
Texture-based Global Illumination for Physics-Based Light
Propagation in Interactive Web Applications

Adrian Roth
University of Applied Sciences and Arts

Northwestern Switzerland
Hochschule für Technik

Bahnhofstrasse 6
5210 Windisch

adrian.roth.ar@proton.me

Hilko Cords
University of Applied Sciences and Arts

Northwestern Switzerland
Hochschule für Technik

Bahnhofstrasse 6
5210 Windisch

hilko.cords@fhnw.ch

ABSTRACT
Lamps are difficult to market via websites. Renderings and photographs of showrooms rarely fit consumer pref-
erences and demands and the technical specifications for lighting are unintuitive and difficult to understand for
non-experts. This poses a challenge for lighting system manufacturers and suppliers, as customers increasingly
make purchases online. Giving customers the option to see how a lamp affects the environment would provide them
with an intuitive way to find a suitable product. Unfortunately, expensive global illumination rendering methods
are required to accurately simulate the effect of a specific lamp on the environment. However, contemporary meth-
ods are not suited for low-end consumer hardware or interactive web-applications. Therefore, we present a new
texture-based global illumination method that simulates the effect of specific lamps on complex, polygonal 3D
geometries on the GPU. Our method employs iterative light propagation to pre-compute the illumination in texture
space, leveraging GPU-based bounding volume hierarchies. Our method can provide pre-calculated physics-based
lighting on demand in under a second for interactive scenarios in browsers using WebGl - outperforming state-of-
the-art offline renderers significantly.

Keywords
physics-based simulation, real-world lights, pre-calculated global illumination, light propagation, texture-based,
real-time web-applications, polygonal objects

1 INTRODUCTION

The characteristics of lights are abstract and difficult
for non-experts to grasp intuitively. Thus, manufac-
turers and retailers of lamps and lighting systems find
it challenging to market their products through a web-
site. Images of showrooms, such as seen in Figure 1,
are commonly used to showcase lighting systems in the
real-world. However, this may not meet consumer pref-
erences and needs and cannot demonstrate the lighting
system in the user’s actual environment. Furthermore,
the visual perception of lighting systems is heavily de-
termined by the concrete room and furniture in which
they are installed. Especially if there is a large amount
of indirect lighting.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Example of a lamp showcase from the company
Ribag AG [Rib24].

Previously, we developed a web configuration tool that
determines physical light distribution properties based
on physical lamp data (IES-data [Ill91]) using global
illumination (GI) [Rie+23]. By applying an analyti-
cal solution for concave, rectangular, cuboidal rooms
to solve the rendering equation, we achieved high per-
formance on GPUs and mobile devices and determined
accurate physical light distributions within milliseconds
(Figure 2). This lets us provide pre-calculated GI on

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

97https://www.doi.org/10.24132/CSRN.3401.11



demand in under a second, allowing users to re-render
scenes for a quick and iterative design process in a web
browser.

However, without furniture, the rooms are lifeless and
cannot accurately represent a customer’s unique envi-
ronment. Furthermore, the empty rooms struggle to
convey their size or scale, making it difficult to under-
stand the effect of lighting systems in real-world set-
tings.

Figure 2: An empty room with several lamps rendered phys-
ically accurate with analytical GI [Rie+23].

To address this issue, we propose a GI approach for cre-
ating physically accurate illumination of IES-Data in
furnitured scenes. As a result, we suggest implement-
ing spatial acceleration methods on the GPU while fa-
cilitating only the most basic OpenGL features in or-
der to significantly increase light calculation and path
tracing performance and allow for an implementation
on the web - with WebGL. Thereby, all static lighting
information is pre-calculated and stored in textures, en-
abling interactive rendering performance during explo-
ration. Our method is suitable for determining accurate
illumination and interactive exploration on the Web us-
ing WebGL (Figure 3). Our technique accurately repli-
cates shadows, indirect lighting, and diffuse surface re-
flections while executing extensive ray casting opera-
tions across the entire geometry for the path tracing al-
gorithm.

Figure 3: A furnished scene of a polygonal living room ren-
dered physically accurate on the GPU using our proposed
rendering method.

