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ABSTRACT

Traditional image reconstruction methods often face challenges like noise, artifacts, and blurriness, requiring
handcrafted algorithms for effective resolution. In contrast, deep learning techniques, notably Convolutional
Neural Networks (CNNs) and Variational Autoencoders (VAEs), present more robust alternatives. This paper
presents a novel and efficient approach for image reconstruction employing Convolutional Variational Autoen-
coders (CVAEs). We use Incremental Principal Component Analysis (IPCA) to enhance efficiency by discerning
and capturing significant features within the latent space. This model is integrated into both the encoder and
sampling stages of CVAEs, refining their capability to generate high-fidelity images. Our incremental strategy
mitigates scalability issues associated with traditional PCA while preserving the model’s aptitude for identifying
crucial image features. Experimental validation utilizing the MNIST dataset showcases noteworthy reductions in
processing time and enhancements in image quality, underscoring the efficacy and potential applicability of our
model for large-scale image generation tasks.

Keywords
Image Processing, Image Reconstruction, Principal Component Analysis, Convolutional Variational Auto-
Encoders

1 INTRODUCTION applications [KSZT21, WML21, LPC22, CQWZ21],
spanning image synthesis, reconstruction, and anomaly

Generative models like Variational Autoencoder  detection. Their robustness consistently delivers stable,

(VAE) are a significant advancement in deep learn-
ing, using probabilistic approaches to generate
new data from existing datasets.VAEs,consisting of
an encoder and decoder pair, capture key proper-
ties [CGD'20, BTLLW21].VAEs have a wide range of
applications, from image [LSM™21, YYSL16, WX21]
,video [YZAS21, WRO21, ZLS™21, DLW*22],
text [LPL21, YDML21, SWL*21, ZDYC21] and
music generation [JY23, WT22, WY21] to anomaly
detection [NYW20, LCB*20], and they are easier
to train than their competitors, such as Generative
Adversarial Networks (GANs) [BTLLW21].They
ensure training stability by offering a greater range
of realistic and varied facts [DB21].CVAEs integrates
the functionalities of VAEs with those of a CNNs,
constituting a specialized form of deep generative
model [YKK21].CVAEs possess an architecture that
leverages CNNs as both encoders and decoders,
harnessing the spatial relation-capturing capabilities
of CNNs and the fidelity in data generation character-
istic of VAEs [SDRM21].This method demonstrates
exceptional proficiency in processing grid-based data,
especially images, leveraging the spatial understanding
capabilities inherent in CNNs [BLD22]. CVAEs stand
as foundational components across a diverse range of
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realistic, and semantically coherent outcomes [JJ21].In
Figure 1, the structure of CVAEs and the interaction
between their components are illustrated.This paper is
dedicated to enhancing both the efficiency and quality
of image reconstruction through the utilization of
CVAE:s.

Our contributions are summarized as follows:

1. Introducing a novel method that combines IPCA
with CVAEs, enhancing the sampling and encoding
stages.

2. considerably reduces processing time, thus boosting
the algorithm’s overall efficiency.

3. Demonstrating substantial enhancements in image
quality by implementing our proposed algorithm on
MNIST datasets.

The paper is structured as follows: Section 2 delves into
the related works; in Section 3, we outline our novel ap-
proach and methodology. Section 4 is our Experimen-
tal results. Finally Section 5 , discusses the research
challenges, limitations, and potential future directions.
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Figure 1: CVAEs utilize convolutional layers to encode input images, compress information into latent space, and
decode samples, enabling efficient data representation and generation of new samples.

