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ABSTRACT
Video Anomaly Detection (VAD) plays a crucial role in modern surveillance systems, aiming to identify various
anomalies in real-world situations. However, current benchmark datasets predominantly emphasize simple, single-
frame anomalies such as novel object detection. This narrow focus restricts the advancement of VAD models. In
this research, we advocate for an expansion of VAD investigations to encompass intricate anomalies that extend
beyond conventional benchmark boundaries. To facilitate this, we introduce two datasets, HMDB-AD and HMDB-
Violence, to challenge models with diverse action-based anomalies. These datasets are derived from the HMDB51
action recognition dataset. We further present Multi-Frame Anomaly Detection (MFAD), a novel method built
upon the AI-VAD framework. AI-VAD utilizes single-frame features such as pose estimation and deep image
encoding, and two-frame features such as object velocity. They then apply a density estimation algorithm to com-
pute anomaly scores. To address complex multi-frame anomalies, we add deep video encoded features capturing
long-range temporal dependencies, and logistic regression to enhance final score calculation. Experimental results
confirm our assumptions, highlighting existing models limitations with new anomaly types. MFAD excels in both
simple and complex anomaly detection scenarios.
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1 INTRODUCTION
As the volume of recorded video content continues to
grow, the need for robust and efficient video anomaly
detection methods increases. The ability to automati-
cally identify unusual events or behaviors within videos
not only holds the promise of enhancing security but
also offers the potential to reduce the manpower re-
quired for monitoring. However, achieving truly effec-
tive video anomaly detection remains a significant un-
solved challenge, due to the diverse range of anomalies
that can occur in real-world scenarios.
By nature, anomalous behaviors are rare. Thus, video
anomaly detection (VAD) is often treated as a semi-
supervised problem, where models are trained exclu-
sively on normal videos and must subsequently distin-
guish between normal and abnormal videos during in-
ference.
While current benchmark datasets vary in complexity,
they share a common limitation in their narrow defi-
nition of anomalies. The three datasets, UCSD Ped2
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[1], CUHK Avenue [2], and ShanghaiTech Campus [3],
tend to limit anomalies primarily to novel object detec-
tion (Ped2, ShanghaiTech) or simple movement anoma-
lies (Avenue).
Recent advancements in video anomaly detection pre-
dominantly relied on analyzing a few frames or even
individual frames in isolation. Researchers predomi-
nantly choose between two approaches: reconstruction-
based and prediction-based methods. Reconstruction-
based methods [4–8] typically employ auto-encoders
to learn representations of normal frames, reconstruct-
ing them accurately, while anomalous frames result in
a higher reconstruction error. Prediction-based meth-
ods [3, 9–11] focus on predicting the next frame from a
sequence of consecutive frames.
These few-frame based methods achieved impressive
results, surpassing an AUC score of 99% [12, 13] on
Ped2, over 93% [12] on Avenue, and exceeding 85%
[12, 14] on ShanghaiTech, the most complex of the
benchmark datasets.
Without a shift in research focus and assumptions, the
existing datasets, results, and recurring research pat-
terns may suggest that the field of video anomaly de-
tection is nearing a plateau.
This paper emphasizes the necessity of broadening the
scope of what constitutes an anomaly. We propose
two novel datasets specifically designed to assess
the detection of complex action-based anomalies.
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These datasets, referred to as HMDB-AD and HMDB-
Violence, build upon the HMDB51 action recognition
dataset and define different actions as normal or
abnormal activities. By analyzing the performance
of various methods on our datasets, we underscore
the limitations of existing approaches and advocate
for further research on more comprehensive anomaly
types.

Building upon the foundation laid by AI-VAD [12], we
introduce Multi-Frame Anomaly Detection (MFAD),
a novel method aimed at achieving balanced perfor-
mance, excelling in both simple and complex anomaly
detection. AI-VAD utilizes a two-step approach: first,
it extracts multiple features and then employs density
estimation algorithms to calculate anomaly scores. In
their work, they rely on single-frame features like deep
image encoding (using a pretrained encoder) and hu-
man pose estimations, along with two-frame features
such as object velocity. We extend this method by intro-
ducing deep video encoding features to capture multi-
frame, long-range temporal relationships. MFAD ad-
heres to the AI-VAD framework, computing final scores
for each feature using a density estimation algorithm.
Additionally, we incorporate logistic regression to en-
hance the relationships between different feature scores
and achieve more accurate final scores.

