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ABSTRACT
In traditional 2D object detection, augmenting datasets typically enhances model precision. However, 3D estima-
tions from a 2D image are dependent on the camera’s focal length, meaning that differences in focal length may
undermine distance estimation, object dimension estimation, and subsequent 3D position estimation. In this arti-
cle, we attempt to evaluate the impact of different calibration matrices on 3D monocular object detection. Firstly,
we assess the impact of different calibration matrices within the same dataset by comparing the performance of
filtered, non-filtered, and normalized datasets using the NuScenes dataset as a base. Our results show that filtering
the dataset to only keep images sharing the same focal lengths results in increased depth and dimension estimations
but at the expense of the other metrics. Then, we investigate the impact of dataset combination on 3D monocular
object detection, focusing on the integration of datasets with varying focal lengths and matrices. Leveraging the
NuScenes dataset, this time augmented with additional synthetic data from GTA, we evaluate the efficacy of dataset
combination in improving model performance across a range of metrics. Contrary to our initial expectations, in-
corporating additional datasets does not consistently result in 2D performance improvements depending on their
visual appearance, but also does not always result in decreased 3D performance either, despite their different focal
lengths providing the model with contradictory 3D visual information, as long as the data contained is accurately
labeled, showing that dataset combination has the potential to improve 3D monocular object detection.

Keywords
3D Monocular Object Detection, Dataset combination, Computer Vision, Camera Calibration Matrix, Focal
Length, Dataset Filtering, Dataset Normalisation

1 INTRODUCTION

1.1 Dataset Combination
In machine-learning object detection, data availability
is often the primary bottleneck in achieving optimal
model performance, especially for real-life applications
where diverse scenarios must be accurately captured.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

While numerous datasets (such as [1, 2, 3, 4]) exist for
training machine learning models, each comes with its
own set of limitations, necessitating the strategic com-
bination of datasets to address these constraints effec-
tively. Firstly, existing datasets exhibit variations in
terms of the covered conditions and object classes. As
an example, certain datasets might focus solely on day-
time, clear weather conditions and do not have scenar-
ios such as nighttime or adverse weather conditions.
Other datasets are limited by the object class they cover,
resulting in models able to detect cars but not buses as
another example ([1] covers 3 classes while [2] cover
9). In addition, domains are also covered inequally by
the existing datasets: While certain domains such as
road situations might boast an abundance of datasets,
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others like railroad scenarios suffer from scarcity. Fur-
thermore, variations in the quality of images and anno-
tations across datasets pose another challenge, as some
datasets have their own specific image ratios or limited
image quality.
Given these limitations, dataset combination emerges
as a viable strategy to address the shortcomings in-
herent in individual datasets: Firstly, by aggregating
multiple datasets, we can mitigate the incompleteness
of coverage by incorporating diverse conditions, ob-
ject classes, and domains into the training data, thereby
enhancing the model’s ability to generalize across a
broader spectrum of scenarios. Then, dataset combi-
nation can increase the model’s robustness. By amal-
gamating datasets with different scenarios, we can in-
crease the representation of real-world scenarios.
Another interesting aspect of dataset combination is
that it allows using synthetic datasets. These datasets,
like [5], though providing perfect annotations, are still
visually distinct from real-world images, potentially
compromising their utility in practical applications.
This limitation can be alleviated by combining syn-
thetic datasets alongside real-world datasets. This
way, we not only enrich the latter with additional
scenarios but also imbue the synthetic datasets with
greater realism. This amalgamation helps bridge the
gap between synthetic and real-world data, enhancing
the model’s adaptability to real-life scenarios.

1.2 Focal Length and Contradictory Vi-
sual Information

In traditional 2D object detection tasks, the primary
objective revolves around accurately identifying ob-
jects within an image. However, transitioning to 3D
monocular object detection introduces additional chal-
lenges, such as estimating objects’ distances, dimen-
sions, sizes, and orientations.
While augmenting the dataset might bolster the 2D as-
pect of detection, the same approach may not yield
commensurate improvements for the 3D predictions.
This discrepancy is caused by the relationship between
the camera’s focal length, its field of view, the scene
geometry, and the resulting image. Unlike in 2D detec-
tion, where object appearance suffices, the 3D estima-
tions are fed potentially contradictory information:

• The size of an object within an image is dependant
not only on its true dimensions but also on its dis-
tance from the camera and the camera’s focal length,
as expressed in the Equation (1):

d =
f ·H

h
(1)

With h the heights of the object in pixels, H the
actual width of the object, and f the camera’s focal
length.

