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ABSTRACT 
Clustering, a fundamental technique in unsupervised learning, identifies similar groups within a dataset. However, 

clustering algorithms encounter limitations when requiring a predetermined number of clusters/centroids/labels. 

This paper proposes a novel approach of clustering by integrating concepts from Voronoi diagrams in Laguerre 

geometry, namely, Laguerre Voronoi Clustering (LVCluster). Laguerre geometry introduces circles by adding 

radius weight metric to centroids, enabling dynamic exclusion from clustering criteria. Consequently, this 

approach offers flexibility by necessitating only one hyperparameter, an upper-bound value for the number of 

circles. LVCluster can be optimized using gradient descent and can be jointly optimized with deep neural network 

architectures. The experimental results indicated that LVCluster outperforms clustering algorithms when trained 

individually and jointly with deep neural networks on increased cluster centroids.  
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1. INTRODUCTION 
Clustering, an essential technique in data mining and 

machine learning, involves grouping data points into 

meaningful clusters based on their similarities. It is a 

fundamental tool for exploratory data analysis, pattern 

recognition, and knowledge discovery in various 

domains. Over the years, clustering has witnessed 

extensive research and application across diverse 

fields, including image analysis, document clustering, 

bioinformatics, customer segmentation, and anomaly 

detection, etc.  

Clustering algorithms require hyperparameters based 

on which they extract the similarity of data. Due to the 

advancement of deep learning [Yan15a] methods, 

clustering algorithms are being incorporated with deep 

learning architectures [Maz20a]. The integration of 

clustering algorithms with deep learning architectures 

can be performed through either joint or independent 

training. Joint training indicates training deep learning 

(DL) models by adding DL objective loss and 

clustering loss during training. Independent training 

involves training DL separately with loss function and 

applying unsupervised clustering algorithms in the 

learned DL representation.  

The most common clustering algorithm used in deep 

learning is KMeans [Stu82a], due to its simple 

clustering objective. KMeans clustering objective can 

be optimized using backpropagation, which gives an 

advantage of implementation with deep learning 

architectures. However, the required hyperparameter 

of the clustering algorithm often limits the usability of 

clustering algorithms. KMeans algorithm requires the 

number of centroids/classes as hyperparameters. Pre-

defining the number of classes can be critical in 

unsupervised learning as the number of classes is 

sometimes impossible to measure in large datasets. On 

the other hand, density-based clustering algorithms 

[Mar96a] do not require the number of classes pre-

defined. However, it requires a distance value to 

connect two components into the same group. 

Selecting the proper density value can be critical based 

on the representation and deviation of data 

distribution. 

Deep learning architectures have also been applied to 

clustering data [Jun16a]. These methods aim to project 

data into a latent space while ensuring the data points 

in the space are clusterable. Deep clustering 

techniques have gained popularity due to their ability 

to automatically extract features from data. However, 

the objectives of clustering algorithms and deep 

clustering algorithms are different. Deep clustering 

algorithms produce projections of data that are 

clusterable and implement clustering algorithms 

inside the neural network. In contrast, classic 

clustering algorithms directly cluster data in the latent 

space. In both cases, one important problem that has 

always been an open question is the pre-defined 

number of clusters to generate. This work introduces 

a clustering algorithm that gives flexibility in pre-

defining the number of clusters using computational 
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geometry data structure with the property of modern 

deep learning architecture. 

The objective of this paper is to propose a clustering 

algorithm that does not require a fixed number of 

centroids or classes during training. Therefore, the 

clustering algorithm would offer flexibility in varying 

data distributions. Additionally, the algorithm has to 

operate without requiring labeled data, enabling 

unsupervised learning scenarios. Moreover, the 

algorithm should be optimizable using gradient 

descent to be jointly trained with deep neural network 

architectures end-to-end. With all these advantages, 

the clustering algorithm will be very similar to a deep 

learning layer, such as softmax, yet unsupervised and 

loosely dependent on the number of classes and labels. 