2 RELATED WORK

Real time global illumination is an active topic of re-
search. Recent advances in hardware [Bur20] and ren-
dering techniques [WP22; Lin+22] enable real time
path tracing in complex scenarios. While these tech-
niques still rely on sophisticated hardware, they reflect
a broader shift in consumer expectations toward realis-
tic rendering.

The number of ways to achieve global illumination
is considerable. [DBB18] provides a comprehensive
overview of global illumination algorithms. Of these,
path tracing [Kaj86; LW93] and radiosity [Gor+84] are
the most relevant to our work. Path tracing determines
global lighting using stochastic ray casting, whereas ra-
diosity uses an iterative radiance transfer technique to
exchange light between a scene’s surfaces.

The development of real time global illumination for
web applications has additional hurdles as it must cater
to a wide range of platforms. E.g., WebGL enables
web applications to access graphics hardware from a
browser while being platform-independent. However,
this platform-agnostic design comes at the cost of lower
performance and a limited range of features compared
to desktop solutions like OpenGL, Vulkan or DirectX.

Early attempts to perform global illumination with We-
bGL 1.0 were highly effective, but limited in scale and
ability [Con+11; Hac15]. Recent approaches using the
upgraded framework, WebGL 2.0, can display compli-
cated scenes with excellent precision and detail. Lesar
et al. produced real-time representations of volumetric
medical data utilizing path tracing in web environments
[LBM18]. They achieve accurate renderings by itera-
tively and progressively using Monte Carlo ray tracing.
However, their approach is limited to volumetric data.
In contrast, Nilsson et al. obtained relevant results for
mesh-based scenes [NO18]. Using path tracing, they
were able to render scenes with thousands of triangles
at about 10Hz. By accumulating samples they are able
to render high quality images of simple scenes. Most
recently Vitsas et al. [Vit+21] have developed a general
purpose ray tracing framework on top of WebGL able
to produce photorealistic 3D graphics on the web.

Light maps, on the other hand, have long been the
norm for global illumination effects in real-time appli-
cations [ÖA17; Ras+10]. Because of the static nature of
light maps, recent advances in real-time global illumi-
nation make them increasingly insignificant. However,
so far, they still remain the standard for games, web,
and mobile applications due to their high visual qual-
ity for static scenes and their low impact on runtime
performance. Nevertheless, the above-mentioned, re-
cent advances in real-time global illumination have also
benefited the fast construction of light maps [Luk+13;
CL21].

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

98https://www.doi.org/10.24132/CSRN.3401.11



Figure 4: Our global illumination render pipeline: Direct light shader executions (blue), indirect light shader executions
(red) and effects shader executions (green). Yellow indicates static resources. Each step’s output indicates the texture array
(TAs) that are rendered into. The numbers at the top right of each step correspond to the numbered textures in Figure 5.

Typically, efficient path-tracing and hence, efficient
light map creation, necessitate specific data struc-
tures for accelerating ray casting. Bounding volume
hierarchies (BVHs) are well established methods
that considerably reduce the number of ray-triangle
intersection tests [LBM18; STØ05]. However, imple-
menting BVHs on the GPU using WebGL remains
challenging. WebGL does not support stacks, hence
stack-less algorithms are required. Threaded bounding
volume hierarchy (TBVH) uses a fixed traversal order
with pre-computed hit and miss pointers [STØ05].
Hachisuka proposed a variation to TBVHs as Multiple-
threaded bounding volume Hierarchy (MTBVH), to
lessen the negative performance impact from the fixed
traversal [Hac15]. Thereby, MTBVH pre-computes
several versions of the hit and miss pointers that are
optimised based on the general direction of a ray.

3 OUR APPROACH
Our rendering method is related to path tracing and
radiosity, and it operates with similar concepts. For
each object we generate a series of light maps in a pre-
process we call the global illumination pipeline. To
enable interactive framerates, the results are given to
a real-time rasterisation renderer.

As is often the case, our light maps are generated us-
ing an iterative Monte Carlo ray-tracing algorithm. In
the first iteration, the direct light from each light source
is determined and stored in a light map for each ob-
ject. In a second iteration, the indirect light is calcu-
lated for each surface using a reverse path tracing algo-
rithm. To determine possible sources of reflected light,
we cast a number of rays in random directions for each
pixel in the light map. Therefore, we transform the uv-
coordinate into the world space. The amount of incom-
ing light is then determined using the direct light maps.