We extensively evaluate our method on classic bench-
mark datasets as well as on our newly proposed
datasets. The experiments validate the added value
of both video encoding features and the logistic
regression module. Our method achieves competitive
results on Ped2, Avenue, and ShanghaiTech, and
greatly outperforms recent methods on HMDB-AD and
HMDB-Violence. As a result, it offers a more versatile
video anomaly detection solution capable of detecting
a broader range of anomalies across various scenarios.

Our key contributions are:

• We highlight the limitations of current video
anomaly detection benchmarks and advocate for
further research in general video anomaly detection.

• We present MFAD, a novel method capable of ef-
fectively handling both simple, few-frame anoma-
lies and complex, multi-frame anomalies.

• We provide two datasets designed for assessing a
model’s performance on multi-frame action-based
anomalies.

2 RELATED WORK
2.1 Video Anomaly Detection Datasets
The datasets commonly used in video anomaly detec-
tion can be broadly categorized into two groups, re-
flecting the shift brought about by the advent of deep
learning from approximately 2013 to 2018.

Early datasets are notably smaller and often consid-
ered practically solved, include Subway Entrance [15],
Subway Exit [15], UMN [16], UCSD Ped1 [1], UCSD
Ped2 [1], and CUHK Avenue [2]. Except UMN, these
datasets feature only a single scene.

In contrast, more recent datasets have grown signifi-
cantly in both scale and complexity. This newer group
includes ShanghaiTech Campus [3], Street Scene [17],
IITB Corridor [18], UBNormal [19], and the most re-
cent and largest of them all, NWPU Campus [20].

It is worth noting that among these datasets, only three
have gained popularity as benchmarks: UCSD Ped2,
CUHK Avenue, and ShanghaiTech Campus. However,
as discussed in this paper, each of these benchmarks
has its own set of limitations that motivate the need for
further research in the field of video anomaly detection.

Other datasets that can be considered are UCF-Crime
[21] and XD-Violence [22]. These datasets are built for
fully supervised VAD learning and therefore are orders
of magnitude larger than current benchmarks for unsu-
pervised VAD such as this work. We follow previous
studies and don’t use them for our comparisons.

2.2 HMDB51 Action Recognition Dataset
The HMDB51 [23] dataset, originally designed for ac-
tion recognition (AR), is relatively small in scale. It
is a collection of 6,766 video clips distributed across 51
distinct categories. Most other datasets are significantly
larger and more diverse: SSv2 [24], Kinetics-400 [25],
Kinetics-600 [26], Kinetics-700-2020 [27] each consist
of hundreds of thousands of frames and hundreds of dif-
ferent classes.

The HMDB51 dataset draws content from various
sources, ensuring diversity. In this dataset, each class
consists of no less than 101 video clips.

2.3 Video Anomaly Detection Methods
Hand-crafted feature based methods

Numerous methods, spanning both classical and con-
temporary approaches, adhere to a two-stage anomaly
detection framework. This framework involves an ini-
tial step of extracting hand-crafted features, specifically
selected by the researcher and not learned through a
deep neural network model. Subsequently, another al-
gorithm is applied to compute anomaly scores.

Early techniques used classic image and video features,
including the histogram of oriented optical flow (HOF)
[28–31], histogram of oriented gradients (HOG) [31],
and SIFT descriptors [32]. In more recent develop-
ments, the proliferation of deep learning has facilitated
the adoption of off-the-shelf models, such as object de-
tectors, for feature extraction. For instance, in the case
of AI-VAD [12], a combination of pose estimations, op-
tical flow predictions, object detection, and deep image
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encodings is used to construct robust feature represen-
tations.

Following feature extraction, classical methodologies
often employed scoring techniques such as density es-
timation algorithms [33–35]. Recent approaches have
demonstrated the effectiveness of integrating these fea-
tures with another learning model [13].