2 RELATED WORKS

The VAE, introduced by Kingma et al. [KW13].They
applied variational Bayesian inference principles
for image generation.It consists of two neural net-
works,Figure 2 shows an inference network for
generating latent variable distributions, and a gen-
eration network for approximation.Deep learning
and Artificial Intelligence have revolutionized image
reconstruction and image generation from diverse data
sources, with Variational Auto-encoders emerging
as key methodologies for high-quality image gen-

eration [EEAMT22, LSC20, IB23, WCQ23]. The
e Ll —
Encoder Decoder
Input Inference Model dma Output

Latent Space

Neural Network Neural Network

Figure 2: The model employs variational Bayesian in-
ference principles for image generation, utilizing two
neural networks for inference and generation to capture
data structure and variability.

Conditional Variational Autoencoder (CVAE),which
is shown in Figure 3, improves the unsupervised
model by incorporating category information la-
bels, transforming it into a semi-supervised mode
within the CVAE framework [SLY15, HNW21].The
Very Deep Variational Autoencoder (VDVAE) is an
extension of the standard Variational Autoencoder
(VAE) with increased depth in its neural network
architecture [Chi20]. This depth allows for more
intricate hierarchical representation of latent variables,
enabling high-fidelity and nuanced reconstructions
while navigating large-scale dataset complexities.
VDVAE-SR [CHW 23] uses transfer learning on pre-
trained VDVAESs to improve image super-resolution.
Fusion-VAE [DVZN22] is a novel deep hierarchical
variational autoencoder for generative image fusion,
outperforming traditional methods. VAEL, a neuro-
symbolic generative model, combines VAEs and
probabilistic Logic Programming strengths, enabling
the generation of new data points satisfying logical
constraints while capturing complex relationships
VAEL architecture illustrated in Figure 4 VDVAEs,
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while powerful for image generation, face computa-
tional complexity due to high-dimensional data, but
ongoing advancements aim to improve efficiency and
scalability [ASY 22, VK20].

X Y X
Encoder Le(Et Decoder

L3 |Spacel ARy

Figure 3: CVAE, similar to VAE,adds category infor-
mation to input data, maximizing logarithmic marginal
likelihood and lower bound function of variation, but
not solving image blur or high synthetic data accuracy.
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Figure 4: The VAEL model consists of three com-
ponents: an encoder, a Prob-Log program, and a de-
coder, which compute latent variables, parameterize
programs, and reconstruct images.

3 PROPOSED METHOD

The study uses IPCA and CVAEs to enhance image re-
construction. CVAESs extract hierarchical features from
images using convolutional layers, preserving spatial
information. They encode input images into a latent
space, capturing meaningful representations of digits in
a lower-dimensional space. Our novel approach lies
in integrating IPCA within the training paradigm of
CVAEs for image reconstruction. IPCA is used af-
ter encoding to reduce dimensionality in data obtained
from the CVAE. It refines the latent space represen-
tation before decoding, enhancing efficiency and re-
taining meaningful information for the decoding step,
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Figure 5: IPCA-CVAE: integrates incremental PCA and Convolutional Variational Auto-encoders to improve im-
age reconstruction, enhancing efficiency and retaining meaningful information for decoding.

thereby optimizing the handling of latent representa-
tions The workflow of our proposed method , as illus-
trated in Figure 5 is structured as follows:

1. CVAEs are used to improve image reconstruction by
extracting hierarchical features from images using
convolutional layers. These layers preserve spatial
information, ensuring image structural integrity. By
encoding input images into a latent space, CVAEs
capture meaningful representations of digits, allow-
ing the model to learn essential features while reduc-
ing data dimensionality.

2. IPCA is a technique used in the training paradigm
of CVAEs to optimize image reconstruction by re-
fining the latent space representation obtained from
the encoding step, thereby enhancing efficiency and
retaining crucial information for the decoding step.

3. The decoder uses deconvolutional layers, also
known as transposed convolutional layers or up-
sampling layers, to transform the refined latent
representation from IPCA into a high-dimensional
feature map. This process optimizes the handling
of latent representations, enhancing the efficiency
and accuracy of image reconstruction tasks. The
integrated approach ensures meaningful information
is retained and utilized throughout the decoding
process.

