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ABSTRACT
This paper introduces an enhanced Denosing Autoencoder (DAE) model, incorporating a novel attention mecha-
nism, for the segmentation of solar coronal loops. This work is based on DAE framework to address the segmenta-
tion challenges posed by intricate structures of coronal loops which also appear with other solar features and image
noises. Specifically, we introduce Encoding-Aware Decoding Attention (EADA) to all decoding stages of DAE,
which resulted in improvement in coronal loop segmentation. Our models are validated through experiments on a
synthetic image dataset of 11,000 images and a test dataset of 165 real coronal images of the NASA’s Solar Dy-
namics Observatory (SDO) satellite mission. Compared to the state-of-the-art coronal loop segmentation baseline,
our attention-enhanced model results in better loop gap-filling and higher segmentation metrics (i.e., 3.6% increase
in accuracy, 11.4% better recall and 5.6% higher precision).
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1 INTRODUCTION
In recent years, deep learning algorithms have emerged
as powerful tools in image processing and computer
vision, offering significant improvements in handling
complex patterns and structures in various application
domains. In this paper, we introduce an attention-
enhanced deep learning model for accurate solar feature
segmentation.

Solar coronal loops, which are highly structured and
dynamic features in the solar corona, play a crucial role
in understanding solar physics and the mechanisms be-
hind solar activities. These solar activities can impact
our daily life (e.g., disrupting electrical grids, damaging
communication satellites and navigation systems). The
coronal loops, visible in extreme ultraviolet (EUV) and
X-ray wavelengths, are fundamentals in studying the
Sun’s magnetic field structure and its evolution. How-
ever, the accurate segmentation of these loops from so-
lar images is a very challenging task due to their in-
tricate structures, varying brightness, and the presence
of other solar features and image noises. Fig. 1 is an
example of coronal loop sub-image from NASA’s So-
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Figure 1: A sub-image of SDO coronal image (image
credit: NASA’s SDO Mission).

lar Dynamics Observatory (SDO) satellite mission. As
shown in the image, the coronal loops (i.e., the bright
arcing structures) have complex shapes with varying in-
tensities and blurry boundaries. There are also non-loop
features and noises on the image.

In this paper, we present a Denoising Autoencoder
(DAE) enhanced by a new attention module, aimed at
advancing coronal loop segmentation. To our knowl-
edge, our work is the first attempt to consider attention-
based DAE for coronal loop segmentation. The paper
is organized as follows. In Section 2, we discuss re-
lated works. Section 3 introduces our new method and
Section 4 outlines the experimental setup followed by
experimental results. Section 5 concludes the paper.
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2 RELATED WORK
2.1 U-Net and DAE
Machine learning/deep learning algorithms have been
used in many image segmentation applications (e.g.,
[gon16, lk16, tme22]). Among them, U-Net [rfb15]
and Denoising Autoendcoder (DAE) [vlb08] have
widely been used recently.

U-Net (e.g., [rfb15, bkc17]) is based on the encoder-
decoder architecture that follows a symmetric contract-
ing and expansive path. U-Net’s unique feature lies in
its use of skip connections, facilitating the direct in-
formation propagation from contracting layers to corre-
sponding layers in the expansive path. These horizontal
propagation structures, known as skip connections, al-
low the concatenation of contractive path information
and expansive path information before up-sampling.

DAE [vlb08] is a class of autoencoders that normally
operate on an unsupervised learning paradigm, where
the network is trained to reconstruct clean data from
corrupted input during the training phase. The train-
ing process involves introducing corruption to the in-
put data and optimizing the model to minimize the
reconstruction error, encouraging the network to cap-
ture meaningful features while filtering out irrelevant
noise. Feature extraction and dimensionality reduction
tasks are efficiently handled by the denoising autoen-
coder (e.g., [fbh17, vll10, xmy16]). DAEs showed
promising results in removing noise while completing
the encoding-decoding process. However, not as many
DAEs have not been studied for segmentation.