Given enough rays, we can expect the results to con-
verge to a reasonable estimation of the reflected light
based on the idea of Monte Carlo global illumination
by Lafortune [Laf96]. The indirect lighting pass can be

repeated for as many iterations as desired, but in prac-
tice, the cost of a second reflection outweighs it’s con-
tribution to the overall illumination effect. Finally, the
computed direct and indirect light maps are accumu-
lated and fed into the real-time renderer.
In the following, we will elaborate on the details of
the global illumination pipeline, specifically in terms of
the improvements we implemented to render polygonal
models and apply the BVH to accelerate the ray casting
procedure. We will also briefly present our solution to
circumvent the texture limitation of WebGL 2.0.

3.1 Global Illumination Pipeline
The global illumination pipeline assumes a static scene.
There are no moving objects or lights that could cause
the lighting to change. This fits in very well with our
use case in the configuration of professional lighting
systems.
Our global illumination pipeline consists of two basic
steps: direct and indirect lighting passes. Figure 4 de-
picts the complete process, which we shall detail below.
In Figure 5, the resulting textures of the model of a chair
for each render call in the process are shown. Whereas
Figure 6 shows the final result.

Figure 5: Evolution of the texture of a chair: (1) Albedo
Texture, (2) Direct Light (3) Blurred Direct Light, (4) Re-
flected Direct Light, (5) Indirect Light, (6) Combined Light,
(7) Blurred Combined Light, (8) Reflected Combined Light.

To compute the direct light (2), we walk over each point
on each surface and determine how much light we re-

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

99https://www.doi.org/10.24132/CSRN.3401.11



ceive from each light source. This requires both the
scene geometry to check for obstructions and the de-
termination of the incoming light intensities in the IES
data format. The results are stored in textures for each
object. For our purposes, the texture mapping for the
polygon models is expected to be unique, ensuring that
no two surfaces share pixels. If they did, the light data
from one surface would override another’s.

Afterwards, the results of direct light texture are copied
for later use. To reduce artefacts from sampling the IES
file, we apply a Gaussian blur to the direct light texture
(3). The direct light is then multiplied by the object’s
albedo texture to get the reflected direct light (4). The
Gaussian blur must be applied prior to multiplying with
the albedo texture. If we would apply the blur after mul-
tiplying the albedo texture and direct light, we would
lose the albedo texture’s details.

Figure 6: A chair, rendered with our render method.

To determine the indirect light (5), we step through each
point on each surface and cast numerous rays in random
directions. Wherever the rays hit a surface, we extract
the associated light intensity from the reflected direct
light texture. We then average the received light in-
tensities from all rays to determine how much light is
received at the sampling spot. Thus, we gather global
light information from the scene onto the sampled point
(see Figure 7).

Figure 7: Diagrams of the direct (left) and indirect (right)
lighting passes. The sampled surface is in red. The cast rays
are indicated in yellow and point in the direction the light
travels, and therefore against the direction the ray is cast.

Afterwards, the results of the indirect lighting pass and
the original texture of the direct light are summed up
(6). The end result is the combined light intensity that
reaches each surface of the object. We blur it again to
remove noise from the direct and indirect passes (7),
then multiply it by the albedo texture of the object (8).
Finally, we are left with a texture that depicts the total
amount of light reflected on the surface of the object.

3.2 BVH

During the direct lighting and indirect lighting passes,
we perform millions of ray-triangle intersections. To
accelerate this procedure, we employ BVHs. We create
the BVH using a simple top-down algorithm and the
cost function surface area heuristic (SAH) as described
by Jefferey Goldsmith and John Salmon [GS87]. The
traversal algorithm on the GPU is based on the MT-
BVH algorithm described by Hachisuka et al. [Hac15].
Wherein only the traversal order of the BVH is re-
quired, represented as hit and miss links for each node,
and the axis-aligned bounding box (AABB). Leaf nodes
also store a reference to the set of vertices they contain.

