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ABSTRACT
There are many graphics algorithms that require reading textures in window 3x3, 5x5, etc. Both large window sizes
and high rendering resolutions decrease performance. We propose an algorithm-independent method for reducing
the number of texture samples implemented in a fragment shader for a local 2x2 area and based on the architectural
features of the graphics pipeline — transferring data between fragments via difference derivatives.
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1 INTRODUCTION

Iin Iout

f (Iin)

Figure 1: Filter illustration

Image filtering is widely used in computer graphics and
image processing. Filters are required both as inde-
pendent operations and for image processing before or
after the main algorithms. Formally, we have an in-
put image Iin ∈ [0,1]w×h×c and want to get an output
image Iout ∈ [0,1]w×h×c by applying a two-dimensional
filter function f : Iin 7→ Iout . Usually it takes a local area
(negative indices are used for convenience)

A(x,y) = (Iin(x+ i,y+ j))−rw≤i≤rw,−rh≤ j≤rh , rw,rh ∈N

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of each texel Iin(x,y) and produces single fragment
Iout(x,y), where (x,y) ∈ [0,w−1]× [0,h−1]. In the
following, only local areas of size (2r+1)× (2r+1),
r ∈ N, will be considered for two-dimensional filters.
As the image or local area size increases, the perfor-
mance decreases due to the larger number of texture
samples required.

Filtering is usually done on the GPU because it is well
parallelized and the result is needed for other render tar-
gets (in the case of real-time computer graphics). There
are two suitable types of shaders — compute and frag-
ment shaders.

A compute shader allows to reduce bandwidth require-
ments by using shared memory [Kil12]. In this case,
each invocation in the workgroup reads several tex-
els and writes them to fast shared memory located on
the chip (see Figure 2), from where each invocation
then reads the required texels. Practice shows that this
method is not always applicable for mobile devices. For
example, Arm GPUs do not implement dedicated on-
chip shared memory for compute shaders. The shared
memory that is available to use is system RAM that is
backed up by the load-store cache [Arm].

A fragment shader does not have shared memory, but
is used in rendering, so the filter can be combined with
additional operations in the fragment shader. Regard-
less of the type of shader, another approach to optimiz-
ing memory consumption is used — two-pass render-
ing for separable filters. Separable filters are filters that
can be written as the product of two one-dimensional
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(a) 2x2 workgroup, green
squares are threads (b) Each thread runs 3x3

filter (local areas are red),
invocations are separated

for better readability

(c) We can allocate 4x4
array in shared memory
(it is blue) and fill it with

necessary texels

(d) Reading texels in four
steps. The bright green

squares are threads and the
pale green squares are read

texels

Figure 2: Example for 2x2 workgroup and 3x3 filter
in compute shader. Each thread performs only 4 reads.
Without shared memory, this number will increase to 9.
In practice, larger workgroups (e.g. 16x16) and other
sampling strategies (e.g. linear) are used.

filters. Using this feature, we can compute the same re-
sult with 4r+2 texture samples instead of (2r+1)2, but
this would require an intermediate image of the same
resolution and additional render pass.

2 RELATED WORKS
2.1 Commonly used filters
Discrete convolutional filters (1) are often used.

f (Iin(x,y)) =

r
∑

i=−r

r
∑

j=−r
g(i, j)Iin(x− i,y− i)

r
∑

i=−r

r
∑

j=−r
g(i, j)

(1)

Moving from the classical definition of convolution to
implementation in a shader, we rewrite the formula for
a convolution filter

f (Iin(x,y)) =

r
∑

i=−r

r
∑

j=−r
g(i, j)Iin(x+ i,y+ i)

r
∑

i=−r

r
∑

j=−r
g(i, j)

(2)

Hereafter in the text the filter is understood as a func-
tion (2) with different kernels g(i, j), and r everywhere

means the radius of the local area (hence its size is
(2r+ 1)× (2r+ 1)) of the filter. In this paper we will
discuss four discrete convolutional filters: Gaussian fil-
ter, bilateral filter, tent filter and variance clipping for
temporal anti-aliasing (TAA).