Considering the above-mentioned constraints, this 

paper proposes a Laguerre Voronoi clustering 

algorithm, namely, LVCluster. The proposed 

algorithm requires one hyperparameter: an upper 

bound of the centroids/labels of the given input data. 

LVCluster algorithm dynamically groups clusters and 

excludes extra cluster regions based on the input data 

distribution. Therefore, LVCluster does not require 

knowledge of the exact number of classes in the given 

data. As a result, it is well suited for unsupervised 

learning on large datasets using deep neural networks 

(DNN) with an unknown number of classes. 

The overall contributions of the paper are: 

- The paper proposes a Laguerre Voronoi Diagram 

based clustering strategy for unsupervised 

clustering. 

- The approach leverages the properties of 

Laguerre geometry to introduce adaptability to 

the identification of necessary classes during the 

training process. 

- The proposed clustering algorithm is trained 

using backpropagation and is jointly trainable 

with deep learning methods. 

The performance of the proposed clustering algorithm 

is evaluated in three spatial datasets: Congress voting 

dataset [Con87a], Iris dataset [Raf88a], and Breast 

cancer dataset [Wol95a]. Moreover, the performance 

of the proposed clustering algorithm is evaluated when 

it is jointly trained with deep neural networks to 

cluster speakers in an open-set scenario.  

2. LITERATURE REVIEW 
Clustering algorithms have been effectively studied 

and applied across various domains of machine 

learning. Clustering algorithms have been one of the 

fundamental approaches in unsupervised learning 

algorithms. Early clustering algorithms such as 

KMeans [Stu82a] is the most widely used partitioning-

based algorithms due to its simplicity and efficiency. 

KMeans algorithm has different optimization 

techniques, among which Lloyd's [Stu82a] 

optimization is widely utilized. Lloyd's algorithm is 

also known as Voronoi iteration as it tries to partition 

a set of data into Voronoi cells. The center of each 

Voronoi cell is referred to as the site, which is learned 

in Lloyd's algorithm through iteration. Any data point 

in a Voronoi cell has a minimum distance to the 

Voronoi site. Lloyd's algorithm is specifically 

formulated to work on Euclidean spaces. In Euclidean 

space, Lloyd's algorithm cannot penalize unnecessary 

Voronoi sites on demand. As a result, the number of 

Voronoi cells must be correctly pre-defined. Apart 

from Lloyd's iterative algorithm, other approaches use 

gradients to learn optimal sites [Leo94a].  

The popularity of deep learning algorithms has 

contributed to the increased importance of the 

KMeans algorithm, primarily due to its adaptability to 

be trained with gradient descending approach. As a 

result, various unsupervised deep learning algorithms 

utilized KMeans clustering's loss function jointly in 

the training process [Maz20a]. However, the only 

limitation that the KMeans algorithm faces is the pre-

defined number of centroids or Voronoi cells. The pre-

definition limits its usability as it is challenging to 

know the number of classes beforehand in self-

supervised learning. 

Density-based clustering algorithms, such as 

DBSCAN [Mar96a] and OPTICS [Mih99a], focus on 

identifying regions with high-density data space. 

However, these algorithms are not optimizable using 

a gradient descending approach. Density-based 

algorithms are prone to density parameters. As a 

result, it is challenging to integrate density-based 

algorithms with deep learning as the density 

distribution produced by the deep learning models can 

change over time.  

Deep learning architectures can excellently produce 

clusterable data by learning the inherent 

representation of the given data. Further, they can 

generate clusterable embedding vectors based on 

appropriate loss functions. Deep embedded clustering 

(DEC) [Jun16a] is one of the fundamental approaches 

that produces clusterable embedding from image data 

using KMeans clustering loss. Although it performs 

excellently on image representation, it is still pruned 

to the fixed number of clusters/classes to produce. If 

the number of classes is approximated, DEC would 

fail to produce projection form data. 

The idea of identifying the number of centroids in the 

KMeans algorithm is not new. XMeans [Pel20a] is an 

early improvement of the KMeans algorithm that finds 

appropriate cluster regions by repeated subdivision. 

