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Abstract
Object detection, a fundamental task in computer vision, plays a crucial role in various applications such as au-
tonomous driving, surveillance, and robotics. However, training models for this task require vast amounts of
high-quality data, often involving labor-intensive manual labeling. Synthetic data, a promising alternative, re-
mains an active area of research. This paper presents a comprehensive exploration of different object sources
for the use of synthetic data in enhancing object detection models. We investigate various synthetic data gen-
eration techniques to implant objects into a scene, with a focus on enhancing training data diversity. These ob-
jects are either gathered from the training dataset itself using SegmentAnything as a new supervised self aug-
mentation technique or imported from external sources, including a photobox with a rotating table and web
scraping of online shops. Moreover, our study delves into the development of a placement logic that gradu-
ally evolves from placing objects randomly to placing objects in physically correct orientations to mimic the
real world data. We investigate the use of different blending techniques. The outcome of our study demon-
strates that synthetic images, when integrated with an existing real training set, substantially improve the ob-
ject recognition accuracy of the model without compromising inference time. Our code can be found at
https://github.com/EduardBartolovic/synthetic-data-generation.

Keywords
Synthetic Data Generation, Data Augmentation, Domain Randomization, Object Detection, SegmentAnything,
YOLOv5

1 INTRODUCTION

In the current landscape, object detection algorithms
and model architectures stand as remarkably power-
ful tools [1]. However, the efficacy of object detec-
tion models is profoundly influenced by the availabil-
ity and diversity of training data. Traditional labeling
relies heavily on manual labor, which is often time-
consuming, error-prone and expensive. Occasionally,
data privacy regulations further complicate the collec-
tion of substantial data volumes. Moreover, obtaining
real-world data that covers a wide range of scenarios
can be challenging or even impractical, especially in
niche areas where there is no large publicly-accessible
dataset readily available. In some cases, object detec-
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tors need to be trained for future scenarios before real
training data is available, such as when introducing a
new product. This has led researchers to explore al-
ternatives, such as the creation of synthetic data. Sev-
eral synthetic data generation techniques have gained
popularity, including 3D Rendering [2]–[4], Genera-
tive Models [5]–[9] and 2D Image Implantation [10],
[11]. While 3D rendering can produce more realis-
tic scenes and objects, it requires significant computa-
tional resources and modeling effort compared to the
more straightforward 2D image implantation. Gener-
ative models, such as GANs or diffusion models, are
known to be challenging to train and can be computa-
tionally expensive, and they are not yet fully capable of
generating realistic images across all categories [8]. 2D
implantation with our proposed refinement techniques
emerges as a practical solution for easy synthetic data
generation. We propose a workflow involving the gath-
ering and cropping of objects from different sources
and their implantation into a scene. This approach, de-
tailed further in Section 4, is notably simpler than other
methodologies, making it suitable for a wide range of
use cases. In our study, we enhance the 2D image im-
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plantation technique from [10], [11], focusing more in-
tensely on the object sources and also applying it to a
more modern object detection algorithm.
One key aspect of synthetic data generation is the origin
of placed objects. Notably, prior research [10], [11] has
frequently overlooked the origin of objects employed
in synthetic data generation, with a tendency to favor
a single object source. In contrast, this study seeks to
provide comprehensive insights into this crucial aspect
of the generation process. From examining the origins
of objects used in synthetic data generation, we find
that they typically stem from either 3D CAD models
or photographic representations. We conducted an as-
sessment of both internal and external object sources
to augment the scope of our training data. To extract
objects from the training data we used SegmentAny-
thing [12] as a self augmentation method. This tech-
nique takes advantage of the existing annotated train-
ing dataset to extract objects, thereby contributing to
the creation of synthetic data that closely adheres to the
distribution of real-world objects. This approach is a
unique form of supervised self augmentation. In addi-
tion to the self augmentation method, we also explore
the incorporation of foreign objects sourced from exter-
nal sources. These foreign objects are gathered via web
scraping or a 360◦ photobox. By introducing objects
from other sources, we aim to enhance the adaptability
of the object detection model to new scenarios and un-
foreseen objects. This cross-domain synthesis holds the
potential to imbue the model with a broader perceptual
scope, facilitating its performance in scenarios beyond
those present in the original training dataset. In sum-
mary, our contributions are as follows:

• A Scalable Method for Synthetic 2D Data Inte-
gration: We introduce an easy, comprehensive, and
highly scalable method for seamlessly integrating
synthetic 2D data into the training of object recogni-
tion models. This approach significantly reduces the
need for human labeling, making it more efficient
and adaptable to enlarge the training dataset without
affecting inference time. This method is more ac-
curate and less error-prone than traditional labeling.
This is a solution, particularly in scenarios where
there is a constraint on the availability of training
images and labeling resources.

