0.5/0.08/0.0 8.79/11.31/1.13 2.95/0.29/1.82

061_foam_brick 0.71/0.01/- 36.94/55.61/36.94 15.86/3.38/24.54 8.09/67.82/67.82 6.99/6.63/0.0 6.43/1.64/1.11 6.01/5.22/0.91

AVERAGE YCB-V 0.97/0.89/- 35.81/43.26/35.81 9.85/22.49/10.98 6.76/50.88/50.88 5.81/5.72/21.0 6.19/21.73/1.04 8.13/24.27/1.49

AVERAGE YCB-V18 0.87/0.78/- 35.0/43.19/35.0 10.05/21.59/11.73 6.66/48.34/48.34 6.65/6.51/24.5 6.11/22.42/1.09 8.23/24.99/1.54

Table 1: AP (higher is better) of all evaluated data representations, each tested on PBR, REAL, and in-distribution.
In-distribution means the test set stems from the same data source (e.g. photograph, rendering, crop and paste)
as the training set. Results on REAL in bold font. As expected, we see best results when training on the train
split of the real data (REAL), followed by the physically simulated 3D scenes (PBR). Most importantly, among
all 4 methods using the cut and paste approach for background replacement (PBG, RBG, CHROMA, LUMA),
luminance (our proposed method) outperforms all others when tested on the real test data (REAL).

TRAIN SET: PBR-rTex PBR PBG REAL RBG CHROMA LUMA (Ours)

002_master_chef_can* 8.05/18.8/- 63.67/77.07/63.67 39.66/71.67/54.88 14.9/79.0/79.0 4.59/4.63/0.0 34.94/74.8/9.17 33.24/71.97/16.74

003_cracker_box 7.51/0.22/- 62.82/66.44/62.82 34.83/49.02/56.82 22.93/62.89/62.89 15.5/21.64/0.0 13.62/36.22/1.14 26.64/48.53/4.63

004_sugar_box 6.75/2.61/- 53.39/66.8/53.39 31.07/74.37/48.63 18.53/61.63/61.63 27.76/75.68/77.14 22.13/52.69/5.68 32.84/69.07/7.23

005_tomato_soup_can 4.2/5.96/- 54.06/69.71/54.06 22.89/66.91/35.95 20.81/75.09/75.09 26.39/68.96/84.03 25.11/54.96/7.86 30.4/61.8/14.32

006_mustard_bottle 11.46/8.27/- 57.22/87.6/57.22 27.01/83.87/34.08 23.68/91.27/91.27 28.38/82.33/55.56 30.54/83.87/13.41 32.17/84.13/21.22

007_tuna_fish_can 7.29/4.37/- 57.74/78.83/57.74 26.17/72.1/51.98 30.23/83.77/83.77 30.72/75.17/84.8 24.34/72.77/7.5 24.88/73.3/11.4

008_pudding_box 3.31/0.27/- 48.6/56.4/48.6 33.25/23.73/65.56 14.17/48.93/48.93 24.87/54.27/0.0 26.21/43.6/8.24 27.76/27.07/10.97

009_gelatin_box 2.96/0.0/- 49.85/78.4/49.85 26.41/50.8/60.06 21.31/74.27/74.27 28.77/72.4/85.1 10.21/23.87/4.89 8.33/16.27/9.05

010_potted_meat_can 6.69/0.84/- 53.21/64.98/53.21 28.8/48.09/38.76 19.73/59.6/59.6 28.64/54.31/78.69 7.47/10.4/7.67 26.99/52.93/5.43

011_banana 26.99/31.8/- 49.23/70.87/49.23 24.18/55.27/46.25 28.16/61.4/61.4 23.91/54.07/90.0 25.33/58.27/15.58 22.91/55.33/10.21

019_pitcher_base* 29.3/28.53/- 71.89/77.33/71.89 4.47/34.76/9.04 26.38/84.22/84.22 0.0/0.0/0.0 27.79/8.18/5.28 25.67/6.44/3.86

021_bleach_cleanser 16.59/17.13/- 54.95/60.43/54.95 22.5/58.4/33.01 13.72/71.0/71.0 2.78/17.27/24.38 20.38/59.2/11.14 20.94/63.1/13.81

024_bowl 25.35/9.47/- 66.4/73.07/66.4 16.25/1.13/29.93 14.96/63.13/63.13 2.67/18.47/0.0 0.58/5.0/4.0 12.03/55.6/11.33