The integration of IPCA enhances the CVAE model’s
efficiency by refining latent space representation before
decoding, reducing data dimensionality while retain-
ing crucial information for accurate image reconstruc-
tion. This approach enhances overall image reconstruc-
tion task performance and provides a novel solution for
efficient dimensionality reduction and preservation of
meaningful information. It is applicable across differ-
ent domains and datasets, offering versatility and effec-
tiveness in handling latent representations. Integrating
IPCA into CVAEs training provides a robust and effi-
cient solution for image reconstruction, contributing to
image processing and deep learning techniques.

4 RESULTS

The study utilizes a PC with a Core 17-8700K CPU,
16GB RAM, and Google Colab for computational
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resources. The results of this work are presented in two
parts:

i) Analyzing the impact of the IPCA on processing
time.

ii) Exploring the relationship between re-constructed
image quality and the proposed method.

We use two main datasets: MNIST [LC10] and
Fashion-MNIST [XRV17].MNIST has 70,000 gray-
scale images of ten handwritten digit classes. Fashion-
MNIST is similar but covers ten categories of clothing,
including items like t-shirts, trousers, and pullovers.
To enhance compression, we utilized three models:
CVAE, PCA-CVAE, and IPCA-CVAE. The architec-
ture of the encoder and decoder involved a consistent
structure. The encoder started with an input layer for
gray-scale images, followed by two Conv2D layers
implementing 32 and 64 filters. A flattening layer
condensed the output, leading to a dense layer with 16
neurons activated by ReLU. Two dense layers gener-
ated parameters for shaping the variational distribution
within the latent space. The decoder played a crucial
role in the reconstruction process, starting with an input
layer for 20-dimensional latent space representation.
The output was rearranged into a (7, 7, 64) structure,
enabling two Conv2DTranspose layers to progressively
upscale the encoded latent space. The output layer, a
Conv2DTranspose, reconstructed the original image
dimensions, concluding the decoding phase.

Training Time Comparison for CVAE Models

—— CvAE
PCA-CVAE
—8— IPCA-CVAE

130

= = I
5 =1 IS
3 s 3

Training Time (seconds)
©
3

(

N
3

2 4 6 8 10
Epochs

Figure 6: Training Time Comparison for CVAE Models
on MNIST digits dataset.

In Figure 6, a comparative analysis of various method-
ologies is presented, focusing on the training duration.
The visual representation of PCA-CVAE and CVAE
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Figure 7: Training and Validation Loss for CVAE(left),PCA-CVAE(middle) ,JPCA-CVAE(right) on MNIST digits

dataset

methodologies reveals significant differences. PCA-
CVAE offers sustained functionality beyond the fourth
epoch and reduces processing time, while [IPCA-CVAE
demonstrates accelerated training process completion,
which is beneficial for large image databases. The
proposed IPCA-CVAE method shows heightened effi-
ciency, especially in scenarios with voluminous image
collections, demonstrating its superior performance.
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Figure 8: Reconstructed Images based on IPCA-CVAE
on MNIST digits dataset.
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Figure 9: Reconstructed Images based on IPCA-CVAE
on MNIST fashion dataset.
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Figure 7 provides a comparison of Training and Vali-
dation Loss across various CVAE methods. Figure 8
and Figure 9 display reconstructed images generated
using the IPCA-CVAE method applied to the MNIST
datasets. Furthermore, Figure 10 highlights a notice-
able discrepancy in training duration on the MNIST

https://www.doi.org/10.24132/CSRN.3401.12
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Figure 10: Training Time Comparison for CVAE Mod-
els on MNIST fashion dataset.
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Figure 11:  Training and Validation Loss for
CVAE(left),IPCA- CVAE(right) on MNIST fash-
ion dataset.