• Overview of suitable object sources: Addition-
ally, we provide a comprehensive overview of suit-
able object sources, like reusing training dataset ob-
jects, adding objects from webscraped webshops,
and a photobox with a rotating table. This informa-
tion equips practitioners to choose the most suitable
source based on their specific use case.

• Integration of Synthetic data into realistic data:
We explore how to effectively mix generated data

with real data, aiming to discover the ideal balance
between the two.

2 RELATED WORKS
In an ideal scenario, synthetic data would seamlessly
merge with real-world data, creating a high-fidelity
blend with a minimal reality gap. However, achieving
this perfection across the board is often hindered by
technological limitations or becomes feasible only
through an impractical allocation of resources. The
question arises: Is it even necessary to make synthetic
data perfectly realistic? According to [13], absolute
realism is not always essential. A workaround called
domain randomization can be employed. This tech-
nique introduces random variations to the training data,
including changes in lighting, backgrounds, object
placements, and more. The concept behind domain
randomization is to expose the model to a diverse set of
situations during training, ensuring that the synthetic
domain encompasses a wide range of possibilities.
This approach aims to equip a model trained on
synthetic data to perform well in real-world scenarios
[13]. However, a minimum level of realism remains
necessary and beneficial for success. To achieve this,
it is valuable to explore past research in synthetic
image data generation. While this study primarily
focuses on 2D image composition, insights from other
methodologies can provide valuable perspectives. All
methods can be categorized into four main approaches:

2D Image Composition: In this approach, 2D
images are incorporated by implanting them into
another image. It stands out as the simplest among
the considered methods. This approach has been
used by some studies [10], [11]. While [10] uses a
placement logic [11] only places objects randomly.
Drawing inspiration from these established workflows,
our research places a special emphasis on the sources
of the implantation objects. Moreover, our research
undertakes the challenge of working with a highly
complex dataset, characterized by significant variance
within a single object category.

Full 3D Rendering: This approach aims to ren-
der complete 3D scenes through the utilization of 3D
assets and the modeling of entire 3D environments.
Notably, it has been employed in studies [13] and
has attracted attention from major companies like
NVIDIA, signifying a current trend in the field [2]–[4].
While this method is capable of generating high-quality
synthetic data, it is also the most challenging in terms
of design and implementation. These efforts often
involve complex procedures to simulate real-world
environments and object interactions, facilitating the
creation of diversified training data.
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3D rendered objects into a 2D Image: This ap-
proach is a combination of the previous two. It involves
the integration of 3D rendered objects into a real scene.
The studies [14]–[16] try to enhance the realism of
synthetic data by embedding rendered 3D objects
seamlessly into 2D scenes, offering a middle ground
between complexity and simplicity in the generation
process. One potential issue in this method, however, is
ensuring the availability of detailed 3D CAD models.

Generative Models: Recent advancements in
generative AI, such as GANs or diffusion models,
have introduced a novel approach to synthetic data
generation. Models like DALL-E 4 by OpenAI [5], [6]
or Stable Diffusion XL by Stability AI [7] can create
images based on descriptions or natural language.
However, these models still face challenges in consis-
tently generating realistic images across all categories
[8]. It’s crucial to note that synthetic data produced by
generative models might unintentionally replicate or
intensify existing biases [9].

All of these approaches try to handle the reality
gap differently. Some papers [10], [11], [15] try to
narrow this gap by generating more realistic images.
This process can be called system identification [13]
which is the process of tuning the parameters to match
the distribution of the real world. For example, this
is done by placing objects with a realistic object ar-
rangement into a scene or using blending techniques to
reduce boundary artifacts. Additionally, the concept of
domain adaptation is introduced, particularly through
the use of Generative Adversarial Networks (GANs)
for image enhancement. This further contributes to
reducing the gap between synthetic and real-world
data. The majority of the referenced papers attempt to
use the aforementioned domain randomization. While
most studies have focused on domain-specific data,
restricting broader application, they collectively show
that synthetic imagery can enhance model perfor-
mance. Our research draws insights from these studies.
Considering the challenges in our study, it is crucial to
re-evaluate methods for optimal applicability.