2.1.1 Gaussian filter

A Gaussian filter is a separable filter that is used to
produce post effects (like bloom or depth-of-field), as
part of Canny edge detection [Can86], and in variance
shadow maps [Don06]. Filter’s function is described
using kernel (3) (factor 1

2πσ2 is reduced)

g(i, j) = exp(− i2 + j2

2σ2 ) (3)

where σ is the standard deviation of the Gaussian dis-
tribution (greater value — stronger blur).

2.1.2 Bilateral filter

A bilateral filter is described using kernel (4)

g(i, j) = exp(− i2+ j2

2σ2
d
− ∥Iin(x+i,y+ j)−Iin(x,y)∥2

2σ2
r

) (4)

where σd and σr are smoothing parameters. It is a non-
linear, edge-preserving filter. One of its uses is to pre-
vent incorrect diffusion in skin rendering [Buc16]. An-
other application is image upsampling [Kop07].

2.1.3 Tent filter

A tent filter is described using kernel (5)

g(i, j) = max(k−b|i|, 0)max(k−b| j|, 0) (5)

where k and b are parameters. It is used in temporal
upsampling for pre-processing stage [Yan09], in image
downscaling and upscaling for video encoding [Bri99],
and as individual filter for blur in image processing
[App]. In our solution we modified tent filter and made
it nonseparable, with kernel rank 2. It is almost equal
to the original filter and has kernel (6)

g(i, j) = k−b(|i|+ | j|) (6)

where k and b are same. This downgrade was done to
test the applicability of the proposed method to the filter
with rank 2.

2.1.4 Variance clipping, TAA

Temporal Antialiasing (also known as Temporal AA,
or TAA) is a family of techniques that perform spatial
antialiasing using data gathered across multiple frames.
One of the important part of any TAA algorithm is his-
tory rectification — a process of adapting a color from
previous frame(s). Variance clipping [Sal16] addresses
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Figure 3: [Rak10] method, σ = 2, 5x5 local area, horizontal pass, colored squares are read texels. The result in the
third row is the same as in the first row, but requires three texels. The purple and brown texels in the third row are
linear interpolation (see second row). The readout time of a texel for a linear sampler is independent of whether it
is a real texel or a bilinear interpolation of four real texels

outliers by using the local color mean and standard de-
viation to center and size the color extents used for rec-
tification:

Cmin = µ − γσ Cmax = µ + γσ

where µ and σ are the mean and standard deviation of
the color samples in the local area, and γ is a scalar
parameter, γ ∈ [0.75,1.25]. Calculation of µ and γ can
be written as filters (7) and (8):

µ =

r
∑

i=−r

r
∑

j=−r
Iin(x+ i,y+ j)

(2r+1)2 (7)

σ =

√√√√√ r
∑

i=−r

r
∑

j=−r
I2
in(x+ i,y+ j)

(2r+1)2 −µ2 (8)

2.2 Memory optimization work
[Rak10] proposed an improvement for separable Gaus-
sian filter based on a linear texture sampler that returns
a bilinear interpolation of the four nearest pixels instead
of nearest pixel color for the linear sampler. Let us
describe a one-dimensional filter for the first (along x-
axis) pass:

f (Iin(x,y)) =

r
∑

i=−r
exp(− i2

2σ2 )Iin(x+ i,y)

r
∑

i=−r
exp(− i2

2σ2 )

We can describe the contribution of two neighboring
pixels Iin(x+ j,y) and Iin(x+ j+1,y) as:

Iin(x+ j,y)w1 + Iin(x+ j+1,y)w2
r
∑

i=−r
exp(− i2

2σ2 )
=

{Iin(x+ j,y) w1
w1+w2

+ Iin(x+ j+1,y) w2
w1+w2

}(w1 +w2)
r
∑

i=−r
exp(− i2

2σ2 )

=
Iin(

(x+ j)w1+(x+ j+1)w2
w1+w2

,y)(w1 +w2)
r
∑

i=−r
exp(− i2

2σ2 )

where w1 = exp(− j2

2σ2 ), w2 = exp(− ( j+1)2

2σ2 ). The ex-
pression demonstrates linear interpolation multiplied
by the sum of weights. This method reduces the num-
ber of texture samples from 4r + 2 to 2r + 2 in two
passes (see example in Figure 3). This is a very efficient
method, but it’s only applicable to separable filters and
requires intermediate image to store the output of the
first pass.