Figure 8: Example of TBVH: the red node is the root node,
the blue nodes are internal nodes and the green nodes are leaf
nodes. The nodes are numbered in depth-first order. Green
arrows show the hit links and red arrows show the miss links.

The hit and miss links are shown in Figure 8. The green
hit links follow the depth-first numbering of the nodes.
The miss links always point to the next unvisited, un-
rejected node. For leaf nodes, they are always equal to
the hit links. The miss link of internal left nodes (e.g. 1
and 5) points to their sibling node. Internal right nodes
(e.g. 4) point to the closest unvisited right sibling of a
preceding node. If there are no more viable nodes, the
hit and miss links point to −1 as an indication that the
traversal has ended.

With TBVH the traversal algorithm remains straight-
forward. It merely needs to track the current minimal
distance when stepping through the BVH. At each level,
we check whether the bounding volume is hit or missed,
and then proceed to the node provided in the hit or miss
link respectively. Extending the traversal to MTBVH
merely requires more hit and miss link lists for the op-
timised traversal in each major direction.

Ordering the hit and miss links, AABBs, and vertex
reference indices in the same order in respective lists
eliminates the need to construct a data structure on the
GPU. The node is represented by an index that reads

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

100https://www.doi.org/10.24132/CSRN.3401.11



relevant data from one of four lists (hit links, miss links,
AABBs, and vertex indices).

To accommodate the transfer of the data from the CPU
to the GPU, the traversal data of the BVH has to be
encoded into a texture. The four aforementioned lists
are therefore wrapped into a two dimensional array. A
node is then no longer represented by an index but a 2D
coordinate (see Figure 9). The hit and miss links can
therefore also be stored as 2D coordinates pointing to
the next node in the traversal order. The AABBs are
represented through two three dimensional vectors for
the lower and upper bound of the AABB. The vertex
indices can remain as they are. This results in a total
of 30 floating point values and two integer values per
node.

Figure 9: Encoding of BVH traversal data in two data tex-
ture arrays. The data for a node in the BVH is dispersed
across all textures but always at the same position in each
texture. Each node can be represented through the 2D coor-
dinate of that position.

We can store all 32 values in 8 four channel floating
point pixels. The hit and miss links per direction can be
stored in one 4 channel pixel, each link has 2 compo-
nents. The lower bound of the AABB and the starting
index of the vertices can be stored as one pixel as well
as the upper bound and the end index (Figure 10). To
maintain the simplicity of representing a node as a 2D
coordinate, each of these eight pixels are stored in sep-
arate textures at the appropriate position.

For our implementation we’ve opted to store the hit and
miss links in a six layer texture array and the AABBs
in a two layer texture array (Figure 9). We’ve separated
the two out of convenience and clarity in the code base
and for easier debugging. However, there is no techni-
cal reason to separate the two and a single texture array
could hold all eight textures.

3.3 Texture Limitations
WebGL 2.0 imposes a hard limit for active textures
during a single pass. The limit depends on the hard-
ware and currently is usually either 16 or 32 textures.
WebGL is designed for forward rendering applications

Figure 10: Encoding of a single BVH node as eight 4 chan-
nel pixels (vec4). 6 pixels to hold the hit and miss links for
each direction in the MTBVH and 2 pixels to define the AABB
and the start and end indices of the associated vertices.

which rarely exceed this limitation. However, our
method needs the direct light maps of every model in
the scene during indirect lighting passes. Additionally,
the scene geometry and acceleration structures are also
stored and passed to the GPU through data textures.
As the number of models in a scene grows, it becomes
increasingly difficult to accommodate all of its textures
with the limit imposed by WebGL.
To circumvent the texture limit, we can use texture ar-
rays. They count as one texture against the limit but
are able to hold several textures in a three dimensional
space. All textures in a texture array have the same res-
olution, which might pose problems when reading or
writing to them on the GPU. There are two options for
creating a texture array for textures with different res-
olutions. Either the textures are scaled so that they all
have the same resolution, or the texture array is dimen-
sioned for the largest texture, with smaller textures oc-
cupying only a portion of the layer.
Both options have substantial drawbacks. Scaling tex-
tures changes the distribution of pixels per surface. Be-
cause we use the texture as our sampling raster, the dis-
tribution of sampled points also changes. Alternatively,
if the textures don’t fill the full resolution, built-in We-
bGL functions such as texture wrapping and pixel inter-
polation will fail for edge cases.
In our implementation, we opted for the latter option.
Achieving a uniform sample density was more critical
than avoiding texture wrapping or pixel interpolation
issues, which can be explicitly handled in shaders. Ad-
ditionally, edge cases are infrequent when the texture
mapping is designed to stay within boundaries.