Unsupervised KMeans [Sin20a] introduced a version 

of the KMeans algorithm that does not require the 

number of centroids as a hyperparameter. Even though 

the improved KMeans algorithms optimally 

approximate the centroids dynamically, they lack the 

ability to be trained using backpropagation. Hence, 
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recently enhanced KMeans algorithms cannot be 

implemented in a deep learning setup. 

This paper introduces a novel clustering algorithm that 

inherits principles from principles of Laguerre 

geometry to dynamically determine the number of 

centroids. Instead of fixing the number of clusters, the 

algorithm requires an upper bound value of the 

number of clusters. Moreover, the clustering 

algorithm is trainable using backpropagation. As a 

result, it can be jointly trained with deep learning 

architectures simultaneously. The proposed clustering 

algorithm alleviates the need to fix the number of 

clusters, making the clustering algorithm truly 

unsupervised. 
  

3. METHODOLOGY 
The clustering algorithm inherits the basic properties 

of KMeans while incorporating the properties of 

Laguerre geometry. The algorithm can cluster spatial 

data. The algorithm requires an upper bound of the 

number of clusters. The clustering algorithm has two 

stages: a) initialization and b) optimization. Similar to 

classic KMeans, the proposed clustering method is 

sensitive to initial region selection. After the 

initialization, the circles are adjusted using 

backpropagation. First, the concept of the Voronoi 

Diagram in Laguerre geometry is discussed. 

Thereafter, the initialization and optimization steps are 

discussed in the following section.  

Voronoi Diagram in Laguerre Geometry 
In Laguerre geometry cluster circles are formed 

instead of cluster centroids. Circles in Laguerre 

Voronoi Diagram are set of points 𝐶 =
 {𝑐1, 𝑐2, . . . , 𝑐𝑘}, 𝑐𝑖 ∈  ℝ𝑑 with a corresponding set of 

radius 𝑅 =  {𝑟1, 𝑟2, . . . , 𝑟𝑘}, 𝑟𝑖 ∈  ℝ. The coverage of 

circle 𝑐𝑖 is the region that is of the minimum distance 

to the circle 𝑐𝑖. In Laguerre geometry, the coverage of 

a circle 𝑐𝑖 can be controlled by increasing the value of 

the corresponding radius 𝑟𝑖 and vise versa. The 

coverage of a circle is defined as a Voronoi polygon 

(convex polygon), which can be mathematically 

interpreted as, 

𝑉(𝑐𝑖) =∩𝑗 {𝑃 ∈ ℝ𝑑|𝐷𝐿(𝑐𝑖 , 𝑃) ≤ 𝐷𝐿(𝑐𝑗 , 𝑃)} (1) 

Here, 𝑃 ∈  ℝ𝑑 is a set of points in the plane. 𝐷𝐿(⋅,⋅) is 

a distance function in terms of Laguerre geometry 

derived as follows, 

𝐷𝐿(𝑐𝑖 , 𝑃) = 𝑑(𝑐𝑖 , 𝑃) − 𝑟𝑖
2 (2) 

Intuitively, the equation measures the tangent line 

from point 𝑃 to the circle (𝑐𝑖; 𝑟𝑖). 𝑑(. , . ) could be any 

distance metric function. Whenever a Voronoi 

diagram is drawn using the above formula of Laguerre 

geometry, the formed partition of the whole frame is 

called the Laguerre Voronoi Diagram (LVD). A 

gamut of applications in material sciences [Ale04a], 

biometrics [Che06a], and networks [Kef09a] 

benefitted from advanced algorithms of the Voronoi 

diagram and Laguerre Voronoi diagrams. One of the 

interesting properties of the Voronoi diagram is a 

Voronoi polygon can have zero area if it can be formed 

using one or more Voronoi polygons. Due to this 

property, LVD is different from Voronoi diagrams in 

Euclidean space, formed by KMeans and any other 

clustering algorithms. A circle can exist in LVD 

without covering any region, resulting in having no 

cluster assignment. Figure 1 depicts an example of the 

classic Voronoi Diagram and Voronoi Diagram in 

Laguerre Geometry. The triangles indicate 

centroids/sites, and the color background indicates the 

region/Voronoi cell of the centroids. Dashed circles 

demonstrate the radius of circles in Laguerre 

geometry. Squares indicate that the circle was not 

assigned any region/Voronoi cell, which is only 

possible in the Voronoi diagram in Laguerre 

geometry. 