3 PROPOSED SOLUTION
Our solution is based on the fact that the fragment
shader always works for 2x2 groups of fragments. It
is useful for calculating the MIP-level for a texture
and provides differential derivatives along the x and y
axes. They are typically used to calculate texture MIP-
level (separate from texture reading), flat normals, or
edge detection. We will use fine differential derivatives
along the x and y axes (dFdxFine and dFdyFine in
GLSL) and rename them ddx(p) and ddy(p), respec-
tively, where p is a scalar or vector. ddx(p) and ddy(p)
calculate derivatives using local differencing based on
the value of p for the current fragment and it’s immedi-
ate neighbor (see Figure 4).

a b

c d

ddx(p) = b−a

ddx(p) = d − c

ddy(p) = c−a ddy(p) = d −b

x

y

0

Figure 4: ddx(p) and ddy(p) for 2x2 group of frag-
ments. a, b, c, d are the value of p in the correspond-
ing fragment. Fragments in the column {row} have the
same ddy(p) {ddx(p)}. The x and y axes show the co-
ordinate directions.

It is required to define tx, ty

tx =

{
−1 if fragment in odd col
1 if fragment in even col
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ty =

{
−1 if fragment in odd row
1 if fragment in even row

so that the fragments can exchange data with their im-
mediate neighbors:

precvd = pour + tx ·ddx(pour), swap along x-axis (9)

precvd = pour + ty ·ddy(pour), swap along y-axis (10)

Using data transfer, we can describe a naive algorithm
that exchanges texels between fragments and reduces
the number of texture reads from (2r+1)2 to (r+ 1)2

for each fragment (see Figure 5):

1. Each fragment reads texels Iin(x−r+2i,y−r+2 j),
where 0 ≤ i, j ≤ r. Now each fragment has r + 1
rows with r+1 texels in each (see Figure 5b).

2. We can select r texels from each non-empty row and
do swaps along x-axis (see Figure 5c).

3. Now we have r+1 full rows of texels. r rows from
them are needed for swaps along y-axis (see Fig-
ure 5d).

4. After swaps along y-axis each fragment has all tex-
els (see Figure 5e) and computes the filter function.

Unfortunately, use of fine difference derivatives for
all texels transfer (3r2 + 2r times) works slower than
(2r+1)2 texture readings. To improve performance,
the shader should perform multiple partial sum trans-
fers computed with its own texels but kernel values re-
quired by its neighbours. Let us describe this method
with partial sums for the four filters mentioned earlier.

3.1 Gaussian filter
The Gaussian filter kernel (3) has rank 1, which means
that all rows (columns) in kernel are a linear combina-
tion of one row (column). Therefore, it is enough to:

1. For each i ∈ T, T = {−r+2k | 0 ≤ k ≤ r}:

(a) Read texels Iin(x+ j,y+ i), j ∈ T

(b) initialize the partial sum pi

pi := ∑
j∈T

exp(− i2 + j2

2σ2 )Iin(x+ j,y+ i)

(c) Select texels for the neighbour on the x-axis.
If the fragment (which is executing the shader,
not the neighbour!) has even column number, it
should select all texels in row except the first one,
Ω = T \{−r}. Otherwise — except the last one,
Ω = T \{r}.

(a) One 2x2 group of frag-
ments and their local areas.
Next, the fragments will be
visually separated for better
readability

(b) Step 1 — read 4 texels
(these are colored squares).