Fashion dataset, emphasizing the tangible advantages
of employing the proposed algorithm. Significantly, the
discernible reduction in processing time attests to the
algorithm’s efficacy in optimizing training efficiency.
Additionally, Figure 11 presents a comparative analysis
between CVAE and IPCA-CVAE methods. The left im-
age corresponds to the CVAE method, the middle image
represents PCA-CVAE, and the right image pertains to
IPCA-CVAE. Notably, the Figure distinctly reveals a
more pronounced reduction in loss during the training
process in the proposed method compared to alternative
approaches.

4.1 Metrics Evaluation

In this section, we quantitatively assess the perfor-
mance of our proposed method, CVAE-IPCA, on the

110
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Figure 12: Metrics Evaluation after epoch 10 :(a)
SSIM, (b) PSNR, and (c)MSE. The images demonstrate
an average SSIM of 0.9097, PSNR of 21.0432, and an
MSE of 0.0133. These values reflect the effectiveness
of the proposed method.

MNIST fashion dataset for image reconstruction tasks.
We employ three widely used image quality metrics:
Peak Signal-to-Noise Ratio (PSNR), Mean Squared
Error (MSE), and Structural Similarity Index (SSIM).
PSNR measures the ratio between the maximum
possible power of a signal and the power of corrupting
noise, defined as:

PSNR = 10 xlog o( peakval®) /MSE

, where peakval is the maximum possible pixel value
of the image.MSE calculates the average squared dif-
ference between the original and reconstructed images,
which is defined for two images such as ¢(n,m) and
g(n,m)as below :

M N

MSE =1/MN=(Y Y )[s

n=0m=1

(n7m) - g(n’m)]z

Lastly, SSIM evaluates the similarity between two im-
ages based on luminance, contrast, and structure, and is
defined as

SSIM(x,y) = [1(x, )] # [c(ox, )P * [s(x, )]

Here, L denotes luminance, C represents contrast, and S
signifies structure. These parameters help gauge bright-
ness, intensity range differences, and local pattern sim-
ilarities between images, respectively.o .3, and y are
constants used for computation stability. results of met-
rics evaluation illustrated in Figure 12.

4.2 Ablation Study

In our ablation study, we systematically varied three
key parameters: learning rate, batch size, and latent
space dimensionality, to understand their impact on the
performance of our proposed method.

1. Learning Rate Variation: We tested learning rates
of 0.001, 0.0001, and 0.01 to analyze their effect on
model convergence and performance metrics such as
PSNR, SSIM, and MSE. This experiment provided
insights into how different learning rates influence
training dynamics and model effectiveness.

https://www.doi.org/10.24132/CSRN.3401.12
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2. Batch Size Variation We explored batch sizes of 64,
128, and 256 to assess their impact on training sta-
bility and computational efficiency. By observing
training speed and model accuracy under different
batch size settings, we gained an understanding of
their trade-offs and implications.

Latent Space Dimensionality Variation : We varied
latent space dimensions between 20, 50, and 100 to
examine how they affect the model’s ability to cap-
ture and represent input data features. Analyzing
reconstruction quality across different latent space
sizes provided insights into the dimensionality’s role
in feature representation.

The default parameter values for our method are learn-
ing rate = 0.001, batch size = 128, and latent space di-
mension = 20. These values serve as reference points
for comparison against the variations tested in our abla-
tion study.

4.2.1 Findings

1. Our investigation found that employing a learning
rate of 0.0001 failed to yield any notable improve-
ments. Although a rate of 0.01 showed some en-
hancements compared to 0.0001, the most consistent
and optimal outcomes were achieved with a learning

rate of 0.001.

Changing the batch size did not lead to any improve-
ment in the results. However, the alterations in batch
size yielded better outcomes compared to those from
modifying the learning rate. Notably, the optimal re-
sults were observed with a batch size of 128. As an-
ticipated, increasing the batch size to 64 resulted in
longer processing times, while decreasing it to 256
reduced processing times.

Increasing the latent space dimensions to 100
yielded improved results. However, this enhance-
ment came at the cost of significantly increased
processing time. The results of the ablation study
are shown in Table 1.