3 DATASET
In this study, a domain-specific dataset is used to inves-
tigate the efficacy of synthetic data in enhancing object
detection models. We focused testing the methods on
a closed dataset of detecting milk and milk alternatives
stored in tetrapaks and bottles within refrigerators. This
specialized dataset encompassed a variety of scenarios,
lighting conditions, orientations, and clutter levels com-
monly encountered within fridge interiors. This dataset
is collected with smart refrigerators equipped with a
camera system. We focused on the camera looking at

the fridge door. Mentioned cameras produce high res-
olution images with a resolution of 1920x2560 pixels.
It’s important to note that our dataset is geographically
limited to locations within Germany, and the image
capture period spans a single year. Additionally, this
dataset exhibited strong imbalances. Both the distri-
bution of objects and the variety of refrigerator models
present in the dataset were notably skewed. This imbal-
ance is a natural consequence of the dataset’s real-world
origin. Notably, larger refrigerators are less prevalent,
yet they present a more challenging detection environ-
ment due to their pronounced viewing angles. The milk
training dataset comprises 1190 images, while an addi-
tional 425 images are reserved for validation purposes.
For the test dataset, 1042 images are used. This dataset,
in terms of diversity and size, is more limited compared
to other object classification datasets like COCO [17].
Furthermore, the images in the test dataset were cap-
tured on distinct refrigerators, reducing the potential for
knowledge transfer from the training dataset.

4 METHODOLOGY TO GENERATE
SYNTHETIC IMAGES

Figure 1 provides a comprehensive overview of the key
steps involved in the synthetic image generation pro-
cess. Additionally, it contextualizes the generation of
synthetic images within the broader framework of train-
ing and evaluation, offering a holistic perspective on
the integration of synthetic data into the model devel-
opment pipeline.

1. Gathering of Implantation Objects: The first step
is to collect instances which can be implanted into a
scene.

2. Gathering of Implantation Backgrounds: Scenes
where these objects can be situated are gathered.

3. Placement Logic: With both objects and back-
grounds at hand, decisions are made regarding the
placement of objects within the scenes.

4. Blending: This step focuses on implanting an object
into a specified location on a background.

4.1 Gathering of Implantation Objects
The acquisition of implantation objects, crucial for the
synthetic data generation process, involves strategic
choices to ensure both diversity and relevance. In this
study, three distinctive approaches were explored. In
the exploration of suitable implantation objects, we
deliberately avoided the use of 3D rendered objects
due to their inherent complexity.

Self augmentation:
The self augmentation methodology was applied to
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Labels:    

Model:
Product images

Training Dataset

Synthetic data generation pipeline
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Background images

Placement Logic Implantation

Real Test Dataset

Synthetic Dataset Training

Evaluation

External Sources

Figure 1: Illustration of the workflow as a flowchart.

extract objects directly from the pre-existing training
dataset. For this approach, we used SegmentAnything
[12] as a segmentation algorithm. The bounding box
information from the training dataset was used to guide
the segmentation process. This approach aligns with
the statistical distribution of real-world objects in the
dataset and introduces a unique augmentation tech-
nique. A noteworthy advantage of this technique lies
in its efficiency, requiring relatively small manual in-
tervention. SegmentAnything performs especially well
on the milk dataset because its objects are relatively
simple, making it a particularly effective approach in
this context. An additional benefit of this technique is
that it introduces significant variability into the dataset
by placing objects randomly in new positions. In
cases where the dataset contains a high percentage of
incorrect or mislabeled objects, self augmentation may
inadvertently reproduce these inaccuracies.

