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ABSTRACT
Breast cancer, a prevalent disease among women, demands early detection for better clinical outcomes. While
mammography is widely used for breast cancer screening, its limitation in e.g., dense breast tissue necessitates
additional diagnostic tools. Ultrasound breast imaging provides valuable tumor information (features) which are
used for standardized reporting, aiding in the screening process and precise biopsy targeting. Previous studies have
demonstrated that the classification of regions of interest (ROIs), including only the lesion, outperforms whole
image classification. Therefore, our objective is to identify essential lesion features within such ROIs, which are
sufficient for accurate tumor classification, enhancing the robustness of diagnostic image acquisition. For our
experiments, we employ convolutional neural networks (CNNs) to first segment suspicious lesions’ ROIs. In a
second step, we generate different ROI subregions: top/bottom half, horizontal subslices and ROIs with cropped-
out center areas. Subsequently these ROI subregions are classified into benign vs. malignant lesions with a second
CNN. Our results indicate that outermost ROI subslices perform better than inner ones, likely due to increased
contour visibility. Removing the inner 66% of the ROI did not significantly impact classification outcomes (p =
0.35). Classifying half ROIs did not negatively impact accuracy compared to whole ROIs, with bottom ROI
performing slightly better than top ROI, despite significantly lower image contrast in that region. Therefore, even
visually less favorable images can be reliably analyzed when the lesion’s contour is depicted. In conclusion, our
study underscores the importance of understanding tumor features in ultrasound imaging, supporting enhanced
diagnostic approaches to improve breast cancer detection and management.
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1 INTRODUCTION
According to the WHO, breast cancer stands as
the most prevalent cancer among women world-
wide [Who24], highlighting the need for effective
screening and diagnostic methods. As early detection
is crucial for achieving favorable patient outcomes,
methods like mammography are widely used for
breast cancer screening. The integration of artificial
intelligence assistance for mammography screening
has shown promising results [Lan23], demonstrating
its potential to enhance detection rates. However,
the complexity of breast tissue composition and the
challenges posed by dense breast tissue in particular
underscore the necessity for additional diagnostic
tools and modalities. In comparison to alternative
imaging modalities, ultrasound breast imaging is a
non-ionizing, cost-effective, highly mobile, real-time
imaging modality, making it widely accessible in

most healthcare settings around the world. Ultrasound
imaging excels in differentiating between different
types of suspicious masses (e.g., cystic and solid
lesions), and provides information about lesion shape,
size, internal appearance, and other characteristics,
which are essential for uniform reporting [Men13].
By enabling precise targeting of suspicious masses,
ultrasound also aids in guiding biopsy procedures.

Our objective is to enhance the diagnostic accuracy of
breast tumor ultrasound imaging by improving the un-
derstanding of lesion characteristics. This will facili-
tate the development of better-targeted, more effective
diagnostic approaches, leading to improved cancer de-
tection and patient care. In previous work [Sch23] con-
volutional neural network (CNN) based classification
of suspicious masses into benign vs. malignant lesions
was performed in whole breast sonograms vs. regions
of interest (ROIs). In that work, the ROI is defined
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Figure 1: Overview of ROI subregions. From left to right: unprocessed ultrasound image (US), region of interest
crop around the lesion mass (ROIwhole), subslices of ROI (ROI1−5), ROItop and ROIbottom, ROI with cropped-out
center area (ROIcrop x%, here: ROIcrop66)

as a rectangular subregion around the suspicious le-
sion. Classification accuracy was considerably higher
for ROI vs. whole sonogram (0.89 vs. 0.83). We hy-
pothesize, that subregions of the lesion ROI yield simi-
lar classification accuracies to full ROIs. If so, a coarse
subregion is sufficient for classification and the neces-
sity of precise tumor segmentation and precise ROI po-
sitioning respectively diminishes. Our approach is to
create different subregions of lesion ROIs (top/bottom
half, horizontal subslices and ROIs with cropped-out
center areas) and use a CNN to classify these subre-
gions into benign and malignant lesions. By performing
a comprehensive analysis of the classification results,
we then identify which subregions contribute most to
accurate lesion classification.