As a result, two images portraying objects of appar-
ently identical dimensions might convey disparate
distance estimations if captured using cameras with
different focal lengths.

• In addition, the camera’s field of view also affects
the orientation estimations as well as the positions
of the objects within the image. This effect is very
noticeable when using wide-angle cameras, leading
to side distortion, and method such as [6, 7] solve
this problem by either making a FOV-independant
detection model or by using sensor fusion.

• Finally, inaccuracies in distance or dimension esti-
mation can reverberate through subsequent stages of
3D position estimation.

Some existing detection methods like [8, 9] take the fo-
cal length into account in their detection models. How-
ever, we aim to investigate the impact of different cal-
ibration matrices and dataset combinations on conven-
tional 3D object detection models that do not explic-
itly consider focal length, thus highlighting the impor-
tance of these factors in enhancing detection perfor-
mance. We aim to evaluate this impact through two
primary avenues: Firstly, we investigate the ramifica-
tions of incorporating images captured using diverse
camera setups within a single dataset, each equipped
with its unique calibration matrix. Then, we assess the
consequences of amalgamating datasets sourced from
disparate sources, each characterized by distinct cali-
bration matrices. We aim to determine the relation-
ship between dataset composition and the efficacy of
3D monocular object detection and determine whether
dataset composition can be overcome on the dataset
level without directly modifying the object detection
models.

In summary, our work has the following contributions:

• We examine how different calibration matrices
within datasets affect 3D detection, and we assess

Figure 1: Relation between the camera’s focal length
f , the object’s height in the image h, the real object’s
height H and the object’s distance to the camera d, as
explained in the Equation (1)
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the efficacy of filtering methods in addressing
contradictory information from diverse calibration
matrices.

• We analyze combining datasets for 3D monocular
object detection, understanding how different focal
lengths affect model performance and 3D estima-
tions.

• We analyze the effects of the visual normalization of
the camera calibration matrices through distortion,
particularly in the context of synthetic datasets, on
prediction accuracy and model performance.

2 RELATED WORK
2.1 Monocular 3D Object Detection tak-

ing focal length into account
Monocular 3D object detection research has explored
various methodologies to address inherent challenges
in autonomous driving perception tasks. All the
methods in this section focus on taking into account
the focal length in the model itself for more accurate
3D predictions; we aim to differ from their approach
by instead acting on the datasets themselves to see
the effects of different focal lengths, of dataset filter-
ing/normalization/combination on 3D object detection
without modifying the object detection method itself.
Our focus is to see what can be done to improve the
detection while only changing the dataset.

The most recent method is MonoGDG[6], which pro-
poses a geometry-guided domain generalization frame-
work, addressing gaps at both camera and feature levels
by incorporating geometry-based image reprojection
and feature disentanglement techniques. The paper ad-
dresses most of the limitations of dataset combination
by taking Focal Length, FOV Distortion, FOV Range,
Camera Orientation, and Image Appearance into ac-
count in its architecture.

Another method, ODD-M3D[10] proposes object-wise
dense depth estimation, improving depth estimation ac-
curacy by randomly sampling points from the bound-
ing box area of each object, and then using these using
pre-generated sampled points for their depth estimation
method, instead of relying on a single center point.

MonoEdge[8] proposes utilizing local appearance cues,
particularly the edges of 3D bounding boxes, to esti-
mate depth and global yaw angle directly from object
appearance in images, enabling object depth and yaw
angle derivation without requiring absolute size or po-
sition information and bypassing the need for explicit
camera intrinsic parameters as well.