Web scraping:
By web scraping images from online retail platforms, it
is possible to incorporate foreign objects from external
sources to enhance the diversity of the dataset. Web
scraping can be performed either manually or automat-
ically using libraries like Beautiful Soup [18]. Some
images may not even require cropping because they
already have an alpha channel, which simplifies the
incorporation of objects into our dataset. The scraping
approach introduced a wider range of object variations,
supplementing our dataset with new objects that might
not have been adequately covered in the initial training
data. An interesting aspect of this technique is its
ability to easily add regularization objects. These are
synthetic objects without labels placed into the scene
alongside the labeled instances. This encourages the
learning algorithm to focus on more than just the object
boundaries when detecting objects. Furthermore, the
inclusion of regularization objects can help mitigate
issues related to false positive classifications. For
example, in the milk dataset, juice tetrapaks are
added as regularization objects. This methodology
potentially expands the model’s ability to recognize
new objects that it has not been previously exposed
to. This approach is considerably less labor-intensive

compared to manual labeling. In the context of our
study, we scraped webshops which sell groceries to
extract product photos of fridge related objects.

360◦ Photobox:
In image creation, we utilize a 360◦ photobox featuring
a rotating table. This setup captures object photographs
from all perspectives, requiring some human effort.
However, it provides a distinct advantage by offering
multi-angle views of objects. Following a similar ratio-
nale, it is also possible to incorporate foreign objects
from external sources that could potentially address
gaps in our initial training data coverage. Furthermore,
this approach grants us the ability to include specific
objects that have historically performed poorly in our
model. This is also the case for the inclusion of objects
that may emerge in the future. This technique also has
the ability to easily add regularization photos.

Figure 3 shows examples of all different object
sources. In this study, we conducted a comparative
analysis of the aforementioned data gathering tech-
niques to offer guidance for future projects. Depending
on the project’s setting, one or a combination of these
techniques can prove useful in enriching the dataset
and improving the model’s performance.

4.2 Gathering of Implantation Back-
grounds

The implantation backgrounds serve as the canvas upon
which objects are implanted. The selection and design
of implantation backgrounds is important. The inclu-
sion of a substantial number of backgrounds is a criti-
cal element for the domain randomization [13]. In the
context of our milk dataset, the selection of implanta-
tion backgrounds consists of training images that de-
pict empty fridges, or at the very least, fridges with
some free space. The process of selecting these back-
grounds can be executed manually or alternatively, by
using a simple algorithm to automate the selection. The
algorithm would analyze the presence or absence of la-
bels, enabling it to identify which images depict empty
spaces suitable for use as implantation backgrounds.
An illustrative example image is provided in Figure
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2. Furthermore, different refrigerator models are used.
The use of different refrigerator models serves a dual
purpose. It not only enhances background diversity, but
also addresses potential imbalances in the dataset, en-
suring a more representative and comprehensive train-
ing environment for our model. A crucial question to
ask is how many implantation backgrounds should be
used, in order to strike the right balance between diver-
sity and the effort of collecting backgrounds.

4.3 Placement Logic
The strategic placement of the aforementioned implan-
tation objects within scenes serves as the most impor-
tant part of the system identification process, as it sig-
nificantly contributes to the creation of more realistic
images. In our comparison, we investigate two ap-
proaches: random placement and the proposed place-
ment logic. While random placement lacks realism and
coherence, the placement logic aims to emulate real-
world spatial relationships and interactions, observed
in reality. This involved implementing techniques that
consider object size, occlusions, free space, foreground,
and viewing angles, enhancing the verisimilitude of the
generated data. For example, in the milk dataset, we put
the objects where they would be in a real fridge, not just
floating in the air. They go on the shelf like they do in
a real fridge. It’s important to note that certain aspects
of this placement logic require manual labor for every
background image. For example, defining a placement
area, which dictates where objects are allowed to be po-
sitioned to ensure physically accurate placement. Addi-
tionally, for the reconstruction of foreground elements,
the fridge holding bar needs to be accurately masked.
One of these background images can be seen in the fig-
ure 2. A visual comparison between random placement
and our placement logic can be seen in figure 3.

(a) (b) (c)
Figure 2: Example input background image to generate
synthetic images: (a) Example background image; (b)
with placement area mask: the white stripe in the mid-
dle row; (c) with foreground fridge holding bar.