2.2 Solar Coronal Loop Segmentation
Several methods have been introduced for solar coronal
loop segmentation. Oriented Connectivity-based
method (OCM) [lng06a] and Dynamic Aperture-based
method (DAM) [lng06b] employed image processing
and constructive feature segmentation by exploring
physical constraints and coronal loop feature’s inten-
sity profiles, respectively. An enhanced version of
the OCM has also been introduced [asc10]. A solar
loop mining system which includes a block-by-block
loop segmentation for retrieving coronal loop images
has been introduced by Durak et al. [dnc09, dnc10].
McAteer et al. [mka10] utilized a 2D Wavelet-based
smoothing function as an edge detector for segmenting
coronal loops. Lee and Tang [let11] presented an
active contour-based model where the minimization
of the spline energy constrained by the physical shape
of the coronal loop’s intensity profiles allowed more
robust loop segmentation. Zhiming et al. [zxz19]
presented a coronal loop segmentation method that
exploits a clustering algorithm based on approximated
local directionality determined by a match and image
enhancing filters. To our best knowledge, a recent

work by Moradi et al. [mlt21] was the only work that
explored a deep learning algorithm (i.e., a U-Net) for
segmenting the coronal loops.

2.3 Attention Module for Enhanced Im-
age Segmentation

Self-Attention [gsy21], Bottleneck Attention Mod-
ule (BAM) [pwl18], Convolutional Block Attention
Module (CBAM) [wpl18] that focus on channel and
spatial attention, and criss-cross attention [hwh19]
are all attention-equipped approaches to reinforce
their respective neural networks. Using denoising
autoencoders, missing data imputation is achieved by
implementing mask attention in DAEMA [tfj21]. Real
Image Denoising [anb19] with feature attention uses
attention in a modular manner and achieves superior
performance. Motivated by the use of attention in neu-
ral networks, we propose our feature attention block
for the denoising autoencoder that directs the model’s
attention to foreground pixels in segmenting coronal
loops. As we will show later, this novel approach leads
to improved performance metrics. It can also enhance
the segmentation of loops previously categorized as
“disconnected". We refer to this segmentation of
disconnected loops into one cohesive loop as the
gap-filling effect in this paper.

3 OUR METHODOLOGY
In this section, we introduce our new attention-aware
denoising autoencoder (AtnDAE) for coronal loop
segmentation. Particularly, we propose the Encoding-
Aware Decoding Attention (EADA), a new attention
mechanism that enhances the segmentation of coronal
loops by integrating attention at each stage of the
decoding path, taking into account the corresponding
layer from the encoding path. Fig. 2 illustrates the

Figure 2: Illustration of our Attention-aware DAE ar-
chitecture. Details of the Encoding-Aware Decoding
Attention (EADA) block are shown in Fig. 3.
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Figure 3: Encoding-Aware Decoding Attention
(EADA) block. This block is integrated at each stage
of our attention-enhanced DAE (Fig. 2). It utilizes in-
formation from both the decoding input (input_1) and
its corresponding encoding features (input_2).

overall architecture of our AtnDAE, with the details of
our EADA attention fusion block depicted in Fig. 3.
Our novel attention mechanism is particularly benefi-
cial for addressing imbalanced data like corona images,
where the background pixels substantially outnumber
the foreground pixels. Each EADA block selectively
emphasizes the foreground loop structures, which are
often overshadowed by the complex background of
solar images.

As shown in Fig. 2, our EADA attention fusion block is
integrated at every stage of the decoding path, leverag-
ing information from both the decoding input (i.e., in-

(a) synthetic image (b) real image

Figure 4: A sample of synthetic and real images.

put_1 in Fig. 3) and the corresponding encoding layer
(i.e., input_2 in Fig. 3) at each stage. This setup ensures
that the EADA mechanism has access to both more
location-accurate features in the encoder and highly se-
mantic features in the decoder. The information from
the encoding phase directs more accurate attention to-
ward the foreground loop structures, facilitating the re-
finement and amplification of the distinctive curvilinear
features found in coronal loops. Through dot multipli-
cation, such attention is applied to a transformed com-
bination of encoding and decoding features. The above
attention-enhanced results are then concatenated with
the regular decoding output, followed by further con-
volutions before arriving at the output for the EADA
block.