4 DISCUSSION
We implemented our proposed rendering method and
different BVHs within a web environment. Thereby,
our prototype uses WebGL and all performance and
quality metrics were measured in the Microsoft Edge
browser. We performed tests on a laptop NVIDIA
GTX 1650 with an Intel Core i7-9750H and a desk-
top NVIDIA GTX 1080 Ti with an AMD Ryzen 9

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

101https://www.doi.org/10.24132/CSRN.3401.11



3950X. In the following, we will examine how intro-
ducing GPU-based TBVH and MTBVH improves per-
formance and discuss and compare visual quality with
a reference implementation in Unity.

4.1 Performance
To evaluate the performance of our prototype, we mea-
sured the time needed to pre-calculate the global illu-
mination and render the light maps. In particular, we
ignore the time needed to load all assets and to gener-
ate the BVH, as these procedures are not related to the
actual rendering method itself.

Figure 11: Test cases chairs_05 (left), with 5 chairs, and
sofa_01 (right), with one sofa, rendered with our render
method under a single point light.

We defined a set of scenes and settings to measure the
performance improvements of BVHs for different num-
bers of polygons and rendered pixels (Table 1). The
test cases contained a number of chairs (1, 3, 5, or 10)
or a single sofa (Figure 11). Each scene was tested on
the two aforementioned GPUs with no BVH, TBVH or
MTBVH, resulting in 30 test cases. For each test case
we recorded ten measurements of the render times.

Figure 12: Render Times in ms for different BVH meth-
ods. The number of chair models between each test case is
increased, from 1 to 3 to 5 to 10. The sofa_01 test case is the
exception, it contains only a sofa (see also Figure 11).

The box-plot in Figure 12 shows the render times for
the different BVH methods across our test cases. BVHs
reduce the render times substantially. The increase in
render times across test cases cannot be attributed to
the increase in polygons alone. Each additional object
requires an additional set of light maps to be rendered,

increasing the total number of rendered pixels (Table 1).
For example, chairs_5 and sofa_01 have a similar num-
ber of rendered pixels but sofa_01 consists of twice the
number of polygons. Comparing these two test cases
provides the best estimation of the effect BVHs have
on their own.

Our measurements reveal that the difference between
TBVH and MTBVH is minor in our test cases (Table 1).
MTBVH frequently leads by a few ms, especially for
larger scenes, but the difference is negligible. The de-
termination of the overall direction of the ray in our im-
plementation of MTBVH probably causes branching is-
sues on the GPU execution, leading to a longer render
time.

4.2 Graphics
In order to evaluate the correctness of our rendering
method, we created an equivalent scene in Unity. We
then used Unity’s built-in light baking pipeline to gen-
erate light maps with similar constraints as our own ren-
dering method. Specifically, we allowed only one sin-
gle reflection per sampled ray. Notably, we used Unity
in our case as an offline renderer - the baking of the
light maps took Unity’s engine between one and three
minutes for each of these scenes. The results are shown
in 13, 14 and 15.

Figure 13: Visual comparison of shadows between our ren-
der method (left) and Unity (right).

We can confirm the presence of many of the expected
global illumination effects. The walls and ceiling are
indirectly lit by the area on the floor that is illuminated
by the lights. The shadow of the chair is soft due to the
influence of multiple lights (Figure 14). Also, there are
coloured reflections based on the surface colour of the
cube in Figure 15.

Our method produces more detailed soft shadows in
Figure 13 than Unity’s light maps, which have lesser
resolution in principle. Thus, our renderer can represent
the shadow gradient at a more granular level, resulting
in improved quality.