4.4 Blending
The integration of synthetic objects into scenes involves
a nuanced process of blending that directly impacts
the visual cohesiveness and realism of the generated

data. Blending can be crucial, especially because con-
volutional networks pay attention to edges and bound-
aries when recognizing objects. In this study, a list
of blending techniques are evaluated. Beginning with
a baseline "no blending" approach, where objects are
inserted into scenes without any subsequent blending
adjustments, often resulting in undesirable image arti-
facts. Subsequently, we tried seamless blending tech-
niques, which prioritize the natural integration of syn-
thetic objects into scenes. This process entails care-
ful adjustment of object colors and lighting, creating a
more visually coherent result. The application of seam-
less blending aims to mitigate the discernible bound-
aries between inserted objects and their surroundings,
cultivating a more genuine representation that aligns
with human visual perception [19]. Furthermore, our
investigation explored the utilization of pyramid blend-
ing, a sophisticated technique that capitalizes on multi-
resolution image processing to achieve a seamless fu-
sion of objects into scenes. This approach involves cre-
ating hierarchical image pyramids that progressively re-
fine object integration at different scales, resulting in
a harmonious blend that accommodates diverse scene
complexities and object scales [20], [21]. By systemat-
ically examining these diverse blending strategies, the
study aims to find the most suitable blending technqiue.
Figure 3 shows an image generated by the synthetic im-
age pipeline.

(a) (b) (c)
Figure 3: Examples of synthetic images: (a) Web-
sourced tetrapak centrally placed using placement
logic, seamless blending and reblending of the hold-
ing bar; (b) Self augmented milk bottle centrally placed
with placement logic, seamless blending and reblend-
ing of the holding bar; (c) Photobox-sourced objects
seamlessly blended centrally but lacking placement
logic and holding bar reblending.

5 EXPERIMENTS AND RESULTS
For the experiments we used a YOLOv5 [22] model, a
widely recognized platform well-suited for object de-
tection tasks. To speed up the training process we used
a model pretrained on the COCO dataset [17]. Employ-
ing early stopping, we ensured that the training process
halts once the model’s performance ceases to improve
on the validation set.
To establish a robust baseline for our experimentation,
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the model underwent training on non-synthetic data
across six distinct runs, each initiated with different
seeds. To evaluate a synthetic data generation config-
uration, six different synthetic datasets were generated,
each comprising approximately 1000 images. The rep-
etition was necessary to account for the inherent ran-
domness in the data generation process. This random-
ness includes factors like the choice of background, the
selection and quantity of objects, and the positioning
of these objects. Following the generation phase, these
datasets were randomly combined with the real dataset.
We conducted the following main experiment groups:

1. An explorative analysis of various object sources,
incorporating different blending techniques, and
evaluating the impact of placement logic. We
tested sources like self augmentation, webscraping,
photobox, and combinations of these to create a
diverse object pool.

2. An investigation into the influence of the number of
backgrounds used during image generation. We sys-
tematically increased the number of background im-
ages from 1 to 50.

3. An analysis of the number and ratio of synthetic
images relative to the real dataset. We explored
multiple configurations with artificially reduced real
datasets and significantly increased synthetic im-
ages.

The outcomes of the experiments are systematically
evaluated and compared based on their mean Average
Precision (mAP) scores. The results are shown in figure
4 and table 1. A model trained solely on real world data
exhibited an average mAP of 54.4, reflecting the chal-
lenging nature of the environment. The incorporation
of synthetic data demonstrated, on average, a 2.32% in-
crease in mAP. However, a deeper analysis is impor-
tant to distinguish the specific synthetic data generation
configurations that proved to be helpful and those that
didn’t.

5.1 Object source, Placement logic and
Blending

Self augmentation: The use of self augmentation
objects in synthetic datasets increased the mAP by an
average of 1.0%. Incorporating a placement logic had a
positive impact on mAP, while blending techniques un-
expectedly seemed to lower the results. This highlights
the importance of a good synthetic data generation, as
incorrect methodologies can potentially degrade the
model’s performance. The best result is achieved by
using a placement logic and simple stamping resulting
in a 3.55% improvement.

53 54 55 56 57 58 59
mAP

Real-Baseline 

Stamp - RP 

Stamp - PL 

Seamless - PL 

Pyramid - PL 

Seamless - RP 

Stamp - RP 

Stamp - PL 

Pyramid - PL 

Seamless - PL 

Seamless - RP 

Stamp - RP 

Stamp - PL 

Pyramid - PL 

Seamless - PL 

Seamless - RP 

Stamp - RP 

Stamp - PL 

Pyramid - PL 

Seamless - PL 

Seamless - RP 

Combined 

Segm
entAnything

W
ebshop

Photobox
W

ebshop+Photobox
54.4

54.15

57.95

55.8

55.55

53.5

55.75

55.55

57.7

58.2

56.35

57.1

57.8

56.55

57.3

55.9

57.15

57.45

57.9

58.45

58.15

58.3

Figure 4: The bars illustrate the median mAP@50 of
the experiment runs. The first bar represents the base-
line performance achieved using only real data. The
best overall result is achieved with a combination of
Webscraping and Photobox as object sources together
with seamless blending and a placement logic (marked
with a red star). PL stands for placement logic. RP
stands for random placement.