(c) Step 2 — select 2 re-
quired texels and do swaps
along x-axis. The arrows
show the transfer of the de-
sired texels

(d) Step 3 — select required
row and do 3 swaps along
y-axis. The arrows and out-
line rectangles show trans-
fer of the desired texels

(e) Step 4 — now each frag-
ment contains all required
texels

(f) Visual merging of frag-
ments

Figure 5: Naive algorithm illustration for 3x3 filter.
Texel with black circle is the same for all fragments.
Dashed rectangles cover local areas for each fragment

(d) Compute partial sum p′i for the neighbour on the
x-axis (consider the bias with tx) (see Figure 6a)

p′i := ∑
j∈Ω

exp(− i2 +( j− tx)2

2σ2 )Iin(x+ j,y+ i)

(e) Make a swap along the x-axis and complete the
partial sum pi

p f inal
i := pi + p′i + tx ·ddx(p′i),

(f) p f inal
i equals

r
∑

j=−r
exp(− i2+ j2

2σ2 )Iin(x+ j,y+ i)
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2. initialize the partial sum of the filter

S := ∑
i∈T

p f inal
i

3. Choose the partial sums p f inal
i required for the

neighbour on the y-axis. If the fragment has even
row number, it should select all sums p f inal

i except
the first one, Ω = T \ {−r}. Otherwise — except
the last one, Ω = T \{r}.

4. It was mentioned that each row of the kernel ma-
trix (3) can be expressed as a linear combination.
We can interpolate partial sums for rows that our
neighbour on the y-axis does not know about by
multiplying them by certain exponents. If p f inal

i

has a common factor exp(− i2
2σ2 ) in this fragment,

the neighbor on the y-axis has a common factor

exp(− (i−ty)2

2σ2 ). Therefore, we should compute partial
sum S′ for the neighbor on the y-axis (see Figure 6b)

S′ := ∑
i∈Ω

exp(
2ity −1

2σ2 )pi

5. Make a swap along the y-axis and complete the sum

S f inal := S+S′+ ty ·ddy(S′)

6. S f inal equals
r
∑

i=−r

r
∑

j=−r
exp(− i2+ j2

2σ2 )Iin(x + i,y + j).

Normalize S f inal by the sum of the kernel.

3.2 Tent filter
The kernel (5) is suitable for the previous method. The
kernel of modified tent filter (6) has rank 2. Therefore,
we need to modify the previous algorithm:

1. For each i ∈ T, T = {−r+2k | 0 ≤ k ≤ r}:

(a) Read texels Iin(x+ j,y+ i), j ∈ T

(b) initialize the partial sum pi

pi := ∑
j∈T

(k−b(|i|+ | j|))Iin(x+ j,y+ i)

and additional partial sum ui (required in step 4)

ui := ∑
j∈T

Iin(x+ j,y+ i)

(c) Select texels for the neighbour on the x-axis. If
the fragment (which is executing the shader, not
the neighbour!) has even column number, then it
should select all texels in row except the first one,
Ω = T \{−r}. Otherwise — except the last one,
Ω = T \{r}.

a b c fed

k l mhij

p′0,r

p′0,g

p′0,b

p′0,p

p′0,r = (b+ c)exp(− 1
2σ2 ), p′0,g = (d + e)exp(− 1

2σ2 )

p′0,b = (i+h)exp(− 1
2σ2 ), p′0,p = (k+ l)exp(− 1

2σ2 )

(a) Data swap along x-axis in step 1 when i = 0. The letters
in the squares represent texels

p−2

p0

p2

p−2

p0

p2

p−2

p0

p2

p−2

p0

p2

S′r S′b S′g S′p

S′r = S′g = p0 × exp(− 1
2σ2 )+ p2 × exp( 3

2σ2 )

S′b = S′p = p0 × exp(− 1
2σ2 )+ p−2 × exp( 3

2σ2 )

(b) Steps 4 and 5. p−2, p0, p2 are different in each fragment

Figure 6: Proposed method for 5x5 Gaussian filter. The
arrows indicate the transfer of the respective sums

(d) Compute partial sum p′i for the neighbour on the
x-axis (consider the bias with tx)

p′i := ∑
j∈Ω

(k−b(|i|+ | j− tx|))Iin(x+ j,y+ i)

u′i := ∑
j∈Ω

Iin(x+ j,y+ i)