In our attention-aware DAE, batch normalization is
used to reduce the chance of overfitting and improve
the training stability. ReLU is used as the activation
function.

4 EXPERIMENTS AND RESULTS
This section first outlines the dataset and experimental
setup utilized in our study. Then, we provide a compar-
ative assessment of our novel attention-aware denoising
autoencoder (AtnDAE), including both quantitative and
qualitative analyses. Specifically, we compare the per-
formance of the U-Net and traditional DAE models in
the context of coronal loop segmentation and present
the results of our improved attention-aware DAE.

4.1 Dataset
In our experiments, 11,000 synthetic coronal images
and 165 real coronal images were used. The synthetic
coronal images were created using the scheme, includ-
ing the image noises, used in [lng06a, lng06b, let11]
as it was one of the most popularly used synthetic im-
ages of the solar corona. The synthetic images were of
256×256 and the coronal loops were represented as the
magnetic field lines derived from a physical magnetic
model. (Solar physicists consider the corona loops as
the traces of the magnetic fields around the Sun.) The
primary benefit of using the synthetic images based on
this scheme is that the ground truth masks (i.e., labels)
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(a) 16×16 (b) 32×32

(c) 64×64 (d) 128×128

Figure 5: Accuracy over range of parameters for different bottleneck sizes-16×16, 32×32, 64×64, 128×128.

are available for training. In our synthetic image set,
we have included loops that are broken (e.g., “gaps"
within a loop, abruptly ending loops) which are often
present in the real coronal loops due to 3D-to-2D pro-
jection, viewpoint occlusion, and noise and non-loop
features in the image. No other prior study have con-
sidered this in coronal loop segmentation. 10,000 syn-
thetic images were used for 80-20 training-validation
split. The rest of 1,000 synthetic images were used as
the test set. The real coronal images were obtained from
the NASA’s SDO satellite mission. The ground truth
masks (i.e., labels) were determined from manual seg-
mentation. Fig. 4 shows a sample of synthetic and real
corona images.

4.2 Experimental Setup
All executions utilize a conda environment with Ten-
sorFlow version 2.8, cuda version 11.2.2, and Python
version 3.8.12. A test on a range of 10 models is per-
formed to select the best-performing model on each of
the bottleneck sizes. Each model is trained for 200
epochs. The training of AtnDAE is optimized using the
Adam optimizer [kib14] with a learning rate carefully
selected to balance fast convergence and training sta-
bility. A range of learning rates between 0.1 to 0.00001
was tested. For DAE, a learning rate of 0.01 is selected
while a learning rate of 0.002 is used for U-Net. To

make a fair comparison, all the key hyperparameters are
kept the same for both types of architectures, including
bottleneck size, filter count, layer count, input and out-
put dimensions, and batch size.

4.3 Quantitative Comparison
In this and the next subsection, we conduct quantita-
tive and qualitative comparative analyses between U-
Net and DAE models in the segmentation of coronal
loops, providing rationale for selecting the DAE model
as the basis for our approach. The improved results of
our attention-aware DAE will be shown in Sec. 4.5.

4.3.1 Accuracy, Recall, Precision

Fig. 5 illustrates the accuracy over a range of differ-
ent numbers of parameters for four different bottleneck
sizes. The top sub-figures demonstrate that accuracy
tends to plateau at approximately 94% for bottleneck
sizes of 16×16 and 32×32. For larger bottleneck sizes
of 64×64 and 128×128, the accuracy of the DAE sat-
urated at around 94%, whereas the U-Net’s accuracy
decreases, leveling off at about 93%. The DAE reached
its highest accuracy with a bottleneck size of 32×32.
The most significant discrepancy in accuracy between
DAE and U-Net occurred at bottleneck sizes larger than
64×64. Among all 40 models tested, the DAE reached
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Table 1: Performance metrics across bottleneck sizes
using the synthetic dataset.

