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ABSTRACT
Point cloud registration plays a crucial role in many applications, from robotics and autonomous navigation to
medical imaging and 3D scene reconstruction. While the Iterative Closest Point (ICP) algorithm is a well-known
shape registration choice, its efficiency and accuracy can be affected by the vast search space for point correspon-
dences. k-means clustering emerges as a promising solution for partitioning the search space into smaller clusters
to reduce the computational complexity and increase the performance of the matching. However, the number and
size of these clusters and how they affect the registration remains a critical and yet not fully explored factor. This
paper delves into the relationship between the number of k-means clusters and point cloud registration accuracy.
To determine the effect of the number of k-means clusters on registration accuracy and efficiency and to understand
any emerging pattern, k-meansICP is developed to use the k-means algorithm to cluster the correspondence search
space. Two sets of 3D molecular shapes with differing complexities are matched using initial rotation angles 15,
30, and 60 degrees with 2 to 10 k-means clusters. The results are then compared with the original ICP algorithm.
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1 INTRODUCTION
Point cloud registration is one of the most important
yet challenging areas of computer vision [Pot06, Goj20,
MA23]. This field is related to tasks in several do-
mains such as molecular biology for characterising bi-
ological interactions [Ovr23], medical image process-
ing [Wu18] for medical image visualisations, robotics
[Lyu24, Kri15] for 3D object recognition through re-
construction, and human pose estimation and tracking
[Che11], and for optimising cutting tool positioning in
the context of Computer Numerical Control (CNC) ma-
chining [Bo19].

The iterative closest point algorithm (ICP) [Bes92] is
the most popular point cloud registration algorithm
[Lyu24, Li22] because of its simplicity and modular
nature, allowing enhancements to different aspects
of the registration process as required. ICP aims to
align two point clouds by finding a transformation that
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minimises the distance between the point clouds. The
algorithm repeatedly alternates between finding the
closest point in the target point cloud for each point in
the source point cloud and computing a transformation
that minimises the distance between the corresponding
points [Zha22].

1.1 Limitations of existing solutions
ICP requires a good initial transformation [Lyu24] to
converge to a good solution. The algorithm can per-
form poorly with a large initial transformation resulting
in a less optimal convergence [Wu18]. The presence of
outliers (non-uniform or non-conforming points), noise
produced from point cloud acquisition devices [Du15],
and partial overlaps, such as registering subsets of a
point cloud, can also decrease the efficiency of the reg-
istration process driven by false matches [Pom13]. The
nature of ICP as an optimisation algorithm is to find
approximate solutions to the registration problem by
converging to a locally optimal solution. This makes
the quality of the registration results heavily dependent
on the initial transformation. An ICP registration pro-
cess with less optimal initial transformation can lead
to incorrect correspondence, and smaller transforma-
tion convergence regions making the registration pro-
cess unstable [Sal24]. In some instances, ICP may not
converge at all.
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1.2 Outline of this work
This paper evaluates how the number of clusters in a k-
means clustered point cloud, and indirectly the number
of points in each cluster, affects the registration accu-
racy. An experiment is set up using two 3D molecular
structures from the protein data bank [Ber00], 2HAX
and 2JKF. These structures represent different forms of
the common cold virus’s protein molecule. The experi-
ment registers each structure to a copy of itself by parti-
tioning the search space from 2 to 10 clusters, each time
setting an initial rotation of 15, 30, or 60 degrees along
one axis. Partitioned clusters reduce the point corre-
spondence search space. This reduction then decreases
the computational complexity of the registration pro-
cess.

Section 3 details an implementation of ICP [Bes92] us-
ing k-means clustering to reduce the search space. Sec-
tion 4 details the experimental setup and design as well
as the results, analysis, and implications. Section 5 dis-
cusses the findings from the experiment and the perfor-
mance of the algorithms. Section 6 presents the conclu-
sion of this paper with the reiteration of the problems
with ICP [Bes92], how a k-means based implementa-
tion improves the matching, further limitations of this
approach, and our ongoing and future work.