(e) Make a swap along the x-axis and complete the
partial sums pi and ui

p f inal
i := pi + p′i + tx ·ddx(p′i),

u f inal
i := ui +u′i + tx ·ddx(u′i),

2. initialize the partial sum of the filter

S := ∑
i∈T

p f inal
i

3. Choose the partial sums p f inal
i and u f inal

i required for
the neighbor on the y-axis. If the fragment has even
row number, it should select all sums except p f inal

−r

and u f inal
−r , Ω= T \{−r}. Otherwise — Ω= T \{r}.
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4. Compute partial sum for the neighbor on the y-axis

S′ := ∑
i∈Ω

p f inal
i +b(|i|− |i− ty|)u f inal

i

5. Make a swap along the y-axis and complete the par-
tial sum S

S f inal := S+S′+ ty ·ddy(S′)

6. S f inal equals
r
∑

i=−r

r
∑

j=−r
(k−b(|i|+ | j|))Iin(x+ i,y+ j).

Normalize S f inal by the sum of the kernel.

3.3 TAA, variance clipping
The kernels for filters (7) and (8) (matrices of ones)
have rank 1. Therefore, for 3x3 local area we can apply
the same algorithm as for the Gaussian filter, but twice.
For larger local areas this is not optimal in terms of the
number of derivatives. Instead of rows interpolation, we
can directly calculate partial sums for other three frag-
ments in the constant derivatives number. This method
uses nonuniform texture sampling (see Figure 7) for ef-
ficient choose of required texels (see Figure 8).

T = {−r+2k | 0 ≤ k ≤ r}, Q = T \{−r}

1. Read texels in nonuniform mode:

Iin(x+ itx,y+ jty), i, j ∈ T

2. Compute the partial sums for the neighbour on the
y-axis (see Figure 8a):

µ
′
y := ∑

i∈T
∑
j∈Q

Iin(x+ itx,y+ jty)

σ
′
y := ∑

i∈T
∑
j∈Q

I2
in(x+ itx,y+ jty)

3. Make a swap along the x-axis and contribute a part
in diagonal neighbour’s partial sums (see Figure 8b):

µ
′
d := µ

′
y + tx ·ddx(µ ′

y)+ ∑
i∈Q

∑
j∈Q

Iin(x+ itx,y+ jty)

σ
′
d := σ

′
y + tx ·ddx(σ ′

y)+ ∑
i∈Q

∑
j∈Q

I2
in(x+ itx,y+ jty)

4. Make a swap along the y-axis and contribute a part
in the partial sums for the neighbour along the x-axis
(see Figure 8c):

µ
′
x := µ

′
d + ty ·ddy(µ ′

d)+ ∑
i∈Q

∑
j∈T

Iin(x+ itx,y+ jty)

σ
′
x := σ

′
d + ty ·ddy(σ ′

d)+ ∑
i∈Q

∑
j∈T

I2
in(x+ itx,y+ jty)

5. Make a swap along the x-axis and complete sums
(see Figure 8d):

µ
′
f inal := µ

′
x+tx ·ddx(µ ′

x)+∑
i∈T

∑
j∈T

Iin(x+ itx,y+ jty)

σ
′
f inal := σ

′
x+tx ·ddx(σ ′

x)+∑
i∈T

∑
j∈T

I2
in(x+ itx,y+ jty)

6. Complete the calculations of filters (7) and (8):

µ :=
µ ′

f inal

(2r+1)2

σ :=

√
σ ′

f inal

(2r+1)2 −µ2

0 1 2

3 4 5

6 7 8

012

345

678

8 7 6

5 4 3

2 1 0

876

543

210

Figure 7: Nonuniform texture sampling for 2x2 group,
5x5 local area. The numbers represent the texel indices
in the array. Arrows indicate the direction of sampling.