MonoUNI[11] introduces a unified optimization target,
normalized depth, which addresses discrepancies be-
tween vehicle and infrastructure-side detection due to
variations in pitch angle and focal length.

Advancements in depth estimation techniques, such as
those explored by Deep Optics[12], integrate optics and
image processing to improve depth estimation perfor-
mance, with implications for 3D object detection tasks.
Flexibility and adaptability are crucial considerations,
with approaches like Objects Are Different[13] offering
frameworks that explicitly account for truncated objects
and adapt multiple approaches for object depth estima-
tion.
Additionally, incorporating motion cues for depth es-
timation and object detection presents promising av-
enues. Monocular 3D Object Detection with Depth
from Motion[14] explores synergies between camera
ego-motion and monocular understanding to improve
accuracy and robustness in object detection tasks.

2.2 Datasets
The field of 3D object detection in computer vision has
experienced notable advancements, driven by the avail-
ability of diverse datasets catering to various aspects
of the task. These datasets have played a crucial role
in benchmarking algorithms and propelling progress in
the domain. However, each dataset typically focuses
on specific scenarios, sensor modalities, or annotation
techniques, leaving certain aspects of 3D object detec-
tion unexplored. In this section, we review related work
spanning the development of diverse datasets for 3D ob-
ject detection.
The KITTI dataset family [1, 15, 16, 17] has been in-
strumental in driving progress in various computer vi-
sion tasks relevant to autonomous driving. It introduced
fundamental benchmarks for stereo, optical flow, visual
odometry, and 3D object detection. KITTI-360 fur-
ther extends this by focusing on suburban driving sce-
narios, while Virtual KITTI leverages computer graph-
ics to propose an efficient real-to-virtual world cloning
method.
Road datasets such as nuScenes [2] and Rope3D [18]
provide diverse and challenging data for advancing
roadside perception and autonomous driving technolo-
gies. These datasets offer extensive annotations and
analysis for object detection and tracking, capturing
diverse scenes and environmental conditions.
Efforts like A*3D and H3D [19, 20] aim to provide
challenging real-world datasets with diverse scenes,
varying weather conditions, and dense annotations,
pushing the boundaries of autonomous driving research
into more challenging environments.
Enhancing 2D datasets for 3D object detection,
Cityscapes 3D [21] and PASCAL3D+ [22], augment
existing datasets with 3D annotations, providing richer
annotations and increasing variability for studying 3D
detection and pose estimation.
Leveraging computer games for dataset creation has
emerged as a cost-effective alternative to manual
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data collection. Approaches like "Ground Truth from
Computer Games" and "Free Supervision From Video
Games" [5] demonstrate the feasibility of extracting
pixel-level semantic labels and ground truth annota-
tions from video games in real time, providing visually
realistic images for training models on large-scale
datasets.

3 METHOD
3.1 Dataset Configurations

Table 1: NuScenes[2] Matrix 1. The first three columns
are the camera’s rotation matrix (3,3), and the last
column (1,3) is its translation matrix.

1252 0.0 826 0.0
0.0 1252 469 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

To understand the impact of having different camera
calibration matrices present within the same dataset on
3D monocular object detection, we decided to use the
NuScenes dataset[2] trimmed down to focus on three
distinct classes (cars, pedestrians, and cyclists), because
NuScenes images have three different camera calibra-
tion matrices:

• Matrix 1, with occurrences totaling 16,443 in-
stances, constituting 56.71% of the dataset.

• Matrix 2, featuring 12,082 occurrences, represent-
ing 41.67% of the dataset.

• Matrix 3, featuring 468 occurrences, representing
1.61% of the dataset.

To systematically assess the influence of these matrices,
we initiated our analysis by creating a validation split
consisting of 2000 images using only Matrix 1. All our
models have been tested on this single validation split.