2 RELATED WORK
In the realm of breast tumor classification, re-
searchers have explored various methodologies, each
offering distinct advantages and insights into the
diagnostic process. One prevalent approach relies
heavily on deep learning techniques, particularly
convolutional neural networks (CNNs), to analyze
ultrasound tumor images. These CNN-based meth-
ods extract convolutional features through transfer
learning, leveraging pre-trained architectures such as
VGG16, YOLOv3, or GoogLeNet. Notable studies
[Ald19, Chi19, Han17, Kal21] have demonstrated the
efficacy of this approach in accurately classifying breast
tumors based solely on learned features. However,
deep learning methods come with certain trade-offs.
While they offer automatic feature learning and high
flexibility, requiring minimal manual intervention,
they often demand large amounts of labeled data
for training and significant computational resources.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Additionally, deep learning models can be complex
and challenging to interpret, potentially limiting their
applicability in clinical settings where user scepticism
towards AI is still widely present [Tam22, Che22] and
interpretability of the employed algorithms is crucial
for their trustworthiness.

In contrast, another avenue of investigation involves
preselecting informative features from ultrasound
images and subsequently employing classical machine
learning algorithms for classification. Methods such
as support vector machines and decision trees have
been utilized in this context [Zha21, Cha14, Muh22].
These preselected features encompass a range of char-
acteristics, including texture-based attributes derived
from image data (e.g., gray-level co-occurrence matrix,
contrast, homogeneity, energy) envelope and spectral-
based properties extracted from raw radiofrequency
data (e.g., K-distribution, Nakagami distribution). By
focusing on specific features relevant to tumor char-
acterization, these approaches offer a complementary
perspective to the purely deep learning-based method-
ologies. Nevertheless, preselected feature classification
methods also have their limitations. While they may
offer greater interpretability and computational effi-
ciency, they often rely on manual feature engineering,
which can be labor-intensive and may not capture all
relevant information in the data. Additionally, these
methods may struggle to capture complex patterns
and relationships in the data, potentially limiting their
performance compared to deep learning approaches,
especially in scenarios with large and heterogeneous
datasets.

Recent investigations on a hybrid approach, such as
[Dao20, Abh23, Saj23], suggest that integrating hand-
crafted features with deep learning-based convolutional
features can lead to further improvements in classifi-
cation accuracy. This capitalizes on the strengths of
both methodologies, potentially enhancing the robust-
ness and reliability of breast tumor classification sys-
tems.

Moreover, the discussion between whole image classifi-
cation and subregion-based analysis has garnered some
attention within the research community. Further stud-
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ies [Cha14, Sch23] have underscored the superiority of
the analysis of selected tumor subregions over features
derived from entire images. This finding aligns with the
notion that localized analysis can provide more precise
insights into tumor characteristics and facilitate more
accurate classification outcomes.

3 MATERIALS AND METHODS
3.1 Dataset
In this study we employed the BUSI [Ald20] (breast
ultrasound images) dataset for our analysis. This
dataset comprises of 780 breast sonograms (437 benign
masses, 210 malignant masses, 133 normal) of women
aged between 25-75 years. For each sonogram in
the dataset, ground truth lesion segmentations are
available, enabling precise localization of the lesions.
To ensure comparability with other state-of-the-art
classification research, we focused exclusively on
benign and malignant masses, excluding normal im-
ages, with no masses, from our consideration. Before
training our models, all images were uniformly resized
to dimensions of 128× 128 pixels, and the grayscale
values were normalized to span the range [0, 1]. This
preprocessing step standardizes the image dimensions
and intensity values, facilitating consistent model
training and evaluation across the dataset. The root
mean square (RMS) contrast, which is given by

RMS Contrast =

√
1
N ∑

x,y
(I(x,y)− I)2, (1)

where N is the total number of pixels in the image,
I(x,y) is the intensity value of a pixel at position (x,y),
and I denotes the mean intensity value of all image pix-
els, serves as an indicator of image quality. Notably, the
top half of the ROIs (ROItop) exhibit an RMS contrast
of 0.22±0.12, while the bottom half (ROIbottom) show
an RMS contrast of 0.14±0.07, with a statistically sig-
nificant difference (p < 0.0001) based on the unpaired
t-test.