Reconstruction and prediction based methods

In recent years, the increasing prominence of deep
learning has driven the widespread adoption of both
reconstruction and prediction based methods in video
anomaly detection.

Reconstruction-based [4–8] approaches often utilize
auto-encoders to learn representations of normal video
frames and subsequently detect abnormal frames by
identifying higher reconstruction errors. However,
the powerful generalization ability of modern auto-
encoders can often also reconstruct anomalies. Thus,
making it harder to differentiate normal and abnormal
frames.

Prediction-based [3, 9–11] models forecast the sub-
sequent frame by leveraging a sequence of preced-
ing frames, employing time sensitive architectures such
as LSTMs, memory networks, 3D auto-encoders and
transformers. This predictive approach often yields su-
perior results compared to similar reconstruction-based
techniques [11], as it captures more complex forms of
anomalies. Nevertheless, with the minimal differences
between consecutive video frames, these methods face
similar challenges to reconstruction-based approaches
with respect to modern generators.

Auxiliary tasks methods

Expanding beyond reconstruction and prediction, some
models incorporate diverse self-supervised auxiliary
tasks, with task success determining frame anomaly
scores. These tasks include jigsaw puzzles [36], time
direction detection [37], rotation prediction [38],
and more. SSMTL++ [14, 39] train a single deep
backbone on multiple self-supervised tasks and achieve
state-of-the-art results on the benchmark datasets.

3 PROPOSED DATASETS
We introduce two novel datasets designed to assess
the capability of various models in detecting forms of
anomalies not covered by existing benchmarks. These
datasets emphasize action-based anomalies, a category
absent in current benchmarks. The first dataset, referred
to as HMDB-AD, aligns with the conventional defini-
tion of normal activities (walking and running) but chal-
lenges models with abnormal behaviors that demand a

broader context for detection (climbing and perform-
ing a cartwheel). In contrast, the larger and more in-
tricate HMDB-Violence dataset divides 16 action cate-
gories into 7 violent (abnormal) and 9 non-violent (nor-
mal) activities. This categorization necessitates models
to consider a wide range of behaviors when classifying
events as either normal or abnormal, making it a closer
representation of real-world scenarios.

HMDB-AD dataset

HMDB-AD is the simpler dataset among the two
introduced in this paper. It consists of 995 video clips,
divided into 680 training videos and 315 testing videos.
Normal activities within this dataset are running and
walking, aligning with their respective HMDB51
classes. Abnormal activities are climbing and per-
forming a cartwheel. The training dataset contains
only of normal videos: 207 running videos and 473
walking videos. Meanwhile, the test dataset has both
abnormal videos and randomly selected normal videos;
107 cartwheel videos, 108 climbing videos, 25 running
videos, and 75 walking videos. Frames from the videos
can be viewed in Appendix A.1.

HMDB-Violence dataset

HMDB-Violence is the larger and more complex of
the two datasets presented in this paper. It has 2,566
videos, with a distribution of 1,601 training videos
and 965 testing videos. The train set has nine nor-
mal categories: running (221 videos), walking (517),
waving (98), climbing (104), hugging (110), throw-
ing (96), sitting (134), turning (222), and performing
a cartwheel (99). In the test set, there are seven ab-
normal categories: falling (136), fencing (116), hitting
(127), punching (126), using a sword (127), shooting
(103), and kicking (130). Additionally, the test set in-
cludes 100 videos randomly sampled from the various
normal categories: turning (18), walking (31), running
(11), sitting (8), hugging (8), performing a cartwheel
(8), climbing (4), throwing (6), and waving (6). The
abnormal activities in HMDB-Violence are character-
ized by their violent nature. Examples can be viewed in
Appendix A.2.

Annotations

We maintain a consistent labeling for every frame
within a video. If a video represents a normal action
category, all its frames are labeled as normal. Con-
versely, if it belongs to an abnormal action category, all
frames are marked as abnormal. This simple labeling
approach works, as the actions within these videos
effectively occupy the entire duration, leaving minimal
room for unrelated "spare" frames.
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Figure 1: An overview of our feature extraction process.

Figure 2: An overview of our anomaly score calculation during inference.