2 RELATED WORK
2.1 The ICP Algorithm
The original ICP algorithm [Bes92] repeatedly com-
putes the transformation that aligns two point clouds.
The algorithm does a correspondence search by find-
ing the closest point in the target point cloud for each
point in the source point cloud. A transformation com-
puted from these correspondences is then applied to the
position of the source point cloud to bring it in align-
ment with the target point cloud. The algorithms do
the next correspondence search from this transformed
source point cloud until the convergence criteria are
reached, which is a set number of iterations or a set
mean squared error threshold.

2.2 Improvements to the ICP Algorithm
Hundreds of variations of ICP have been developed
demonstrating the need for improved versions of the al-
gorithm to handle the vast and diverse datasets [Pom13,
Rus01]. The modular nature of ICP allows improve-
ments to be made at different stages including the clos-
est point search, more elaborate distance metrics than
the Euclidean distance between points, and weighting
of matching point pairs as a way of rejecting less likely
matches [Wan17]. One recent approach to using ICP
to match protein structures focused on enhancing the
registration quality using metadata knowledge of the
point cloud [Ank20]. This included extracting rotation-
invariant features such as the k nearest neighbours of

Algorithm 1 Iterative Closest Point algorithm
1: function ITERATIVE CLOSEST POINT(P, X)
2: P0← P
3: for iteration i := 0 to imax do
4: closest points Yi

← CLOSEST POINT SEARCH(Pi,X)
5: transformation Mi, MSE di

← REGISTRATION(P0,Yi)
6: Pi+1← TRANSFORM(Mi,P0)
7: if change in MSE di−1−di < threshold

then
8: terminate the for loop
9: end if
10: end for
11: return Pi+1,Mi,di
12: end function

each point, and other available point labelling informa-
tion to aid in the correspondence search process.

2.3 Use of k-Means Clustering
The k-means clustering algorithm [Kri99] is an iterative
optimisation algorithm to cluster any point cloud into a
chosen number of k clusters. The algorithm is domain-
independent making it an ideal choice for use in specific
tasks in pattern recognition and machine learning.

The algorithm accepts the desired number k of parti-
tions and then clusters the data points into k clusters,
assigning each point to the closest cluster. This is done
by computing the squared Euclidean distance between
each data point and the centroid of each cluster, and
then assigning each point to the cluster with the clos-
est centroid [Iko23]. There are several variants of the
k-means clustering algorithm based on modifications to
characteristics such as the distance measure, ways to
reduce the number of distance calculations, and the re-
duction of the dimension of the data set [Iko23]

PF-ICP [Sal24] was proposed as an improvement to
the traditional ICP [Bes92] algorithm. PF-ICP uses k-
means clustering to help correctly estimate the trans-
formation during registration. The research utilises the
k−means clustering method to guide the initialisation
of the transformation. The k−means algorithm was
employed to segment the data point cloud into clusters,
and the initial transformation was obtained by doing a
correspondence match of the centroids of the generated
clusters. This process was found to reduce the com-
putational complexity and increase registration speed.
The transformations computed from matching the cen-
troids of the clusters were then used as the initial trans-
formation for the point cloud registration. In PF-ICP
[Sal24], k−means is primarily used for clustering and
estimating the initial transformation, whilst k−means
partitions the search space into clusters to reduce the

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

4



computational complexity of the registration process by
reducing the correspondence search space.

3 THE k-MEANSICP ALGORITHM
Our algorithm is based on the original ICP algorithm
[Bes92] (Algorithm 1). The ICP algorithm finds the
correspondence for each point by computing the dis-
tance from each point in the model point cloud to each
point in the data point cloud. This process is compu-
tationally expensive. Several measures have been pro-
posed to decrease the computational cost of the distance
calculation such as by using kd-tree [Bes92], and par-
titioning the search space using metadata of the points
[Ank20]. [Kan02] proposed an efficient k-means clus-
tering algorithm that leverages Voronoi diagrams to sig-
nificantly reduce time complexity, resulting in substan-
tial accelerations compared to standard k-means clus-
tering methods.