3.2 ROI subregions
Because ultrasound B-mode imaging analyzes reflected
waves, which disperse while passing through different
tissues, image contrast decreases in deeper layers of tis-
sue, as shown above. These B-mode images are also
prone to artifacts, especially along the direction of the
wavefront. This geometric condition is reflected in the
implementation and choice of the image versions. We
created the following four versions of ROI subregions
(Fig. 1) to evaluate which lesion areas are most impor-
tant for classification:

• ROIwhole: For the entire ROI (ROIwhole), a contour
segmentation model [Sch23] is applied on the orig-
inal unprocessed BUSI ultrasound dataset. A tight

rectangular area is cropped around the resulting seg-
mentation to obtain the desired ROI. This image ver-
sion ensures that the entire lesion area, along with
some surrounding tissue, is included for comprehen-
sive analysis, capturing the full extent of tumor fea-
tures.

• ROI1−5: To evaluate the effects of artifacts and bet-
ter understand the distribution of pertinent informa-
tion among ROIwhole images, we divide it into five,
evenly spaced, horizontal subslices ROI1−5 (index-
ing applies top down). This segmentation strategy
allows us to explore variations in lesion characteris-
tics across different depths within the tissue, provid-
ing insights into the spatial distribution of features
relevant to classification.

• ROItop and ROIbottom: To evaluate the effects of po-
tentially worse image quality (low contrast) in the
lower lesion area, we horizontally divide ROIwhole
into two halves ROItop and ROIbottom. By sepa-
rately analyzing the upper and lower halves of the
lesion, we can assess whether image quality vari-
ations (contrast) impact classification performance
differently across different regions of the ROI.

• ROIcrop x%: To gain better insights into the impor-
tance of the outer, contour regions vs. the inside
of the lesions, we crop out a rectangle with dimen-
sions of x% of the original ROIwhole dimensions, to
create ROIcrop x%. This approach allows us to sys-
tematically evaluate the significance of the lesion’s
outer boundary and surrounding tissue in classifica-
tion, providing valuable information on the spatial
localization of discriminative features.

3.3 Classification experiments
To obtain the desired lesion ROI, we applied a segmen-
tation model detailed in [Sch23]. It consists of seven
convolutional layers (number of filters: 32, 64, 128,
256, 128, 64, 32; kernel size 3×3), which each perform
feature extraction by applying learnable filters to the in-
put images, followed by a max-pooling and a dropout
layer to enhance model generalization. This segmen-
tation process delineates the lesion region of interest
from the surrounding tissue, enabling focused analy-
sis and classification of suspicious masses. The net-
work architecture (Table 1) we used for our classifi-
cation experiments is also a CNN with sequential lay-
ers. The CNN architecture incorporates fully connected
dense layers, which are widely employed in classifi-
cation tasks. These dense layers process the flattened
output from the convolutional layers to generate mean-
ingful class predictions. The final output layer consists
of two neurons for binary classification, providing pre-
dicted probabilities for each class. These probabilities
serve as classifier parameters for our receiver operating
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Layer (Type) Output Shape Channels
Conv (64, 64, 4) 4

Conv_1 (32, 32, 8) 8
Conv_2 (16, 16, 16) 16
Conv_3 (8, 8, 32) 32
Flatten (None, 2048) -
Conv_4 (None, 32) 32
Dense (None, 2) 2

Table 1: Summary of the network structure for our clas-
sification models.