Laguerre Voronoi Clustering  
The proposed algorithm leverages the property of an 

empty polygon in LVD to its advantage by setting an 

upper bound on the number of clusters. Therefore, the 

proposed algorithm can find the required number of 

cluster regions during training and shrink the 

remaining centroids. Figure 1 shows an example of the 

property. In Voronoi diagram based clustering (Figure 

1-left), each centroid must have its Voronoi polygon 

on the space. On the contrary, LVD can dynamically 

shrink the area of Voronoi polygons to zero (Figure 1-

Figure 1 Difference of Voronoi diagram in Euclidean and Laguerre geometry. 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

257https://www.doi.org/10.24132/CSRN.3401.27



right). With proper optimization, LVCluster can learn 

the optimal polygon regions and disregard the excess 

centroids. This dynamic adaptation to the number of 

centroids is the novelty of the proposed LVCluster 

algorithm. In the following two sections, the 

initialization stage and optimization stage of the 

proposed algorithm are discussed. 

3.1.1 Initialization 
The initialization step defines circle centers and radii 

based on the input data. Initialization is an important 

step in clustering, as inaccurate initialization can cause 

the optimization to get trapped in local minima 

[Dav07a]. The initialization process of the proposed 

clustering algorithm follows the KMeans++ [Dav07a] 

initialization process, used in KMeans clustering. The 

circle centers 𝑐𝑖 are first initialized using the 

KMeans++ initializer. Afterward, the radius 𝑟𝑖 is 

derived from the minimum distance for each center to 

any other center. Using KMeans++ ensures that all the 

centers are placed around data points while 

maintaining distance among the other centers. Having 

different radii ensures coverage overlaps, which is to 

be optimized using a gradient descending algorithm. 

3.1.2 Optimization 
After proper initialization of the circles, their optimal 

placement is found using backpropagation. In the 

proposed algorithm the distance function to generate 

Voronoi polygon is stated as follows, 

𝐷𝐿(𝑐𝑖 , 𝑃) = 𝑑(𝑐𝑖 , 𝑃) − 𝜎(𝑟𝑖)
2 (3) 

Here 𝜎(⋅) is sigmoid activation function used to give 

a non-linearity to the optimization problem. 𝑑(. , . ) is 

cosine distance function. 

The objective of the clustering algorithm is to 

minimize the distance between the circle and the data 

points belonging to the Voronoi polygon of that circle. 

The objective can be mathematically interpreted as 

follows, 

𝐿(𝑋, 𝐶) =  ∑ min
𝑐𝑗∈𝐶

𝐷𝐿(𝑐𝑗 , 𝑥𝑖)

𝑛

𝑖=1

 (4) 

The function is used as a loss function and gradients 

of the center and radius are calculated based on the 

given loss function. Here, 𝑥𝑖 ∈ 𝑋 is the set of data 

points given to the clustering algorithm as input. The 

circle center and radius are updated using the gradient 

descending algorithm with a fixed learning rate 𝜂.  

3.1.3 Deep Learning Integration 
The proposed LVCluster can be combined with deep 

learning architectures and can be trained jointly to 

achieve the clustering objective. The joint loss 

function can be derived as 𝐿 =  𝐿𝐷𝑁𝑁 + 𝐿𝐶. Here, 

𝐿𝐷𝑁𝑁 is the loss function of DNN that could be 

representation loss, reconstruction loss, or elbow loss. 