Our algorithm improves computational cost by parti-
tioning the correspondence search space using the k-
means clustering algorithm [Kri99]. This means that
each point does two sets of distance calculations: The
first is to pick the closest cluster by finding the closest
centroid to the point. The second is to find the distance
from the point to each point belonging to the chosen
cluster. This implies every point does point-to-cluster
and then point-to-point distance calculations. The num-
ber of clusters (k) is a user-configurable constant that
can be increased or decreased based on the performance
of the registration. Although there are two sets of dis-
tance calculations involved in our algorithm, the com-
putational complexity is reduced.

Figure 1: 3D point cloud clustered into 4 colour coded
regions

Assume that the point cloud Pi is clustered into k clus-
ters with centroids Xc, where c ∈ 1 . . .k. For each point
p ∈ Pi the algorithm first finds point p’s closest cluster

C based on the distances between p and the cluster cen-
troids. The algorithm then finds the closest point to p
among the points x ∈ C by performing a naive search
comparing the distance d of every point x and finding
the minimum distance dmin. The closest point y is ap-
pended to the list of closest points Yi as the correspon-
dence for p.

Algorithm 2 k-meansICP closest point search
1: function CLOSEST POINT SEARCH(Pi, X)

▷ X is clustered into k clusters with centroids Xc
2: closest points Yi← empty list
3: for all points p in Pi do
4: cluster C← CLOSEST CLUSTER(p, Xc)
5: closest point y← empty
6: closest point distance dmin← ∞

7: for all points x in C do
8: distance d← DISTANCE(p, x)
9: if d < dmin then
10: closest point y← x
11: closest point distance dmin← d
12: end if
13: end for
14: append closest point y to closest points Yi
15: end for
16: return Yi
17: end function

3.1 Computational complexity
k-meansICP leverages the clustering information to re-
duce the search space. It achieves this by first find-
ing the nearest cluster for each data point (p) and then
searching only within that cluster (C) for the closest
neighbour (x). This approach reduces complexity by
a factor depending on the number of clusters and their
uniformity.

k-means clustering tends to create clusters of equal vol-
ume. The effectiveness of k-meansICP depends on the
distribution of points within the clusters. Evenly dis-
tributed points lead to equal-sized clusters in terms of
cardinality. An evenly distributed point cloud with car-
dinality N would be partitioned into k clusters of cardi-
nality N/k. For each of the N points we first find the
nearest of the k cluster centroids using O(k) distance
calculations, and then then nearest of the on average
N/k points in that cluster using O(N/k) distance cal-
culations. Hence the computational complexity of k-
meansICP becomes O(N(k+N/k)). In theory the op-
timal choice of k would be k =

√
N to reduce the to-

tal computational complexity to O(N1.5), which would
be a significant reduction from O(N2) for the original
ICP algorithm. More generally, for non-uniform point
clouds the computational complexity of k-meansICP
depends on the actual cardinalities of the clusters and
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on the probability that each cluster is selected as the
closest to the point p.
However, the accuracy of the matches might be af-
fected, particularly for points near cluster boundaries.
This is because k-meansICP limits the search space to
the chosen cluster C. While C is the cluster with the
closest centroid to p, it may occur that the actual clos-
est point is not in C but in a different cluster. In such
cases, a suboptimal closest point will be chosen from
C. The iterative nature of the ICP algorithm makes it
robust to small amounts of such suboptimal correspon-
dences. More suboptimal correspondences may delay
or even prevent convergence. To keep the amount of
suboptimal correspondences small we keep k relatively
small, in practice k = 2 to 10. This is typically less than
optimal for the theoretical computational complexity,
but we have found that it is a better trade-off in terms of
convergence in practice.

4 EXPERIMENT
k-meansICP was implemented in Microsoft C#.
Unity3D was used to visualise the registration simula-
tion and generate the analysis data.

Figure 2: 3D point cloud for molecules 2JKG (left) and
2JKF (right)

4.1 Experimental Design
This experiment investigates the performance of the
k-meansICP algorithm for protein structure matching.
The focus of the experiment was on how the number
of k-means clusters [Kri99] can affect registration ac-
curacy and convergence.