0 1 2
3 4 5
6 7 8

012
345
678

8 7 6
5 4 3
2 1 0

876
543
210

(a) For neighbour on y-axis

0 1 2
3 4 5
6 7 8

012
345
678

8 7 6
5 4 3
2 1 0

876
543
210

(b) For diagonal neighbour

0 1 2
3 4 5
6 7 8

012
345
678

8 7 6
5 4 3
2 1 0

876
543
210

(c) For neighbour on x-axis

0 1 2
3 4 5
6 7 8

012
345
678

8 7 6
5 4 3
2 1 0

876
543
210

(d) For fragment itself

Figure 8: Proposed method, 5x5. The rectangles in
each subfigure cover the texels required for that step.
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3.4 Bilateral filter
Computing the partial sums of other fragments with
nonuniform sampling (see Figure 7) is the only way,
since bilateral filter is nonlinear. Since its kernel (4) de-
pends on the central texel Iin(x,y) (each fragment has a
unique central texel), we must also pass it between frag-
ments. At the beginning, we have one of two situations:

1. The local area radius is r = 2k, k ∈ N and central
texel Iin(x,y) is sampled (3rd case in Figure 9).

(a) In this case, we swap the central texel with our
neighbour along the x-axis and proceed to the 4th
case.

(b) In the 4th case, we compute the partial sums for
the numerator and denominator of the filter and
proceed to the 1st case by swapping partial sums
and central texel with the neighbour along the y-
axis.

(c) In the 1st case, we compute the partial sums for
the numerator and denominator of the filter and
proceed to the 2nd case by swapping partial sums
and central texel with the neighbour along the x-
axis.

(d) In the 2nd case, we compute the partial sums for
the numerator and denominator of the filter and
proceed to the 3rd case by swapping partial sums
with the neighbour along the y-axis.

(e) In the 3rd case, we use our own central texel and
complete the sums.

2. The local area radius is r = 2k−1, k ∈N and central
texel Iin(x,y) is sampled by our diagonal neighbor
(1st case in Figure 9)

(a) In this case, we compute the partial sums for the
numerator and denominator of the filter and pro-
ceed to the 2nd case by swapping partial sums
and central texel with the neighbour along the x-
axis.

(b) In the 2nd case, we compute the partial sums for
the numerator and denominator of the filter and
proceed to the 3rd case by swapping partial sums
with the neighbour along the y-axis.

(c) In the 3rd case, we compute the partial sums for
the numerator and denominator of the filter and
proceed to the 4th case by swapping partial sums
with the neighbour along the x-axis.

(d) In the 4th case, we compute the partial sums for
the numerator and denominator of the filter and
proceed to the 3rd case by swapping partial sums
with the neighbor along the x-axis. After that we
have completed sums.

In the 1st situation at the beginning (and if r = 1), 6
partial derivatives are required. In the 2 situation (ex-
cept r = 1), 7 partial derivatives are required (the nu-
merator is a three-dimensional vector and the denomi-
nator is a scalar, so they were combined into one four-
dimensional vector). Let us describe the partial sums
for numerator and denominator in each case (number
corresponds to the case number on Figure 9):

T = {−r+2k | 0 ≤ k ≤ r}, Q = T \{−r}

1.
c := ∑

i∈Q
∑
j∈Q

Iin(x+ itx,y+ jty)g(itx, jty)

w := ∑
i∈Q

∑
j∈Q

g(itx, jty)

2.
c := ∑

i∈T
∑
j∈Q

Iin(x+ itx,y+ jty)g(itx, jty)

w := ∑
i∈T

∑
j∈Q

g(itx, jty)

3.
c := ∑

i∈T
∑
j∈T

Iin(x+ itx,y+ jty)g(itx, jty)

w := ∑
i∈T

∑
j∈T

g(itx, jty)

4.
c := ∑

i∈Q
∑
j∈T

Iin(x+ itx,y+ jty)g(itx, jty)

w := ∑
i∈Q

∑
j∈T

g(itx, jty)

where c is the partial sum of the numerator, w is the
partial sum of the denominator. Swaps are performed
according to the formulas (9) and (10).

x-swap

x-swap

y-swap

1 2

34

y-swap

Figure 9: Four cases for the bilateral filter. The big
squares are fragments. The small squares are the cen-
tral texels for the corresponding fragments. From each
case, you can move to one of the two neighbouring
cases through swaps along the x or y axis.
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4 EXPERIMENTAL RESULTS
We have used the Khronos framework [Khr19] for the
Vulkan API to run our GLSL shaders on PC and An-
droid. The comparison includes the following types of
shaders (see Figures 11 and 12):