characteristic (ROC) curve evaluation in the results sec-
tion, enabling comprehensive performance assessment.
During training, the classification model was initialized
randomly and trained from scratch for 100 epochs using
the binary cross-entropy loss function, the Adam opti-
mizer and a learning rate of η = 1 · 10−4. The dataset
was split into training, test, and validation data at a
60 : 30 : 10 ratio for all experiments. Additionally, data
augmentation in the form of horizontal flip and scal-
ing was applied before training to improve model gen-
eralization. To account for potential variability in the
dataset and improve the reliability of performance esti-
mates, we employed a 10-fold cross-validation for each
classification experiment. This technique involves par-
titioning the dataset into ten subsets, training the model
on nine subsets, and evaluating its performance on the
remaining subset. By repeating this process with differ-
ent subsets for evaluation, we obtain more stable and
representative performance estimates for our classifi-
cation models. The area under the curve (AUC) met-
ric was employed to compare classification accuracy
across all models, providing a quantitative measure of
model performance and efficacy in distinguishing be-
tween benign and malignant lesions.

We trained three distinct models for our evaluation: The
first model was exclusively trained on ROIwhole data
(whole net, WN). The WN is used to evaluate the sub-
slice experiment (ROI1−5) as well as the crop experi-
ment (ROIcrop x%). In addition to the WN, we trained
two additional models: the "top net" (TN) and the "bot-
tom net" (BN). These models were specifically trained
on ROItop and ROIbottom, respectively. The TN and BN
models were designed to explore the effects of contrast
variations across different regions of the lesion and to
investigate whether robust classification models can be
effectively trained using only half of the ROI informa-
tion. By training separate models on the upper and
lower halves of the lesion ROI, we aimed to discern any
disparities in classification performance and ascertain
the significance of ROI composition in model training
and evaluation. In the following results section, the sig-
nificance threshold was set at .05.

4 RESULTS
We found that our baseline model (AUC(ROIwhole) =
0.922±0.032) performed in line with recent, compara-
ble studies [Ghe22, Byr21], which also used the BUSI
dataset. These studies applied vastly more complex
vision transformers as well as transfer learning-based,
large convolutional models to address this task and
to achieve similar classification accuracies to our
baseline. This suggests that while more complex
models may offer marginal improvements, our ap-
proach maintains competitiveness within the current
state-of-the-art. Results of the subslice experiment
(Fig. 2) showed that subslices ROI1 and ROI5 per-
formed better than inner ones (Fig. 3). We observed
that the model classified ROI5 significantly more
accurately than ROI3 (AUC(ROI5) = 0.824 ± 0.071
vs. AUC(ROI3) = 0.760 ± 0.052, p = 0.036), while
ROI1 vs. ROI3 did not reach statistical significance
(p = 0.074).

We found that cropping out the inner 66%
of the ROI (Fig. 4) did not lead to a signif-
icant deterioration in AUC (AUC(ROIwhole) =
0.922 ± 0.032 vs. AUC(ROIcrop66) = 0.897 ± 0.058,
p = 0.35). AUC began to significantly increase with
ROIwhole vs. ROIcrop75 (p = 0.016).

Additionally, BN_ROIwhole performed signifi-
cantly better than BN_ROIbottom (p = 0.045),
despite the upper half not being known during
the training process (Fig. 5). The BN demon-
strated superior generalization to ROIwhole com-
pared to the TN (AUC(BN_ROIwhole) = 0.922 ±
0.032 vs. AUC(TN_ROIwhole) = 0.876 ± 0.051,
p = 0.029).

5 DISCUSSION
We hypothesized that ROI subsections would achieve
classification results comparable to using the entire
ROI. Our hypothesis was supported by the results,
as ROItop and ROIbottom indeed demonstrated clas-
sification performance similar to that of ROIwhole.
However, for smaller subslices, this assumption was
proven false. We observed a significant deterioration
in classification accuracy in every subslice ROI1−5
compared to ROItop, ROIbottom and ROIwhole. The
observed decline in performance is likely attributed
to an excessive reduction in contextual information.
In addition, we observed that outer subslices tend to
perform better, likely due to the preservation of more
visible contour information. We further conducted
verification tests by removing rectangular areas inside
and outside the lesion, confirming that the inner lesion
area is not critical for classification with our CNN
model.