4.2 Data Acquisition and Pre-Processing
For this study, two protein structures from the Protein
Data Bank (PDB) [Ber00] serve as the source for pro-
tein structure data. The PDB IDs are 2JKF and 2JKG
(provided for reproducibility) consisting of 1420 and
1452 atoms respectively. Each protein structure shape
will be matched to a rotated version of itself. Each
structure was imported into Unity using the CellUnity
[Geh15] package to facilitate the visualisation and ma-
nipulation of protein structures. The package automat-
ically generated a 3D representation based on the co-
ordinates of each atom in the PDB file. Atoms were

visualised as spheres, allowing for spatial analysis of
the protein molecule.

4.3 Experimental Setup
The experiment evaluated the performance of the ICP
and k-meansICP algorithms under varying initial rota-
tion angles and different numbers of clusters for the k-
meansICP algorithm. Specifically, the source and tar-
get copy of a protein structure were aligned by their
centres of mass, followed by giving one copy a starting
rotation along one axis at predefined angles (15°, 30°,
and 60°). Each test case was run with 100 iterations for
k-meansICP and original ICP. However, in the case of
k-meansICP, each test case was also run for k = 2 to 10
clusters.

4.4 Rationale
Large initial rotations pose a challenge for ICP algo-
rithms. The introduction of an initial rotation angle was
to add some complexity to the registration process.

The original ICP algorithm served as the baseline
for comparison, isolating the effects of the proposed
improvements within the k-meansICP. Integrating
k-meansICP with other ICP variants would potentially
introduce confounding factors from their inherent
improvements, hindering the accurate measurement
of our specific contributions related to the number of
clusters and the initial rotation angles.

4.5 Rotational angles and number of clus-
ters

While both algorithms consider translation during the
matching process, this experiment primarily focused
on rotational alignment and cluster sizes. The pre-
alignment of structures at their centres of mass mini-
mizes the impact of the translation vector and is a com-
mon pre-processing step in ICP.

5 ANALYSIS AND EVALUATION
To assess and compare the performance of k-meansICP
with each number of clusters, as well as the original
ICP, two types of graphs are presented. The conver-
gence graphs show the mean squared alignment error
at each iteration. This data is generated at the end of
each iteration and it presents an analysis of the grad-
ual progress of the registration process towards conver-
gence. It can also show the iteration count at conver-
gence, as well as how smooth the transition is towards
convergence.

The match quality graphs show the cumulative his-
togram of the number of points that have a root mean
squared alignment error less than a value on the hori-
zontal axis. This data represents the final quality of the
match when the registration process is completed. By
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looking at the cumulative number of points at a partic-
ular root mean square error, we can analyse the effec-
tual quality of the match. A good match quality would
have a steep rise to nearly 100% at small alignment er-
rors. The vertical line that sometimes appears at the
right edge of a match quality graph is an artefact of Mat-
plotlib [Hun07] that indicates the maximum alignment
error, where the cumulative histogram reaches 100% of
points. Note that the horizontal axis is scaled to fit the
range of alignment errors. If the match is almost per-
fect and the maximum alignment error is very small,
e.g., 1e-8, then the match quality curve has an irregular
shape caused by floating point precision and does not
represent significant alignment errors.

5.1 ICP

Figure 3: Match quality results for molecule 2JKF us-
ing ICP at initial rotation angles 15°, 30°, and 60°

Figure 4: Convergence results for molecule 2JKF using
ICP at initial rotation angles 15°, 30°, and 60°

From the matching results for ICP for molecule 2JKF
(Figure 3), we realize a good match for initial rotation
angles 15 and 30 degrees and a comparatively worse
one for angle 60 degrees. This is typical of the ICP al-
gorithm’s behaviour of worse convergence with a poor

initialisation and thus requiring a good initial transfor-
mation. The convergence graph (Figure 4) confirms that
performance with the 15 and 30-degree initial rotation
angles converging faster at approximately 10 iterations
and 18 iterations respectively, whereas the angle 60 de-
grees has reached a plateau after approximately 30 iter-
ations with a substantial remaining alignment error.