Category Accu. Recall Prec. #Params

16×16_DAE 0.921 0.649 0.783 27,457
16×16_U-Net 0.929 0.699 0.795 28,986
32×32_DAE 0.941 0.766 0.825 27,457
32×32_U-Net 0.940 0.774 0.816 28,986
64×64_DAE 0.939 0.767 0.812 19,101
64×64_U-Net 0.931 0.722 0.792 18,653
128×128_DAE 0.939 0.749 0.821 12,257
128×128_U-Net 0.930 0.794 0.750 10,588

a peak accuracy of 94.1%, slightly higher than the U-
Net counterpart.

Next, the accuracy, recall, and prevision for the mod-
els of similar sizes are compared and shown in Table 1.
Each model had 4 bottlenecks. The bold values indicate
the best performance within each bottleneck size for the
respective metric. As the bottleneck size increases, the
best performance shifts between the models for differ-
ent metrics. Overall, DAE outperforms U-Nets, partic-
ularly in terms of accuracy and precision at large bot-
tleneck sizes.

4.3.2 ROC Curve and AUC
The Receiver Operator Characteristic (ROC) curve
plots the true positive rate against the false positive
rate, and the Area Under the Curve (AUC) summarizes
the ROC Curve. Across the different bottleneck sizes,
the ROC Curves were very similar, converging nearly
to 1.0 before false positive rate reaching 0.2. (The ROC
Curve plots are omitted due the space limit.) The AUCs
for U-Net and DAE were also similar, approximately
around 0.973. (Here, we note that the AUC of our new
attention-aware DAE was 0.992.)

4.3.3 Confusion Matrix
Fig. 6 and Fig. 7 illustrate the confusion matrices for
DAE and U-Net, respectively. (For an imbalanced
dataset like the coronal images, the number of 0s, i.e.
background, is much higher than the number of 1s, i.e.,
loop pixels.) According to the results, the percentage of
predicted true positives is higher for DAE for the bot-
tleneck sizes of 32×32, 64×64, and 128×128. (This
matches the accuracy shown in Table 1.)

4.3.4 Performance and Training Data Size
For the next analysis, we explore how the size of the
training data impacts model performance. This inves-
tigation aids in identifying which model type is more
data efficient and which is more susceptible to overfit-
ting. Fig. 8 shows the accuracy of the U-Net and DAE
for training data sizes of 500, 1,000, 5,000, and 10,000.
According to the results, DAE performed better across

Figure 6: Confusion Matrices for DAE on our dataset
across each of the tested bottleneck sizes - 16×16,
32×32, 64×64 and 128×128.

Figure 7: Confusion Matrices for U-Net on our dataset
across each of the tested bottleneck sizes - 16×16,
32×32, 64×64 and 128×128.

Figure 8: Accuracy vs. training data size (e.g., 500,
1,000, 5,000, and 10,000). Model bottleneck size:
16×16.
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all training data sizes. Table 2 shows different model
performance metrics across various training data sizes.
As we can see, U-Net is less data efficient as the ac-
curacy is much lower when the training data is limited
(e.g., 500). This lower accuracy also demonstrates U-
Net’s higher vulnerability to overfitting. As the training
data amount increases, the accuracy of U-Net improves.
However, it decreases again when the data size reaches
10,000. On the other hand, DAE consistently maintains
higher accuracy across varying sizes of training data.

4.4 Qualitative Comparison
In this subsection, we offer a qualitative assessment of
U-Net and DAE by discussing visual observations of
model predictions and evaluating the models’ effective-
ness in gap-filling.

4.4.1 Visual Observations
Fig. 9 shows the predictions of U-Net and DAE for both
a synthetic coronal image sample (in (a)) and a real im-
age sample (in (b)). The test image and its ground truth
(i.e., labels) are shown on the left-most column of each
sub-figure. The prediction results of the models using
four different bottleneck sizes are shown on the four
right columns, labeled by the bottleneck sizes.