Webscraping: The use of webscraped object from
webshop in synthetic datasets increased the mAP by an
average of 2.3%. Including a placement logic enhanced
the mAP. Blending techniques showed an overall
improvement in results. The best result is achieved
by using a placement logic and seamless blending,
resulting in a 3.8% improvement.

360◦ Photobox: The use of the photobox objects
in synthetic datasets increased the mAP by an average
of 2.5%. On average, adding a placement logic
improved the mAP. The impact of blending techniques
on the result is uncertain and might even have a
negative impact. The best result is achieved by using
a placement logic and simple stamping, resulting in a
3.4% improvement.

Webscraping + 360◦ Photobox: Using the com-
bined image pools of webscraped and photobox objects
improved the mAP on average by 3.38%. The use of
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Self augmentation Webscraping 360◦ Photobox Webscraping + 360◦ Photobox

Stamp-RP 54.15 55.75 57.1 57.15
Stamp-PL 57.95 55.55 57.8 57.45
Seamless-PL 55.8 57.7 56.55 57.9
Pyramid-PL 55.55 58.2 57.3 58.45
Seamless-RP 53.5 56.35 55.9 58.15

Table 1: Experimental results as median mAP@50 scores. Baseline with solely real world training data is
mAP@50 = 54.4. RP stands for random placement and PL stands for placement logic

blending techniques and placement logic improved
the results. The best result is achieved by using a
placement logic and seamless blending, resulting in a
4.05% improvement. This is also the best overall score.

Combined: Using the combined image pools of
webscraping, photobox and self augmentation data
improved the mAP by 3.9%. This dataset represents
the combination of the best individual results among all
object sources, where objects from self augmentation
and the Photobox were implanted using stamping, and
webscraped images from webshops were blended with
seamless blending. The slightly lower performance
compared to the combined webscraped and 360◦

Photobox category may be attributed to the potential
negative influence of self augmentation on the overall
results or just some degree of uncertainty.
Perspective Tranformation: We tried using perspec-
tive transformations on objects added to scenes, hoping
to boost realism by aligning their orientation with the
scene. However, despite extensive manual adjustments,
this didn’t lead to significant performance gains in our
model, indicating that the practical benefits of these per-
spective adjustments might be minimal at the moment.

5.2 Number of Backgrounds
The quantity of backgrounds employed in synthetic
data generation is a critical factor that contributes to
enhancing the overall quality and effectiveness of the
synthetic dataset. To investigate this, multiple datasets
were generated with varying sizes of the available back-
ground image pool, using webscraped objects as the
image pool due to being the best single-source ap-
proach. As illustrated in Figure 5, an increased num-
ber of backgrounds correlates positively with improved
results. This aligns with the established concept of do-
main randomization found in prior research [13].

5.3 Number and Ratio of Synthetic Im-
ages

In our investigation, we explored the impact of the num-
ber and ratio of synthetic images within the training
dataset. We systematically generated and incorporated
synthetic images, varying both the quantity and the pro-
portion in relation to the non-synthetic data. This al-
lowed us to determine the optimal balance between real

53 54 55 56 57 58 59
mAP

Real-Baseline 

Seamless - BG1 - PL

Seamless - BG10 - PL

Seamless - BG20 - PL

Seamless - BG50 - PL

54.4

55.9

56.45

57.8

58.2

Figure 5: The bars illustrate the median mAP@50 of
the experiment runs comparing different amounts of
backgrounds used for the data generation. Webscraped
images are used as object source. PL stands for place-
ment logic.