Then, we created the different training sets: First, we
formed a base training from NuScenes set compris-
ing 5000 images. Within this set, 2886 images corre-
sponded to Matrix 1 such as 2, while 2114 images were
associated with Matrix 2 (no image used Matrix 3).
Since NuScenes is a sequential dataset, we made sure
that all the images from the validation and the training
set come from different sequences, to avoid training our
model on images too similar to the ones used for our
validation. Then, to see the effect of the absence of Ma-
trix 2 images, we made a filtered training set containing
only the 2886 images belonging to Matrix 1 while all
images associated with Matrix 2 were omitted from this
subset. Finally, we created a normalized training set to
see the potential influence of normalization techniques.
Here, all 2886 images associated with Matrix 1 were

Table 2: Calibration Matrices of the Training and
Validation Sets.

Dataset Matrix 1 Matrix 2 Matrix 3 Total
NS3 2886 2114 - 5000

NS3 Filt 2886 - - 2886
NS3 Norm 2886 + 2114(n) - - 5000
NS3 GTA 2886 2114 2500 7500

NS3 GTA Norm 2886 + 2500(n) 2114 - 7500
NS3 VAL 2000 - - 2000

Figure 2: Image of the NuScenes[2] dataset using the
Matrix 1.

retained, while the 2114 images linked to Matrix 2 un-
derwent normalization procedures.

Having established the effect of different matrices
within the NuScenes dataset, we then proceeded to
investigate the impact of dataset combinations on
3D monocular object detection. To achieve this, we
incorporated another dataset, GTA[5], a fully synthetic
dataset that is visually distinct from NuScenes while
also presenting images with a different camera cali-
bration matrix. Initially, we examined the effects of
a simple combination without any further changes,
by combining the base NuScenes dataset with 2500
images sourced from GTA, adhering to its native
calibration matrix (Matrix 4). Then, we combined
the base NuScenes dataset with a normalized version
of GTA. In this scenario, 2500 images from GTA
underwent normalization procedures to align with the
calibration Matrix 1.

3.2 Model Configuration & Evaluation
Method

For our 3D monocular object detection tests, we
employed a homemade version of YOLOv7 modified
to do 3D Monocular Object Detection, which we called
MYv7. We used a modified method of [23] to adapt
YOLOv7 from 2D to 3D monocular object detection.
Previous observations we made seemed to indicate that,
dataset combination yields inferior results compared
to training without any form of dataset augmentation.
However, these initial findings also suggested that
dataset combination could reach its maximum accuracy
at a higher epoch than regular model training and that
this maximum was greater than the regular model’s.
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Table 3: Effect of different matrices within the same dataset on 2D and 3D object detection metrics on the car
class.

Model Epochs P R mAP
@0.5

mAP
@0.95 Depth Err. CS DS OS

NS3 250 0.687 0.785 0.748 0.445 0.0465 0.935 0.869 0.953
NS3 Filt 250 0.699 0.774 0.749 0.442 0.0462 0.931 0.871 0.949
NS3 Norm 250 0.652 0.789 0.737 0.435 0.0482 0.643 0.745 0.596
NS3 1000 0.68 0.856 0.794 0.534 0.0391 0.948 0.89 0.978
NS3 Filt 1000 0.736 0.828 0.797 0.529 0.0379 0.946 0.891 0.975
NS3 Norm 1000 0.779 0.8 0.797 0.531 0.0388 0.637 0.805 0.773
NS3 2000 0.795 0.808 0.782 0.548 0.0366 0.954 0.9 0.984
NS3 Filt 2000 0.801 0.804 0.782 0.545 0.0353 0.953 0.901 0.985
NS3 Norm 2000 0.782 0.821 0.788 0.548 0.0371 0.643 0.83 0.842
NS3 4000 0.843 0.776 0.768 0.558 0.036 0.959 0.909 0.988
NS3 Filt 4000 0.857 0.768 0.764 0.55 0.0333 0.958 0.911 0.987
NS3 Norm 4000 0.827 0.792 0.767 0.557 0.0352 0.65 0.85 0.88
NS3 6000 0.862 0.762 0.756 0.555 0.0351 0.96 0.914 0.991
NS3 Filt 6000 0.889 0.74 0.748 0.547 0.033 0.96 0.916 0.987
NS3 Norm 6000 0.869 0.765 0.755 0.555 0.0357 0.657 0.857 0.894
NS3 MAX 0.856 0.766 0.765 0.557 0.0358 0.959 0.91 0.988
NS3 Filt MAX 0.877 0.748 0.747 0.547 0.0334 0.96 0.916 0.987
NS3 Norm MAX 0.868 0.765 0.754 0.554 0.0355 0.658 0.858 0.896