Figure 13 also presents the outcomes of
PSNR.Figure 14 shows the reconstructed images
with different parameters and finally, Figure 15
illustrates the results of SSIM, MSE, and training
curves.

S CONCLUSION AND FUTURE
WORKS

This paper introduces a novel approach to image recon-
struction using CVAEs.The efficiency of the model is
optimized through IPCA, a technique used to identify
and capture significant features in the latent space. This



ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://lwww.wscg.eu

Computer Science Research Notes - CSRN 3401

WSCG 2024 Proceedings

Parameter| PSNR | SSIM MSE TT Remarks

Ir=0.01 20.439 | 0.8907 | 0.0167 | 1031 | 1d=20,bs=128
Ir=0.001 | 21.0432| 0.9097 | 0.0133 | 974 1d=20,bs=128
Ir=0.0001 | 19.3043| 0.8898 | 0.0193 | 1021 | 1d=20,bs=128
1d=20 21.0432| 0.9097 | 0.01505| 974 Ir=0.001,bs=128
1d=50 20.8135| 0.8992 | 0.0193 | 1255 | 1r=0.001,bs=128
1d=100 22.002 | 0.9101 | 0.0123 | 1245 | 1r=0.001,bs=128
bs=64 20.754 | 0.8998 | 0.0163 | 1182 | 1r=0.001,1d=20
bs=128 21.0432| 0.9097 | 0.0133 | 1021 | 1r=0.001,1d=20
bs=256 20.9097| 0.9001 | 0.0140 | 1084 | Ir=0.001,1d=20

Table 1: Summary of the Ablation Study(Ir=Learning Rate , ld=Latent Dimension ,bs=Batch Size ,TT=Training

Time(s))

Figure 13: PSNR results (a)learning rate=0.0001,
(b)learning rate=0.01 (c)=latent dimension=50 (d)latent
dimension=100 (e)batch size=64 (f)batch size=256

l
T
Il mh D[]E[I

Figure 14: Reconstructed Images (a)learning
rate=0.0001, (b)learning rate=0.01 (c)=latent di-
mension=50 (d)latent dimension=100 (e)batch size=64
(f)batch size=256

incremental strategy addresses scalability concerns
associated with traditional PCA while preserving the
model’s proficiency in identifying essential image
features. Experimental results on the MNIST dataset
show :

1. Reduces processing time and improves image qual-
ity.

2. Applicable in large-scale image generation tasks.

https://www.doi.org/10.24132/CSRN.3401.12

3. CVAEs’ sensitivity to input data distribution varia-
tions.

Our proposed method demonstrates significant poten-
tial across various image-related tasks, extending be-
yond the datasets examined thus far. In object detection,
denoising, and other applications, such as image classi-
fication using extensive datasets like CIFAR-10 and Im-
ageNet, integrating [IPCA-CVAE could enhance feature
extraction and dimensionality reduction. This enhance-
ment may lead to improved classification accuracy and
resilience against variations in image content. More-
over, in tasks like style transfer and image synthesis,
where generating realistic and diverse images is crucial,
IPCA-CVAE’s refined latent representations could offer
finer control over visual attributes, enabling the creation
of more compelling images. Additionally, in medical
imaging tasks like tumor detection and segmentation,
where handling high-dimensional images is common,
IPCA-CVAE integration could help capture meaning-
ful anatomical structures while reducing computational
complexity and memory usage. Furthermore, in satel-
lite imagery analysis for environmental monitoring and
disaster management, IPCA-CVAE could facilitate ef-
ficient feature extraction and anomaly detection, en-
abling timely identification of critical changes in land
cover and environmental conditions.

Moving forward, future research directions should fo-
cus on adapting the model to diverse and more complex
datasets, exploring real-time optimization strategies,
and improving the robustness of the CVAE framework.
Additionally, incorporating domain-specific knowledge
or constraints into the model may further refine its
applicability for specific image reconstruction tasks.
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