Additionally, we investigated whether analyzing only
the upper or lower half of the lesion ROI would yield
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Figure 2: Results of subslice classification experiment.

Figure 3: Color-coded results (AUC) of subslice clas-
sification experiment, mapped onto the ROIwhole image
version.

significantly different classification accuracies. Results
showed, that even visually less favorable images can
be reliably analyzed if the upper or lower edge of the
lesion is depicted. Surprisingly, our experimental find-
ings demonstrated that the variation in image contrast,
particularly the substantially lower contrast observed in
ROIbottom, did not adversely impact the classification
accuracy of our proposed method. Therefore, success-
ful classification is possible even for images or image
subregions of low quality, highlighting the robustness
of our approach across varying imaging conditions.

To further strengthen the validity and generalizability
of our findings, future research should include exper-
iments conducted on other datasets beyond the BUSI
dataset. While our results demonstrate promising clas-
sification performance using ROI subsections, it is es-
sential to validate these findings on diverse datasets
with varying characteristics such as imaging protocols,
patient demographics, and lesion types. This broader
exploration will help assess the external validity of our
approach and its applicability across different clinical
settings.
Additionally, conducting further experiments to
compare our results with "heatmaps" generated by
classification networks could provide valuable insights
into the discriminative features utilized by our CNN
model. Heatmaps visualize regions of interest within
the images that contribute most to the classification
decision, offering a deeper understanding of the under-
lying mechanisms driving our model’s performance.
By comparing the performance of our ROI subsections
with the spatial distribution of discriminative features
identified by heatmaps, we can gain further insights
into the robustness and interpretability of our classifi-
cation approach. These experiments would contribute
to the ongoing efforts to enhance the transparency and
interpretability of deep learning models in medical
image analysis.

6 REFERENCES
[Abh23] Abhisheka B, Biswas S, Purkayastha B, Das

S. (2023). Integrating Deep and Handcrafted Fea-
tures for Enhanced Decision-Making Assistance

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

251https://www.doi.org/10.24132/CSRN.3401.26



in BreastCancer Diagnosis on Ultrasound Images.
10.21203/rs.3.rs-3276190/v1.

[Ald19] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy
A. Deep Learning Approaches for Data Augmen-
tation and Classification of Breast Masses using
Ultrasound Images. International Journal of Ad-
vanced Computer Science and Applications 10
(2019).

[Ald20] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy
A. Dataset of breast ultrasound images. Data in
Brief. 2020;28:104863.

[Byr21] Byra M. Breast mass classification with trans-
fer learning based on scaling of deep representa-
tions. Biomedical Signal Processing and Control.
2021;69:102828.

[Cha14] Chaudhury B et al., Using features from tu-
mor subregions of breast DCE-MRI for estrogen
receptor status prediction, 2014 IEEE Interna-
tional Conference on Systems, Man, and Cyber-
netics (SMC), San Diego, CA, USA, 2014, pp.
2624-2629, doi: 10.1109/SMC.2014.6974323.

[Che22] Chen M, Zhang B et al., Acceptance of clin-
ical artificial intelligence among physicians and
medical students: A systematic review with cross-
sectional survey, Frontiers in Medicine 2022 Vol-
ume 9, doi: 10.3389/fmed.2022.990604

[Chi19] Chiao JY, Chen KY, Liao K, Hsieh I, Zhang
G, Huang TC. Detection and classification the
breast tumors using mask R-CNN on sonograms.
Medicine 98 (2019), e15200.