and synthetic data to achieve the best results and also
shows how synthetic data could improve the results
when real data is extremely in short supply. Our exper-
iments involved training the model using solely 2000
synthetic images and gradually increasing the amount
of real-world data from zero to 100, along with the ad-
dition of varying numbers of synthetic images (zero,
500, 1000, 1900). Subsequently, we increased the real-
world data to 500, repeating the process of adding syn-
thetic images (zero, 500, 1000, 1500). Finally, we uti-
lized the original 1190-sized real-world dataset, incor-
porating different quantities of synthetic images (zero,
500, 1000, 2000, 4000). Throughout these experiments,
we employed webscraped objects as the image pool,
along with seamless blending and a placement logic, as
this combination yielded the best results among single-
source approaches. Refer to Figure 6 for a visual rep-
resentation of our findings. Our experiments revealed
a discernible pattern, unveiling a "sweet spot" in the
quantity of synthetic data. Both insufficient and exces-
sive infusion of synthetic data were identified as detri-
mental factors impacting the final results. So, while
1000 was the ideal number in our case, this number
might not be the same across different projects and
should be considered as an important parameter for a
hyperparameter optimization. Furthermore, our analy-
sis highlighted the significance of an increased number
of real-world data, showcasing a strong positive corre-
lation with model performance. However, we observed
that the improvements with increasing amounts of only
real data tended to stagnate. We observed that synthetic
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data is particularly valuable in scenarios where a short-
age of real data is encountered. It’s important to note
that our experiments demonstrated that relying solely
on synthetic data proved to be insufficient.
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Figure 6: The bars illustrate the median mAP@50 of
the experiment runs comparing different ratios between
real or synthetic images. The blue bars are models
trained on only real world data.

5.4 Bias in the Dataset
The synthetic data generation process notably reduced
the bias in the dataset, contributing to a more represen-
tative distribution of fridge types. Consequently, the
most significant mAP increase was observed in the case
of larger fridge types, which were initially underrepre-
sented in the baseline dataset. This resulted in an aver-
age mAP increase of 3.87% on larger fridges.

6 CONCLUSION
This study explores different ways to improve existing
datasets through the integration of synthetic data. Our
approach encompasses the incorporation of internal ob-
jects, harnessed via self augmentation, and external ob-
jects obtained through two distinct avenues: web scrap-
ing and the photobox method. We showed that all inves-
tigated object sources are useful for the synthetic data
generation. Leveraging self augmentation showcased
the smallest improvement that was still significant. This
is a good sign because this kind of data can easily be
generated. Furthermore, the incorporation of objects
from the photobox and web scraping exhibited even
more substantial enhancements. While web scraping
proves to be a less time-consuming technique, its appli-
cability may be limited in certain scenarios, making the
photobox method a valuable alternative, especially for
scenarios where manual inclusion of specific objects is
essential. The integration of a placement logic proves
to be a significant contributor to substantial improve-
ments across various cases. Exploring blending tech-
niques, while not universally applicable, showed poten-
tial in enhancing results. It’s important to note that the
success of blending depends on the image source. For

example, self augmentation data benefits from simple
stamping, while web scraped images benefit from better
blending. The study demonstrated that synthetic data
does not need to be ultra-realistic to deceive object de-
tection algorithms. Synthetic data, derived from both
internal and external sources, successfully addressed
imbalances in the dataset, particularly in scenarios in-
volving larger fridge types. This harmonization of the
dataset led to a significant mAP boost on larger fridges,
affirming the effectiveness of synthetic data in bridging
gaps in real-world dataset disparities. The most notable
performance improvements of 9.9 mAP@50 were ob-
served when the training dataset was extremely limited.
Moreover, this study corroborated the findings of previ-
ous works [10], [11] utilizing an updated object detec-
tion network. In conclusion, our approach not only un-
derscores the significance of diverse object sources but
also highlights the utilization of placement logic and
blending techniques, collectively contributing to a bet-
ter dataset.

7 FUTURE WORK
A promising direction for further exploration involves
the evolution of a dynamic placement logic. Such an
adaptive system would intelligently respond to different
scenes, reducing the dependency on manual labor. Ex-
ploring image enhancement is another compelling di-
rection. The integration of advanced techniques, such
as CycleGANs [23], could improve the realism of gen-
erated images. CycleGANs, by learning the transla-
tion of images between domains, offer a sophisticated
means to bridge the gap between synthetic and real
data. While our initial experiments with a Masked-
CycleGAN have shown promise, a more comprehen-
sive evaluation is required.
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