𝐿𝐶  is the clustering loss function derived in Eqn (4). 

Based on the architectural constraints, the clustering 

loss function can flow the gradients to the DNN. As 

the LVCluster algorithm adheres the same 

implementation strategy of KMeans clustering 

algorithm (disregarding the minor additional 

computation of 𝜎(𝑟𝑖)
2 in Eqn (3)), the computational 

complexity of both of the algorithms are identical. 

4. EXPERIMENTAL RESULTS 

Datasets 

Three spatial datasets were used for the evaluation.  

The datasets are described below: 

- Congress voting [Con87a] is a classification 

dataset containing two classes. The dataset has a 

total of 16 features explaining different conditions 

of voting. Some of the features were missing from 

the dataset, which were removed before training. 

- Iris [Raf88a] is a classification dataset containing 

three classes of 50 instances each. It is a spatial 

dataset with four features. The dataset is widely 

used in statistics and machine learning.   

- Breast cancer [Wol95a] dataset is a classification 

dataset containing two classes (malignant and 

benign). The dataset has 30 features extracted 

from a digitized image of a fine needle aspirate of 

a breast mass. The cancer dataset holds 569 

instances in total. The features were standardized 

by removing the mean and scaling to unit 

variance. 

Apart from the real-world datasets, synthetic datasets 

were used for the visualization of clusters. The 

synthetic datasets were generated using the sklearn 

[Fab11a] library with a standard deviation of 3.5. 

Implementation 
Three metrics were used for evaluation. The metrics 

are elaborated below: 

• Accuracy: Due to an unsupervised learning 

strategy, the clustering algorithm generated 

pseudo labels for each data point. Therefore, 

the accuracy metric indicates the maximum 

match by mapping the pseudo labels with the 

ground truth labels.  

• Adjusted Rand Index: The adjusted rand 

index is extracted and calculated from the 

contingency table determining the quality of 

the generated pseudo label depending on the 

ground truth.  

• Normalized Mutual Information: 

Normalized mutual information extracts 

normalization of the mutual score by 

comparing the clustering algorithm-

generated pseudo labels with the ground 

truth.  

The three algorithms generate a real value score [0, 1]. 

A higher score from the metrics would indicate the 

quality of the pseudo labels compared to the ground 

truth. However, the number of centroids defined in the 
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clustering algorithm would not be the same as the 

number of ground truth labels. Therefore, the metrics' 

higher score would evaluate how well the clustering 

algorithm identifies the number of centroids along 

with the clustering problem relative to the ground 

truth. 

PyTorch [Ada19a] was used to build the clustering 

algorithms that support automatic differentiation. The 

clustering algorithms were additionally trained for 

open-set speaker recognition, aiming to investigate 

their performance and behavior when applied to the 

outputs of DNNs. The training criteria were 

implemented from [Abu23a]. The models were trained 

on the VoxCeleb1 [Ars17a] dataset in an unsupervised 

strategy and tested on different speakers on the 

VoxCeleb1 [Ars17a] dataset. 

Comparison Analysis 
The analysis explores the influence of the initial 

number of clusters, which serves as a hyperparameter 

provided to the clustering algorithm during the 

initialization stage. Figure 2 reports a performance 

comparison of the KMeans and LVCluster algorithms 

on congress voting records dataset. Both clustering 

algorithms show optimal performance when given the 

accurate number of centroids. KMeans and LVCluster 

show similar performance when the centroid was set 

to 2. Increasing the number of centroids causes a 

reduction in performance for the KMeans algorithm. 

In contrast, the LVCluster shows less performance 

degradation with an increasing number of clusters.  

Figure 3 depicts a performance comparison on the Iris 

dataset with three classes. Both clustering algorithms 

show degraded performance when the number of 

centroids was set to two, which is less than the actual 

number of classes. Initializing the clustering 

algorithms with three shows the best performance for 

both algorithms. Further increasing the number of 

centroids causes a reduction of performance for the 

KMeans algorithm. LVCluster also shows 

performance degradation while increasing centroids. 