Figure 5: Match quality results for molecule 2JKG us-
ing ICP at initial rotation angles 15°, 30°, and 60°

Figure 6: Convergence results for molecule 2JKG using
ICP at initial rotation angles 15°, 30°, and 60°

Similarly, for molecule 2JKG, we realize a good match
for initial rotation angles of 15 and 30 degrees and a
worse match for the angle of 60 degrees (Figure 5).
The convergence graph (Figure 6) shows similar con-
vergence results for 15 and 30 degrees. For an initial
rotation angle of 60 degrees, the convergence is much
worse compared to 2JKF, even showing intermittent di-
vergence around iterations 70–100.

5.2 k-MeansICP
It can be observed that the match quality of k-meansICP
with 2 clusters (Figure 7) was comparable to ICP (3) but
only for the 60 degrees initial rotation. ICP performed
much better at converging at a lower mean squared
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Figure 7: Match quality results for k-meansICP with
k = 2 clusters

Figure 8: Match quality results for k-meansICP with
k = 3 clusters

Figure 9: Match quality results for k-meansICP with
k = 4 clusters

error for all initial rotation angles as compared to k-
meansICP (Figure 16). This trend is seen across all
the other match quality (Figures 7–15) and convergence
graphs (Figures 16–24) for increasing number of clus-
ters, showing lower final point pair alignment errors.
This further illustrates the robust nature of the ICP algo-

Figure 10: Match quality results for k-meansICP with
k = 5 clusters

Figure 11: Match quality results for k-meansICP with
k = 6 clusters

Figure 12: Match quality results for k-meansICP with
k = 7 clusters

rithm for registering the same shapes with no noise. Al-
though k-meansICP makes use of k-means clustering to
reduce the search space and make the registration faster,
this improvement did not correlate with improved reg-
istration results at lower convergence errors. k-means
clustering [Kri99] is used to accelerate the closest point
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Figure 13: Match quality results for k-meansICP with
k = 8 clusters

Figure 14: Match quality results for k-meansICP with
k = 9 clusters

Figure 15: Match quality results for k-meansICP with
k = 10 clusters

search but can result in less suitable matches leading to
less optimal performance.

We also observed that the number of clusters had mini-
mal impact on match quality and convergence.

Figure 16: Convergence results for k-meansICP with
k = 2 clusters

Figure 17: Convergence results for k-meansICP with
k = 3 clusters

Figure 18: Convergence results for k-meansICP with
k = 4 clusters

6 CONCLUSIONS AND FUTURE
WORK

The original ICP algorithm [Bes92] is the most com-
mon algorithm used for point cloud registration, how-
ever, it has limitations such as the requirement for
a good initial transformation, the computational com-
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Figure 19: Convergence results for k-meansICP with
k = 5 clusters

Figure 20: Convergence results for k-meansICP with
k = 6 clusters

Figure 21: Convergence results for k-meansICP with
k = 7 clusters

plexity of the correspondence search process, and poor
performance in the presence of noise and outliers.

This paper presented the k-meansICP algorithm to im-
prove the performance of ICP by reducing the corre-
spondence search space. The approach partitions the
data point cloud using k-means clustering [Kri99] re-

Figure 22: Convergence results for k-meansICP with
k = 8 clusters

Figure 23: Convergence results for k-meansICP with
k = 9 clusters

Figure 24: Convergence results for k-meansICP with
k = 10 clusters

sulting in a decrease in the computational complexity.
This work also investigated the impact of the number
of k-means clusters on point cloud registration. The re-
sults did not show a clear correlation between the num-
ber of k-means clusters and the match quality and con-
vergence using the k-meansICP algorithm.
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Results indicate a lower quality match and slower con-
vergence compared to ICP. However, the impact of the
number of k-means clusters on 3D point cloud regis-
tration can be investigated further to consider variables
such as the symmetry of the point cloud, and implemen-
tation options such as using k-meansICP for an initial
coarse alignment before a fine alignment using ICP.
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