4 MFAD: MULTI-FRAME ANOMALY
DETECTION

Our method, MFAD, consists of three key stages: fea-
ture extraction, per-feature score computation, and lo-
gistic regression. We extract four types of features: ob-
ject velocities, human pose estimations, deep image en-
codings, and deep video encodings. For each of these
features, we independently calculate density scores. We
then employ a logistic regression model to optimally
fuse the scores across these four feature kinds. Lastly,
we smooth, Gaussian, to produce the final anomaly
scores. An overview of our method can be found in
Fig. 1, Fig. 2.

4.1 Feature Extraction
Few-Frame Features

In line with AI-VAD [12], HF2-VAD [13], we extract
object bounding boxes and optical flows from each
frame. We then extract human pose estimations, object
velocities, and deep image encodings. These features
are derived from individual frames (pose and image en-
coding) or pairs of frames (velocity) enabling the detec-
tion of straightforward anomalies such as novel objects.

Multi-Frame Features

Recognizing the necessity for detecting complex
anomalies that span multiple frames, we introduce a
deep video encoder. This encoder captures features
in a manner similar to deep image encoding but takes
into account longer frame sequences (in our case, 16
frames). For this purpose, we leverage VideoMAEv2

[46], a state of the art video foundation model. Subse-
quently, we process these features in a fashion similar
to AI-VAD [12].

4.2 Density Score Calculation
We employ a Gaussian Mixture Model (GMM) for
the two-dimensional velocity features and the k-nearest
neighbors (kNN) algorithm for the high-dimensional
pose, image encoding, and video encoding features.
Subsequently, we compute the minimum and maximum
density scores for the training set and use them to cali-
brate the test scores during inference.

Max Feature

We add a fifth feature, denoted as max. After calcu-
lating the density scores per feature, we aggregate them
into a new feature that holds the maximum feature score
per frame.

max = max{P, V, IE, VE} ∈ [0,1]# f rames

Our experiments show the added value of this feature.

4.3 Logistic Regression
To improve the accuracy of our final anomaly score
computation, we incorporate logistic regression as the
final step of our method. In this setup, we denote
X ∈ [0,1]# f rames×# f eatures as the feature matrix and y ∈
{0,1}# f rames as our ground truth labels. Our final scores
are:

hθ (X) = σ(WX +B)
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Method Ped2 Avenue ShanghaiTech HMDB-AD HMDB-Violence

HF2-VAD [13] 99.3% 91.1% 76.2% – –
AED [40] 98.7% 92.3% 82.7% – –
HSC-VAD [41] 98.1% 93.7% 83.4% – –
DLAN-AC [42] 97.6% 89.9% 74.7% – –
SSMTL [39] 97.5% 91.5% 82.4% – –
LBR-SPR [43] 97.2% 90.7% 72.6% – –
AMMCNet [44] 96.6% 86.6% 73.7% – –

AI-VAD [12] 99.1% 93.3% 85.9% 70.1% 70.5%
Jigsaw Puzzles [36] 99.0% 92.2% 84.3% 53.8% 52.7%
MNAD [11] 97.0% 88.5% 70.5% 56.3% 51.3%
MPN [45] 96.9% 89.5% 73.8% 58.8% 53.7%

MFAD (Ours) 99.0% ± 0.5% 92.9% ± 0.5% 84.8% ± 0.4% 90.0% ± 0.4% 80.2% ± 0.2%
MFAD w/o IE (Ours) 98.4% ± 0.7% 90.7% ± 0.5% 85.0% ± 0.4% 86.9% ± 0.5% 76.0% ± 0.2%

Table 1: Comparison to frame-level AUC. Best (bold), second (underlined), and third (italic). IE, denotes image
encoding features.

where σ(t) = 1
1+e−t is the sigmoid function and θ =

(W,B) are the parameters we want to optimize. Our
loss function is:

L(hθ (X),y) =−y log(hθ (X))− (1− y) log(1−hθ (X))

During its training phase, we randomly sample a small
fraction of the test frames for model training, while the
remainder is used for evaluation. It is crucial to empha-
size that the frames utilized for training are excluded
from the evaluation process for our reported results, en-
suring the validity of our findings.

The final step in our method is applying Gaussian
smoothing to the anomaly scores.