• Default version — filters are implemented in frag-
ment shader and read (2r+1)2 texels

• Compute version — filters are implemented in com-
pute shader using shared memory. Gaussian fil-
ter also uses two-pass rendering with 128x1 work-
groups. Other compute shaders use 16x16 work-
groups

• Proposed version — filters are implemented in frag-
ment shader and use derivatives

• Linear version — Gaussian filter is implemented in
fragment shader and uses two-pass rendering with a
linear sampler [Rak10]

Adreno 650 shows 5-100% performance degradation
depending on filter and area size when using shared
memory. It can be concluded that Adreno has a high
cost of fine derivatives. For 3x3 filters, the performance
of our method is worse by at least 56% compared to a
default fragment shaders (or does not change for vari-
ance clipping). However, for large areas, our method
outperforms default fragment shaders by at least 15%
(except 7x7 tent filter). Also worth mentioning is the
method with the linear sampler — at least 37% better
performance than competitors.
RTX 2070 has relatively cheap derivatives, due to
which we get a 25-50% improvement over a default
fragment shader and compute shader. For this video
card, our method bypasses the fragment shader with
linear sampler by 42% and 24% for 3x3 and 5x5 area
respectively. However, for the 7x7 region, our method
is 13% slower.
It can be seen from the graphs that different GPU archi-
tectures have different costs of fine derivatives. How-
ever, as the region size increases, the proposed method
shows an increasingly noticeable difference in perfor-
mance, although it depends on the filter type.

4.1 Metrics and coarse derivatives

Area size Gaussian Tent Bilateral VC
3x3 1.62e-6 0 1.89e-6 1.89e-6
5x5 2.71e-6 0 2.98e-6 3.25e-6
7x7 2.98e-6 0 3.52e-6 4.34e-6

Table 1: MSE for default and proposed (with fine
derivatives) methods

The proposed method with fine derivatives yields im-
ages that are almost identical to those obtained in the
default method (see Tables (1) and (2)).

Area size Gaussian Tent Bilateral VC
3x3 0.999 1.0 0.999 0.999
5x5 0.999 1.0 0.999 0.999
7x7 0.999 1.0 0.999 0.999

Table 2: SSIM for default and proposed (with fine
derivatives) methods

Area size Gaussian Tent Bilateral VC
3x3 3.62 4.34 14.19 685.31
5x5 1.165 1.19 14.51 122.98
7x7 0.513 0.62 21.06 29.99

Table 3: MSE for default and proposed (with coarse
derivatives) methods

Area size Gaussian Tent Bilateral VC
3x3 0.991 0.99 0.988 0.503
5x5 0.995 0.995 0.992 0.854
7x7 0.997 0.997 0.984 0.966

Table 4: SSIM for default and proposed (with coarse
derivatives) methods

In the early stages, testing the proposed method with
coarse derivatives did not yield any noticeable perfor-
mance gains for the RTX 2070. Because of this and
the metrics (see Tables (3) and (4)), we abandoned the
coarse derivatives in performance measurement. While
for the Gaussian filter the difference is negligible, for
variance clipping the method with coarse derivatives is
not applicable at all (see Figure 10).

default coarse

Figure 10: Mean value in variance clipping, 3x3. The
default method produces correct results, while pro-
posed method with coarse derivatives produces visual
artefacts due to incorrect texels received via swaps

5 CONCLUSION
We have presented a few strategies for memory opti-
mization in two-dimensional filters based graphics al-
gorithms. It does not require intermediate images, gives
noticeable performance gains almost everywhere, and
can only be implemented by rewriting shaders. Unfor-
tunately, explicit difference derivatives are not always
cheap enough to allow blind replacement of shaders
with the proposed ones. The source code of the shaders
is available on GitHub: https://github.com/k
zubatov/FiltersOptimizationInfo. Per-
formance tests made by the community on other GPU
architectures will also be available there.
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Figure 11: Performance tests, Adreno 650, Android 13

Figure 12: Performance tests, RTX 2070, Linux 5.15
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