However, compared to LVCluster degradation is 

slighter than KMeans performance degradation.  

Figure 4 reports a performance comparison on the 

breast cancer dataset with two classes. Both clustering 

algorithms show a similar trajectory of degradation. 

Each class of the dataset contains smaller and 

independent sub-clusters. Therefore increasing the 

initial number of clusters in the clustering algorithm 

causes the clustering algorithm leads it to treat the sub-

clusters as separate classes. As a result, the LVCluster 

struggles to effectively reduce the number of cluster 

Figure 2 Performance comparison on congress voting records dataset. 

Figure 3 Performance comparison on Iris dataset.   
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regions relative to the original number of clusters 

defined in the dataset. 

In the above comparisons, LVCluster shows an upper-

bound performance compared to the KMeans 

algorithm. Moreover, LVCluster stabilizes the 

performance when the number of clusters were 

increased. As LVCluster can remove unnecessary 

centroids from the dataset, it can detect sub-optimal 

cluster representation. However, the performance of 

LVCluster on increasing the number of centroids 

depends on how well the clusters are distributed. 

Figure 5 shows an example of the Voronoi diagram of 

the centroids. The example has 12 cluster regions 

where 10 of the cluster regions are well-separated. 

Regardless, two of the cluster regions are tightly 

bound together. From the perspective of the 

distribution of the data, there are 11 centroids as two 

of the regions are so close that they can be considered 

as one cluster region. KMeans clustering with 12 

centroids would generate 12 regions. However, as the 

data is not well-separated, the LVCluster would 

generate 11 regions considering the two tightly 

bounded regions as one. From the perspective of data 

Figure 4 Clustering performance comparison on breast cancer classification dataset. 

Figure 5 Voronoi diagram comparison of KMeans and LVCluster. 

Figure 6 Adjusted rand index on different cluster choices. 
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distribution, performance is a relative factor. 

Excessive noise and merged regions can cause 

LVCluster to generate fault assumptions based on the 

actual classification task. 

Figure 6 exhibits a comparison of the adjusted rand 

index varied by the number of clusters on a well-

separated data distribution. LVCluster shows the best 

result whenever the input number of clusters is greater 

than the number of actual clusters in the dataset. The 

overall comparisons highlight that LVCluster can 

dynamically reduce the required number of clusters 

based on the data distribution to gain better 

performance than KMeans clustering. 

Table 1 shows the performance comparison of the 

KMeans and LVCluster algorithm when trained 

jointly with DNN architecture [Abu23a] to recognize 

speakers in unsupervised open-set conditions. In an 

open-set problem, a model is trained and tested on two 

different datasets with two different speaker sets. 

Therefore, the number of speakers in the testing set 

(40 speakers) is unknown to the model. When using 

the KMeans algorithm to perform clustering on the 

speaker embeddings, the clustering algorithm 

generates the same performance as LVCluster when 

the number of clusters is set to the same as the number 

of speakers in the test dataset. However, increasing the 

number of clusters to 128 shows that the performance 

of the KMeans clustering algorithm degrades 

drastically. In contrast, the performance of LVCluster 

slightly reduces. LVCluster dynamically adjusts the 

number of clusters and finds the best possible 

clustering representation from the speaker embedding 

space. Therefore, it can be validated that LVCluster 

can be useful when the number of clusters of a 

distribution is unknown, yet the distribution contains 

a clusterable representation. 

 

5. CONCLUSION 
This paper proposes LVCluster, a novel clustering 

algorithm that inherits the property of Laguerre 

geometry to dynamically determine the number of 

centroids. The algorithm requires an upper bound 

number of clusters as hyperparameters, which often 

reduces the necessity to identify the number of classes 

in an unknown dataset. LVCluster shows performance 

gain than KMeans whenever the number of cluster 

centroids is set higher than the actual number of 

cluster centroids. The algorithm is optimized using 

backpropagation, thereby opening up opportunities for 

its application in deep learning architectures. 
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