The employment of a Gaussian filter causes colour
bleeding on the edges. In Figure 14, the edges of the
chair have small black seams. During both, direct and
indirect render passes, the gaps between the texture’s
faces remain blank. During the blur pass, these gaps
bleed into the visible area of the texture. However,
these artefacts can easily be prevented by using a more

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

102https://www.doi.org/10.24132/CSRN.3401.11



Average Render Times per Test Case in ms
GTX 1650 GTX 1080 TI

Test Case # Pixels # Polygons MTBVH TBVH No BVH MTBVH TBVH No BVH
chairs_01 459k 252 226 222 618 61 81 206
chairs_03 590k 732 446 412 2810 154 168 760
chairs_05 721k 1212 835 732 3833 289 272 1553
chairs_10 1049k 2412 2616 2675 10708 644 662 4172
sofa_01 655k 2036 887 908 6617 263 279 2909
Table 1: Performance and metrics for each of our test cases in Figure 12. The fastest render times for each test
case are indicated in bold.

Figure 14: Visual comparison of indirect lighting between
our render method (left) and Unity (right).

sophisticated filter, such as a bilateral filter. Addition-
ally, the wall textures in Figure 14 are noisier than their
Unity equivalents. This is most likely because the Unity
light map method utilises more samples in this case and
a more advanced denoising technique.

Using a Gaussian filter is not physically accurate. How-
ever it impacts the quality of diffuse lighting minimally,
especially in low frequency areas and reduces the num-
ber of required rays, increasing performance. Nonethe-
less, accurate simulations are possible by disabling the
Gaussian filter and increasing the ray count.

Figure 15: Visual comparison of coloured reflections be-
tween our render method (left) and Unity (right).

Figure 14 demonstrates the effects of the indirect pass
on the underside of the chairs. The chair rendered with
our method is more matted and less colourful, but the
overall shading is fairly similar to the chair generated
with Unity. In Figure 15, we rendered a separate scene
containing a test cube only. This image depicts the im-
pact of diffuse coloured surface reflections. Again, the
version rendered with Unity is more colourful and less
noisy, but the effect is similar in both versions.

One flaw that is visible in Figure 16 is that the floor
is completely dark outside the directly lit area. As the
walls and the ceiling are not directly lit, there is no lit
surface from the direct light pass that could reflect onto

Figure 16: Comparison of our results rendered with a single
indirect light pass (left) and two indirect light passes (right).

the floor. By allowing up to two bounces, the floor is
also illuminated. However, with our rendering method,
this results in nearly twice the render time for the same
scene.

Overall, we have shown that our rendering method de-
livers similar results to a modern state-of-the-art ren-
derer, while our performance is significantly higher.
The baking of the light map took Unity’s engine be-
tween one and three minutes for each of these scenes.
Nevertheless, our method still suffers some minor vi-
sual artefacts inherent to our approach, which are the
price for the higher performance.

5 CONCLUSION & FUTURE WORK
We presented a rendering approach for fast global illu-
mination on the GPU on the web using WebGL. Our
approach enables the simulation of physically accu-
rate light propagation of real lamp data (i.e., IES-data).
We achieved high performance by implementing BVHs
on the GPU to quickly find ray-triangle intersections.
Thereby, static light information is stored in light maps.
In this way, a scene can be adjusted and modified be-
fore being re-rendered within a second to enable easy
design and interactive navigation in web environments,
such as configuration tools in the light manufacturing
industry.

In this way, we achieve visual results comparable to
state-of-the-art offline-renderers with only minor visual
shortcomings. However, our approach is significantly
faster (seconds vs. minutes).

Future work includes the investigation of more ad-
vanced denoising methods such as Non-Local Means
with Joint Filtering (JNLM), RadeonPro, Open Image

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

103https://www.doi.org/10.24132/CSRN.3401.11



Denoiser (OIDN) or OptiX [Uni23; God23] to improve
visual results. This would probably also allow a
reduction in the resolution of light maps, which would
improve performance even further. Adapting the ren-
dering method to progressive rendering of light maps,
similarly to the works by Lesar et al. and Nilsson et
al. [LBM18; NO18], would also allow for intermediate
results while further details are added successively
as the user navigates the scene. Finally, we plan to
incorporate technologies such as Deep-Learning Super
Sampling (DLSS) for improved anti-aliasing and im-
portance sampling to increase quality and performance
even further.