5 EXPERIMENTS
5.1 Datasets
In addition to HMDB-AD and HMDB-Violence, we
evaluate MFAD on the three benchmark video anomaly
detection datasets: UCSD Ped2, CUHK Avenue, and
ShanghaiTech Campus. These datasets are primarily
outdoor surveillance camera footage, with the sole nor-
mal activity being pedestrian movement.

UCSD Ped2

The UCSD Ped2 dataset has 16 training videos and 12
testing videos, all situated within a single scene. Ab-
normal events in this dataset include the appearance of
skateboards, bicycles, or cars within the video frame.
Videos are standardized to a resolution of 240 × 360
pixels.

CUHK Avenue

The CUHK Avenue dataset has 16 training videos and
21 testing videos, all within a single scene. Anoma-
lies within this dataset are activities such as running,
throwing objects, and bike riding. All videos have a
resolution of 360×640 pixels.

ShanghaiTech Campus

ShanghaiTech Campus stands as the largest and most
complex dataset among the three, featuring 330 training
videos and 107 testing videos distributed across 13 dis-
tinct scenes. Notably, two of these scenes involve non-
stationary cameras, resulting in varying angles between
videos of the same scene. Abnormal events primarily
include running and the presence of cars and bikes. All
videos have a resolution of 480×856 pixels.

5.2 Implementation details
We adopt the code from AI-VAD for extracting veloc-
ity, pose, and deep image encoding features. For our
new deep video features, we leverage the state-of-the-
art video foundation model, VideoMAEv2 [46], with
the publicly available pretrained weights, fine-tuned
on the SSv2 dataset (vit_g_hybrid_pt_1200e_ssv2_ft).
Our encoding process is carried out on non-overlapping
consecutive blocks of 16 frames, extracting Tempo-
ral Action Detection (TAD) features for each block.
In our experiments, we found no difference in results
between non-overlapping blocks and sliding-window
blocks. When employing the nearest neighbors algo-
rithm to the video encoding features, we set k = 1.

We employ AlphaPose for pose estimation, derive
object velocity through optical flows computed via
FlowNet2, and utilize YOLOv3 for object detection.
For deep image encoding, we leverage CLIP, using a
ViT-32 backbone.

Our code and a setup guide are available on https://
github.com/yoavarad/MFAD.

5.3 Anomaly Detection Results
Our results are based on our optimal model configura-
tion, see Section 5.4. This configuration involves lever-
aging all four feature types and the max feature while
training a logistic regression model on a random 2% of
the test set frames for computing final anomaly scores.
It is crucial to note that the data used for training the
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Configuration Ped2 Avenue ShanghaiTech HMDB-AD HMDB-Violence

VE 80.3% 87.9% 71.3% 84.9% 75.8%
P + V [12] 98.7% 86.8% 85.9% 54.2% 56.1%
P + V + IE [12] 99.1% 93.5% 85.1% 71.2% 67.9%
P + V + VE 95.8% 91.0% 83.5% 77.8% 70.3%
P + V + IE + VE 96.8% 92.6% 83.0% 82.9% 75.2%
P + V + IE + VE + max 97.0% 92.8% 82.1% 85.1% 76.7%

Table 2: Comparison of different model configurations, evaluating the impact of various feature types, including
pose features (P), velocity features (V), image encoding features (IE), and video encoding features (VE), on the
model’s performance. max is the max value between {P, V, IE, VE}. Best and second best results are in bold and
underlined, respectively.

logistic regression model is not included in the evalua-
tion. To ensure reliability, we repeat this final step 100
times and report the mean AUC result along with the
standard deviation. The consistently low standard devi-
ation across all datasets underscores the stability of our
method.

MFAD demonstrates competitive results on the well-
established benchmark datasets, with modest differ-
ences of approximately -0.3%, -0.8%, and -1.1% from
the state-of-the-art results on Ped2, Avenue, and Shang-
haiTech, respectively. The true strength of our ap-
proach becomes evident when applied to the newly in-
troduced datasets, HMDB-AD and HMDB-Violence.
On these datasets, we achieve substantial improvements
of 19.9% and 9.7%, respectively.