025_mug 7.74/29.13/- 60.39/74.13/60.39 17.04/11.47/22.32 18.81/71.93/71.93 15.77/72.2/0.0 19.77/72.53/10.26 6.37/45.8/2.7

035_power_drill* 7.57/0.07/- 47.82/44.43/47.82 11.34/7.3/25.11 14.38/54.23/54.23 0.0/0.0/0.0 24.05/41.73/1.92 20.71/54.23/0.96

036_wood_block 15.6/19.87/- 62.63/65.73/62.63 32.68/32.93/46.97 20.44/50.8/50.8 12.61/28.67/0.0 26.27/56.67/8.75 28.67/57.07/9.82

037_scissors 7.87/0.27/- 34.22/20.8/34.22 4.53/1.73/35.71 12.38/6.4/6.4 9.77/8.27/0.0 9.97/6.27/3.09 7.06/3.73/1.22

040_large_marker 2.72/0.13/- 30.6/62.0/30.6 8.85/39.67/38.86 7.12/63.33/63.33 8.13/60.53/33.79 6.54/59.8/5.68 3.54/31.47/3.1

051_large_clamp 6.62/0.0/- 43.2/69.8/43.2 3.06/12.47/28.43 10.62/32.8/32.8 0.35/11.47/3.33 12.01/9.8/10.44 13.17/36.53/2.86

052_extra_large_clamp 8.39/4.2/- 47.61/45.87/47.61 0.77/0.0/30.26 9.41/35.87/35.87 0.07/0.07/0.0 21.33/26.93/6.18 12.54/9.07/4.32

061_foam_brick 6.92/3.47/- 52.27/72.93/52.27 25.99/59.87/56.78 23.88/76.27/76.27 19.89/71.73/0.0 22.89/25.47/4.77 22.8/54.4/6.92

AVERAGE YCB-V 10.47/8.83/- 53.42/65.89/53.42 21.04/40.74/40.45 18.41/62.28/62.28 14.84/40.58/29.37 19.6/42.05/7.27 20.93/46.56/8.2

AVERAGE YCB-V18 9.72/7.67/- 52.13/65.82/52.13 21.46/41.21/42.24 18.38/60.58/60.58 17.05/47.08/34.27 18.04/42.13/7.57 20.0/46.96/8.36

Table 2: AR (higher is better) of all evaluated data representation, corresponding to Table 1. Results on REAL in
bold font. LUMA (Ours) compares favourably, outperforming PBG, RBG, and CHROMA.
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Figure 3: Some of the problems with chroma keying.
Color bleeding leads to part of the object appearing
greenish, which leads to imperfect masking (top left).
Luminance keying (top right) in contrast gives much
improved masking. Other problems with chroma are
the high reflectivity of conventional backgrounds, that
lead to a "halo" effect at the edges (bottom left), and the
cutting out of object parts close to the background color
(bottom right).

Figure 4: Another problem of chroma keying. While
the lighting did not change, a slight change in camera
settings between two video clips lead to very different
tones of green, making the thresholding much harder
compared to luminance keying.

At the same time this relative gain in performance of
REAL and PBR comes at a cost: creating a suitable big
dataset to be able to train on REAL requires (usually
manual) labeling, while the creation of a PBR dataset
presumes the existence of 3D meshes or requires the
scanning of the objects. Also, we have a throughput
of roughly 50 images rendered per minute on a single
A100 GPU, making the PBR dataset costly in terms of
resources and time.

5 CONCLUSION
In conclusion, we propose a luminance keying method
using a black screen with 99.99% light absorption

for efficient training data acquisition, significantly
simplifying the process of training deep neural net-
works for object segmentation and detection. Our
technique overcomes the limitations of manual annota-
tion and rendering, traditionally required for creating
annotated datasets, by employing a high-absorption
black background to facilitate quick video recording
and brightness-based automatic masking of objects.
This approach not only expedites the data preparation
process but also eliminates common issues associated
with chroma keying, such as color bleeding and color
overlap. We did extensive evaluation and find that our
method compares favourably to much more involved
data generation approaches on the YCB-V object set.
Overall, this work enables the rapid deployment of
deep learning applications across various scales, de-
mocratizing access to state-of-the-art object detection
and segmentation technologies. For reproducabil-
ity and further research we publish our processing
code, as well as our black screen YCB-V recordings
at https://huggingface.co/datasets/
tpoellabauer/YCB-V-LUMA.
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