[Dao20] Daoud, M.I.; Abdel-Rahman, S.; Bdair, T.M.;
Al-Najar, M.S.; Al-Hawari, F.H.; Alazrai, R.
Breast Tumor Classification in Ultrasound Images
Using Combined Deep and Handcrafted Features.
Sensors 2020, 20, 6838.

[Ghe22] Gheflati B, Rivaz H. Vision Transformer for
Classification of Breast Ultrasound Images. 2022.

[Han17] Han S, Kang HK, Jeong JY, Park MH, Kim
W, Bang WC et al. A deep learning framework
for supporting the classification of breast lesions
in ultrasound images. Physics in Medicine and
Biology 62 (2017).

[Kal21] Kalafi E, Jodeiri A, Setarehdan K, Ng W,
Rahmat K, Mohd Taib NA et al. Classification
of Breast Cancer Lesions in Ultrasound Images
by Using Attention Layer and Loss Ensemble in
Deep Convolutional Neural Networks. Diagnos-
tics 11 (2021), p. 1859.

[Lan23] LÃ¥ng K, Josefsson V, Larsson AM, Lars-
son S. Artificial intelligence-supported screen
reading versus standard double reading in the
Mammography Screening with Artificial Intelli-
gence trial (MASAI): a clinical safety analysis
of a randomised, controlled, non-inferiority, sin-

gleblinded, screening accuracy study. The Lancet
Oncology. 2023;24(8):936-44.

[Men13] Mendelson E, BÃ¶hm-VÃ©lez M. ACR BI-
RADS Ultrasound. Reston, VA, 2013.

[Muh22] Muhtadi S. Breast Tumor Classification Us-
ing Intratumoral Quantitative Ultrasound Descrip-
tors. Comput Math Methods Med. 2022 Mar
7;2022:1633858. doi: 10.1155/2022/1633858.
PMID: 35295204; PMCID: PMC8920646.

[Saj23] Sajid U et al., Breast cancer classification
using deep learned features boosted with hand-
crafted features. Biomedical Signal Process-
ing and Control 2023 Volume 86, Part C, doi:
10.1016/j.bspc.2023.105353 Breast cancer classi-
fication using deep learned features boosted with
handcrafted features

[Sch23] Schmidt C, Overhoff HM. Applicability of
BI-RADS Criteria for Deep Learning-based Clas-
sification of Suspicious Masses in Sonograms.
Bildverarbeitung für die Medizin 2023. Ed. by
Deserno TM, Handels H, Maier A. Wiesbaden:
Springer Fachmedien Wiesbaden, 2023:108-13.

[Tam22] Tamori H, Yamashina H, Mukai M, Morii Y,
Suzuki T, Ogasawara K. Acceptance of the Use of
Artificial Intelligence in Medicine Among Japan’s
Doctors and the Public: A Questionnaire Survey.
JMIR Hum Factors. 2022 Mar 16;9(1):e24680.
doi: 10.2196/24680.

[Who24] Fact sheet: Breast cancer, World Health Or-
ganization. https://www.who.int/newsroom/fact-
sheets/detail/breast-cancer/. Accessed: 2023-07-
31.

[Zha21] Zhang B, Song L, Yin J. Texture Analy-
sis of DCE-MRI Intratumoral Subregions to
Identify Benign and Malignant Breast Tu-
mors. Front Oncol. 2021 Jul 8;11:688182. doi:
10.3389/fonc.2021.688182.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

252https://www.doi.org/10.24132/CSRN.3401.26



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (1− Specificity)

T
ru
e
P
os
it
iv
e
R
at
e
(S
en
si
ti
v
it
y
)

ROIwhole (AUC = 0.920± 0.049)

ROIcrop33 (AUC = 0.927± 0.052)

ROIcrop66 (AUC = 0.897± 0.058)

ROIcrop75 (AUC = 0.856± 0.057)

ROIcrop80 (AUC = 0.767± 0.063)

1

Figure 4: Results of crop classification experiment.
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Figure 5: Results of top/bottom halves experiment.
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