6 ACKNOWLEDGEMENTS
This work was supported by the project LiSi, funded
by the Forschungsfonds Aargau and the company Ribag
AG. We would like to thank Dominik Hausherr and An-
dreas Richner from Ribag AG for the valuable collabo-
ration.

REFERENCES
[Bur20] Andrew Burnes. Whitepaper: NVIDIA Am-

pere GA102 GPU Architecture. Tech. rep.
NVIDIA, 2020.

[CL21] Ma Cheng and Wang Lu. “A Fast Light
Baking System for Mobile VR Game
Based on Edge Computing Framework”.
In: Proceedings of the 2021 ACM In-
ternational Conference on Intelligent
Computing and its Emerging Applications.
2021, pp. 176–181.

[Con+11] John Congote, Alvaro Segura, Luis
Kabongo, Aitor Moreno, Jorge Posada,
and Oscar Ruiz. “Interactive visualiza-
tion of volumetric data with WebGL in
real-time”. In: Proceedings of the 16th
International Conference on 3D Web
Technology. Web3D ’11. Paris, France:
Association for Computing Machinery,
2011, pp. 137–146. ISBN: 9781450307741.
DOI: 10.1145/2010425.2010449.

[DBB18] Philip Dutre, Philippe Bekaert, and Kavita
Bala. Advanced global illumination. CRC
Press, 2018.

[God23] Godot. Using Lightmap global illumi-
nation. Nov. 30, 2023. URL: https :
// docs . godotengine . org / en /
stable/tutorials/3d/global_
illumination/using_lightmap_
gi.html (visited on 02/08/2024).

[Gor+84] Cindy M. Goral, Kenneth E. Torrance,
Donald P. Greenberg, and Bennett Bat-
taile. “Modeling the Interaction of Light
between Diffuse Surfaces”. In: SIG-
GRAPH Comput. Graph. 18.3 (Jan. 1984),
pp. 213–222. ISSN: 0097-8930. DOI:
10.1145/964965.808601.

[GS87] Jeffrey Goldsmith and John Salmon. “Au-
tomatic Creation of Object Hierarchies for
Ray Tracing”. In: IEEE Computer Graph-
ics and Applications 7.5 (1987), pp. 14–20.
DOI: 10.1109/MCG.1987.276983.

[Hac15] Toshiya Hachisuka. Implementing a Pho-
torealistic Rendering System using GLSL.
2015. arXiv: 1505.06022 [cs.GR].

[Ill91] Illuminating Engineering Society. IES
Standard File Format for Electronic
Transfer of Photometric Data and Related
Information. Tech. rep. IES Computer
Committee and others, 1991.

[Kaj86] James T. Kajiya. “The rendering equation”.
eng. In: Computer graphics (New York,
N.Y.) 20.4 (1986), pp. 143–150. ISSN:
0097-8930.

[Laf96] Eric Lafortune. “Mathematical models and
Monte Carlo algorithms for physically
based rendering”. In: Department of
Computer Science, Faculty of Engineering,
Katholieke Universiteit Leuven 20.74-79
(1996), p. 4.

[LBM18] Žiga Lesar, Ciril Bohak, and Matija
Marolt. “Real-time interactive platform-
agnostic volumetric path tracing in webGL
2.0”. In: Proceedings of the 23rd Inter-
national ACM Conference on 3D Web
Technology. Web3D ’18. Poznań, Poland:
Association for Computing Machin-
ery, 2018. ISBN: 9781450358002. DOI:
10.1145/3208806.3208814.

[Lin+22] Daqi Lin, Markus Kettunen, Benedikt
Bitterli, Jacopo Pantaleoni, Cem Yuksel,
and Chris Wyman. “Generalized resam-
pled importance sampling: foundations
of ReSTIR”. In: ACM Trans. Graph.
41.4 (July 2022). ISSN: 0730-0301. DOI:
10.1145/3528223.3530158.