MFAD was tested against four different methods on
these new datasets, including AI-VAD [12], upon
which our work is built and is the state-of-the-art on the
ShanghaiTech dataset. This substantial enhancement
highlights the generalizability of our approach to
various complex anomalies, without majorly impacting
our detection ability of simple anomalies, underscoring
the significance of our contributions. For detailed
comparison see Table 1. We further report the configu-
ration of MFAD without image encoding (IE) features,
improving results on ShanghaiTech by 0.2%.

MFAD faces similar challenges to previous methods
when evaluated against the benchmark datasets. Par-
ticularly, the object-oriented aspect of MFAD struggles
when confronted with scenarios involving closely clus-
tered pedestrians.

In addition to quantitative evaluations, we conducted
qualitative analyses on videos from the ShanghaiTech
dataset, which feature more complex anomalies beyond
novel object detection. These anomalies are shown
in Appendix B. The positive impact of our method
is clearly evident in Fig. 3, where abnormal frames
receive higher anomaly scores, while normal frames
receive lower anomaly scores, further validating our
method.

Figure 3: Qualitative results from four ShanghaiTech
videos: 01_0028, 03_0032, 03_0039, 07_0008 (respec-
tively). In each pair, MFAD (left) is compared to AI-
VAD [12] (right). Anomalous sections are highlighted
in red, while the anomaly scores, ranging from 0 to
1, are the blue line. These videos feature complex,
behavior-based anomalies rather than novel object de-
tection scenarios, that are more common in this dataset.
Clearly, MFAD improves both detecting anomalies and
accurately assessing normal parts of the video. Best
viewed in color.

5.4 Ablation Study
We perform an ablation study to determine two factors:
the added benefit of the video encoding feature, and the
most favorable configuration for the logistic regression
module.

Feature Selection

In their ablation study, AI-VAD [12] demonstrated the
incremental value of their three distinct feature types:
pose estimation, deep image encoding, and velocity
features, as well as the added effect of Gaussian
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Configuration Ped2 Avenue ShanghaiTech HMDB-AD HMDB-Violence

α = 0% 96.8% 92.6% 83.0% 82.9% 75.2%
α = 1% 98.5% ± 1.1% 92.5% ± 0.6% 84.5% ± 0.6% 89.6% ± 0.6% 79.6% ± 0.3%
α = 2% 99.0% ± 0.6% 92.7% ± 0.7% 84.7% ± 0.4% 89.9% ± 0.4% 79.7% ± 0.2%
α = 3% 99.2% ± 0.5% 92.7% ± 0.7% 84.8% ± 0.4% 89.9% ± 0.3% 79.7% ± 0.1%
α = 4% 99.4% ± 0.3% 92.7% ± 0.7% 84.7% ± 0.3% 89.9% ± 0.3% 79.8% ± 0.1%
α = 5% 99.4% ± 0.4% 93.0% ± 0.6% 84.8% ± 0.3% 90.0% ± 0.2% 79.8% ± 0.1%
α = 10% 99.5% ± 0.2% 92.9% ± 0.6% 84.8% ± 0.2% 90.1% ± 0.2% 79.8% ± 0.1%
α = 20% 99.6% ± 0.1% 93.1% ± 0.5% 84.8% ± 0.2% 90.2% ± 0.2% 79.8% ± 0.1%
α = 50% 99.7% ± 0.1% 93.1% ± 0.3% 84.8% ± 0.2% 90.2% ± 0.2% 79.7% ± 0.3%
α = 90% 99.7% ± 0.3% 93.2% ± 0.6% 84.8% ± 0.7% 90.2% ± 0.5% 79.8% ± 0.8%