In the predictions on synthetic images, both U-Net and
DAE produced very comparable results, with the pre-
dicted curves appearing fuzzier when smaller bottle-
neck sizes were utilized in both models. In predictions
on the real image, U-Net demonstrated a great ability to
accurately capture curvilinear structures when the bot-
tleneck size is small (16×16). This is likely attributed
to the skip connections in U-Net. However, as the bot-
tleneck size increased, DAE’s predictions improved and
seemed more accurate, whereas U-Net produced signif-
icantly more false positives than DAE.

4.4.2 Gap-Filling Effects
As described in Section 4.1, certain loops may exhibit
discontinuities. Fully segmenting such loops would
help solar physicists in understanding the underlying

Table 2: Results of 16×16×256 model on various train-
ing data sizes. # of parameters were 784,385 and
1,179,121 for DAE and U-Net, respectively

Models Size Accu. Recall Prec.
DAE 500 93.48% 78.67% 78.77%
U-NET 500 91.47% 78.67% 68.47%
DAE 1,000 92.68% 66.94% 80.35%
U-NET 1,000 92.03% 79.70% 70.40%
DAE 5,000 93.41% 86.00% 73.82%
U-NET 5,000 93.09% 80.28% 74.88%
DAE 10,000 93.82% 80.30% 78.51%
U-NET 10,000 91.38% 80.52% 67.56%

properties of the coronal loops. Fig. 10 demonstrates
the gap-filling performance by the U-Net and DAE (we
select the bottleneck size of 32×32 according to Ta-
ble 1). Sub-figure (a) shows the ground truth magnetic
field lines. Sub-figure (b) is the synthetic corona im-
age generated from the magnetic field lines shown in
sub-figure (a). As shown in the figure, there are dis-
connected loops, such as those in the top left and bot-
tom left corners. Sub-figures (c) and (d) show the pre-
dictions of U-Net and DAE. As shown in the figures,
both prediction models achieved reasonably well accu-
rate segmentation. However, the DAE demonstrated a
more noticeable gap-filling effect than the U-Net.

4.5 Results of New Attention-aware DAE
Next, we will analyze the performance of our attention-
aware DAE (i.e., AtnDAE) based on the proposed
Encoding-Aware Decoding Attention (EADA) mecha-
nism. Compared with competing baselines, our novel
AtnDAE exhibited superior segmentation performance,
encompassing the gap-filling effect, in both quantitative
and qualitative dimensions. As shown in Table 3, our
AtnDAE outperformed DAE significantly in accuracy,
recall, and precision, underscoring the effectiveness of
our attention mechanism.

Fig. 11 shows the prediction of our AtnDAE on a syn-
thetic image example. In the figure, regions of the im-
age where the gap-filling effect is noticeable are high-
lighted with red circles. As shown in the figure, all
loops were not only distinctly segmented (with no blur-
ring or missing loops), but all gaps were also effec-
tively filled. Fig. 12 demonstrates the comparison of the
gap-filling effect among U-Net, DAE, and our new At-
nDAE. Our AtnDAE not only achieved superior clarity
in segmenting the loops but also effectively addressed
gaps within them, areas overlooked by both the U-Net
and DAE models. Fig. 13 shows the confusion ma-
trix for our AtnDAE model. Compared to the DAE and
U-Net models, there was an increase in both true posi-
tives and true negatives, accompanied by a decrease in
both false positives and false negatives. For example,
the false positives and false negatives were 3.55% and
2.58% for the DAE, 4.20% and 2.35% for the U-Net,
and 1.54% and 1.81% for the AtnDAE. (Refer to the
top-right sub-images in Fig. 6 for the DAE and in Fig. 7
for the U-Net, respectively.)

More segmentation results obtained with our AtnDAE
are displayed in Fig. 14.

Table 3: Performance of DAE and AtnDAE.