[Luk+13] Christian Luksch, Robert F Tobler, Ralf
Habel, Michael Schwärzler, and Michael
Wimmer. “Fast light-map computation
with virtual polygon lights”. In: Proceed-
ings of the ACM SIGGRAPH symposium
on interactive 3D graphics and games.
2013, pp. 87–94.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

104https://www.doi.org/10.24132/CSRN.3401.11

https://doi.org/10.1145/2010425.2010449
https://docs.godotengine.org/en/stable/tutorials/3d/global_illumination/using_lightmap_gi.html
https://docs.godotengine.org/en/stable/tutorials/3d/global_illumination/using_lightmap_gi.html
https://docs.godotengine.org/en/stable/tutorials/3d/global_illumination/using_lightmap_gi.html
https://docs.godotengine.org/en/stable/tutorials/3d/global_illumination/using_lightmap_gi.html
https://docs.godotengine.org/en/stable/tutorials/3d/global_illumination/using_lightmap_gi.html
https://doi.org/10.1145/964965.808601
https://doi.org/10.1109/MCG.1987.276983
https://arxiv.org/abs/1505.06022
https://doi.org/10.1145/3208806.3208814
https://doi.org/10.1145/3528223.3530158


[LW93] Eric P Lafortune and Yves D Willems. “Bi-
directional path tracing”. In: (1993).

[NO18] Martin Nilsson and Alma Ottedag. “Real-
time path tracing of small scenes using We-
bGL”. In: (2018).

[ÖA17] Bekir Öztürk and Ahmet Oğuz Akyüz.
“Semi-dynamic light maps”. In: ACM
SIGGRAPH 2017 Posters. 2017, pp. 1–2.

[Ras+10] Jim Rasmusson, Jacob Ström, Per Wen-
nersten, Michael Doggett, and Tomas
Akenine-Möller. “Texture compression
of light maps using smooth profile func-
tions”. In: Proceedings of the Conference
on High Performance Graphics. 2010,
pp. 143–152.

[Rib24] Ribag AG. Collections. Feb. 5, 2024. URL:
https :// www . ribag . ch / en /
products/collections (visited on
02/05/2024).

[Rie+23] Manuel Riedi, Alexander Legath, Luca
Fluri, and Hilko Cords. Configuration
and Simulation Tool for Lighting Sys-
tems. Online-Tool. Aug. 2023. URL:
https://iit.cs.technik.fhnw.
ch/lichtsystem-konfigurator/
(visited on 02/29/2024).

[STØ05] Lars Ole Simonsen, Niels Thrane, and
P Ørbæk. “A comparison of acceleration
structures for GPU assisted ray tracing”.
In: Master’s thesis, University of Aarhus
(2005).

[Uni23] Unity. The Progressive Lightmapper
- Unity Documentation. 2023. URL:
https : / / docs . unity3d .
com / Manual / progressive -
lightmapper . html (visited on
02/08/2024).

[Vit+21] Nick Vitsas, Anastasios Gkaravelis,
Andreas A Vasilakis, and Georgios Pa-
paioannou. “WebRays: Ray tracing on the
web”. In: Ray Tracing Gems II: Next Gen-
eration Real-Time Rendering with DXR,
Vulkan, and OptiX (2021), pp. 281–299.

[WP22] Chris Wyman and Alexey Panteleev.
“Rearchitecting spatiotemporal resam-
pling for production”. In: Proceedings
of the Conference on High-Performance
Graphics. HPG ’21. Goslar, DEU: Euro-
graphics Association, 2022, pp. 23–41.
DOI: 10.2312/hpg.20211281.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

105https://www.doi.org/10.24132/CSRN.3401.11

https://www.ribag.ch/en/products/collections
https://www.ribag.ch/en/products/collections
https://iit.cs.technik.fhnw.ch/lichtsystem-konfigurator/
https://iit.cs.technik.fhnw.ch/lichtsystem-konfigurator/
https://docs.unity3d.com/Manual/progressive-lightmapper.html
https://docs.unity3d.com/Manual/progressive-lightmapper.html
https://docs.unity3d.com/Manual/progressive-lightmapper.html
https://doi.org/10.2312/hpg.20211281


 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

106https://www.doi.org/10.24132/CSRN.3401.11