α = 0% + max 97.0% 92.8% 82.1% 85.1% 76.7%
α = 1% + max 98.5% ± 0.8% 92.5% ± 0.6% 84.5% ± 0.6% 89.8% ± 0.5% 80.2% ± 0.3%
α = 2% + max 99.0% ± 0.5% 92.9% ± 0.5% 84.8% ± 0.4% 90.0% ± 0.4% 80.2% ± 0.2%
α = 3% + max 99.1% ± 0.7% 92.9% ± 0.6% 85.0% ± 0.3% 90.0% ± 0.3% 80.2% ± 0.2%
α = 4% + max 99.3% ± 0.5% 93.0% ± 0.5% 85.1% ± 0.3% 90.1% ± 0.3% 80.2% ± 0.2%
α = 5% + max 99.3% ± 0.4% 93.0% ± 0.4% 85.1% ± 0.3% 90.2% ± 0.3% 80.2% ± 0.2%
α = 10% + max 99.5% ± 0.2% 93.0% ± 0.4% 85.2% ± 0.2% 90.2% ± 0.2% 80.2% ± 0.2%
α = 20% + max 99.6% ± 0.1% 93.0% ± 0.3% 85.2% ± 0.2% 90.3% ± 0.2% 80.1% ± 0.2%
α = 50% + max 99.7% ± 0.1% 93.0% ± 0.3% 85.3% ± 0.2% 90.4% ± 0.2% 80.1% ± 0.3%
α = 90% + max 99.7% ± 0.2% 93.1% ± 0.6% 85.3% ± 0.6% 90.4% ± 0.5% 80.1% ± 0.8%

Table 3: Performance comparison between various model configurations, with different amounts of training data
for the logistic regression model. α represents the proportion of test set frames employed for the training, with
these frames excluded from model evaluation. We repeat the process 100 times, and both mean and standard
deviation values are reported. The first half uses the basic four features, and the second half also uses the extra max
feature. Best and second best results are highlighted in bold and underlined, respectively. The minimal difference
in results between different values of α > 0% is evident.

smoothing. Expanding upon their work, we test the
impact of incorporating deep video encoding features
in different forms. Our study consists of tests involving
both video encoding features in isolation, the combi-
nation of all four feature types, and the addition of an
extra max feature, that has the value of the maximum
feature score per each frame. Furthermore, we explore
the substitution of image encoding features with video
encoding features due to their semantic similarity.

As presented in Table 2, utilizing solely video encod-
ing features yields impressive performance for multi-
frame anomalies. However, this specialization comes at
the cost of lower performance on the traditional video
anomaly detection datasets. On the other hand, employ-
ing all four feature types results in a comprehensive and
well-balanced model that performs admirably across all
datasets, even though it may not achieve the top rank in
any specific dataset.

Logistic Regression

When incorporating the logistic regression model, we
conducted experiments to assess the impact of varying
amounts of additional training data extracted from the
testing set. Specifically, we explored using 1-5%, 10%,
20%, 50%, 90% of the frames for the training. We used
both the configuration using only the four basic features

and the configuration also using the additional max fea-
ture. The results, as presented in Table 3, indicate that
the amount of extra training data has minimal effects,
as long as there is some extra data. We repeated each
configuration 100 times and reported both the mean and
standard deviation values. The consistently low stan-
dard deviation values observed across all configurations
and datasets underscore the robustness of our approach.
We chose 2% extra data with the max feature as the op-
timal trade-off between extra data and efficacy.

6 CONCLUSION
Our paper introduces a broader interpretation of anoma-
lies, encompassing both simple anomalies, commonly
found in existing benchmarks, and multi-frame com-
plex anomalies. Building upon the foundation laid by
AI-VAD [12], we present a novel method that achieves
state-of-the-art performance on our proposed datasets
while remaining competitive with recent methods on
benchmark datasets. We introduce two new datasets of
varying complexity, designed to assess the ability of fu-
ture models to detect complex action-based anomalies.

In future work, we aim to explore even more intricate
types of anomalies, such as location and time-based
anomalies (e.g. detecting normal actions occurring at
abnormal locations or times) thus further advancing the
field of general anomaly detection in videos.
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A SAMPLES FROM PROPOSED DATASETS
A.1 HMDB-AD Examples

Figure 4: HMDB-AD examples: cartwheel (2), climb (2), run (2), walk (2).

A.2 HMDB-Violence Examples

Figure 5: HMDB-Violence examples: wave, turn, throw, sit, hug, fall, sword, shoot, punch.
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B VIDEOS FOR QUALITATIVE ANALYSES

Figure 6: The anomalies from 01_0028, 03_0032, 03_0039, 07_0008 (top to bottom, respectively) videos from
ShanghaiTech Campus dataset.
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