Model Accu. Recall Prec.
32x32-DAE 0.939 0.741 0.829

32x32-AtnDAE 0.967 0.888 0.872
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(a) Predictions on Synthetic Image

(b) Predictions on Real Image

Figure 9: Predictions of U-Net and DAE using different bottleneck sizes.

4.6 Ablation Study: Influence of Loss
Functions

We have investigated nine loss functions for coronal
loop segmentation. Table 4 presents the selected loss
functions with their corresponding performance met-
rics. In the table, the top three values for each metric
are highlighted. The binary cross-entropy, Binary Dice,
and Dice Loss had the highest accuracy. Combo Loss,
Focal Tversky, and Tversky Loss had the highest recall.
The binary cross-entropy, Focal Loss, and Binary Tver-
sky had the highest precision. Given the results, we use
binary cross entropy for all previous experiments.

5 CONCLUSION
In conclusion, we present a new approach for auto-
mated segmentation of solar coronal loops through the
development of the attention-aware Denoising Autoen-
coder (AtnDAE). This novel approach, integrating an
Encoding-Aware Decoding Attention (EADA) mecha-
nism, has significantly improved the segmentation ac-
curacy, demonstrating superior performance over com-

Table 4: Performance of different loss functions. Base
model: 32x32 DAE. Accu.: Accuracy, Prec.: Precision.

Loss Function Accu. Recall Prec.
BinaryCrossEntropy 0.9390 0.7670 0.8120
Binary Dice 0.9388 0.8511 0.7633
Dice Loss 0.9378 0.8446 0.7615
Focal Loss 0.9375 0.7426 0.8189
HED Loss 0.9242 0.9325 0.6775
Combo Loss 0.9216 0.9387 0.6673
Binary Tversky 0.9190 0.5160 0.8913
Focal Tversky 0.9121 0.9514 0.6359
Tversky Loss 0.9117 0.9517 0.6347

peting models such as the U-Net and DAE. The quan-
titative and qualitative assessments highlight the At-
nDAE’s improved capacity for achieving higher levels
of accuracy, precision, and recall. Additionally, they
underscore its effectiveness in addressing the inher-
ent challenges of gap-filling in coronal loop imagery.
These findings underscore the significance of integrat-
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(a) ground truth mask (b) test image with gap

(c) U-Net prediction (d) DAE prediction

Figure 10: Gap-filling by U-Net and DAE. Number of
layers: 6. Bottleneck size: 32×32.

(a) Synthetic Image (b) AtnDAE Prediction

Figure 11: AtnDAE prediction on a synthetic corona
image with gap-filling effects marked. Number of lay-
ers: 6. Bottleneck size: 32×32.

ing attention mechanisms into deep learning models for
intricate pattern recognition tasks. Moreover, they em-
phasize the potential of the AtnDAE to make substantial
contributions to our understanding of solar physics, of-
fering a more reliable tool for analyzing coronal loops.

The comparative analyses showed the robustness of
DAE models against varying conditions, including dif-
ferent bottleneck sizes and training data volumes, af-
firming its resilience to overfitting. The exploration of
multiple loss functions has provided additional insights,
guiding the selection of the most effective loss function
for this specific task.

For future work, our aims include devising a
neighborhood-aware loss function capable of ad-
dressing more intricate features and a systematic
evaluation of synthetic data. Additionally, we seek
to investigate the integration of our approach with

(a) test image (b) U-Net prediction

(c) DAE prediction (d) AtnDAE prediction

Figure 12: Gap-filling by U-Net, DAE, and AtnDAE.
Number of layers: 6. Bottleneck size: 32×32.

Figure 13: Confusion Matrices for the new AtnDAE on
our dataset with the bottleneck size of 32×32.

other deep learning architectures, such as transformers.
Furthermore, we aspire to expand the application of
this methodology to tackle challenging segmentation
tasks in various other fields of scientific interest.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14: Segmentation results by AtnDAE: (a-d) ground truth, (e-h) test image, (i-l) AtnDAE predictions. Num-
ber of layers: 6. Bottleneck size: 32×32.
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