To ensure a fair comparison among different models,
we decided to evaluate them at their peak performance,
determined by the maximum accuracy they could attain
regardless of epoch. However, achieving this pinnacle
necessitated extensive training durations, with model
maximums usually reached after 5000-6000 epochs.
Consequently, we had to reduce the dataset size and
employ a smaller model variant, specifically the Tiny
model. While this inherently caps the performance
potential compared to larger models, even with these
changes the training process still extends over three
months. This means that replicating the experiment
with the entire NuScenes dataset or with heavier models
is not practical.

The evaluation itself is done using the usual 2D met-
rics (Precision, Recall, and Average Precision (AP) at
IoU thresholds of 0.5 and 0.95) combined with further
metrics tailored for each specific 3D estimation, these
metrics are the Depth Error, the Center offset & Dimen-
sion Score defined by [24] and the Orientation Score.
This has a two-fold use: firstly, this grants us insights
into how each 3D estimation is affected by dataset fil-
tering/normalization/combination, and it allows us to
tailor the model learning to focus on a specific metric
if needed. We assess Depth Error using metrics such
as Absolute Relative Error (Abs Rel), Squared Rela-
tive Error (SRE), Root Mean Square Error (RMSE), and
logarithmic RMSE (log RMSE).

4 EXPERIMENTAL RESULTS
4.1 Different Matrices within the same

dataset
As we can see in Table 3, filtering the dataset increases
the accuracy of both depth and dimension estimations.
This improvement can be attributed to eliminating con-
tradictions introduced by having varying focal lengths
within the same dataset. Since focal length particularly
affects the depth and dimensions estimations, it is log-
ical that these two metrics are the most improved ones
by the filtering. The improved depth estimations are
further confirmed by the use of RMSE metrics in Table
4.

Conversely, the non-filtered regular dataset outperforms
the filtered version in mAP@95 and center position &
orientation estimations. The superior performance in
mAP@95 can be attributed to the larger quantity of
data, as additional properly labeled data invariably ben-
efits 2D object detection tasks. Additionally, the en-
hanced CS and OS metrics can be attributed to the im-
portance of data volume outweighing the impact of dif-
fering focal lengths on these specific estimations.

However, the normalized dataset demonstrates poor
performance across all metrics except Recall and
depth estimation. Despite removing the different focal
lengths while keeping additional data, the distortions
resulting from normalization and reprojections lead to

Table 4: Effect of different matrices within the same dataset on depth estimation results on the car class.
Method Depth RMSE
Epochs 250 500 1000 1500 2000 3000 4000 5000 6000 MAX
NS3 2.89 2.77 2.46 2.34 2.22 2.19 2.17 2.11 2.05 2.13
NS3 Filt 2.81 2.93 2.37 2.31 2.23 2.06 2.01 1.92 1.96 2.01
NS3 Norm 2.97 2.68 2.5 2.33 2.26 2.17 2.09 2.05 2.06 2.04
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Table 5: Effect of dataset combination on depth estimation results on the car class.
Method Depth RMSE
Epochs 250 500 1000 1500 2000 3000 4000 5000 6000 MAX
NS3 2.89 2.77 2.46 2.34 2.22 2.19 2.17 2.11 2.05 2.13
NS3 GTA 2.88 2.71 2.41 2.28 2.26 2.16 2.04 2.06 2.09 2.06
NS3 GTA Norm 2.97 2.71 2.58 2.48 2.4 2.3 2.27 2.32 2.3 2.27

a significant decrease in prediction accuracy across all
metrics. The decreased depth error seen in Table 4 does
show that getting rid of the different focal lengths does
help the depth estimation. However, the loss in image
quality due to normalization cannot be compensated
for by removing contradictory information.

The qualitative results given by Figure 3 further confirm
these observations: Compared to the left image (NS3
model), the center image (NS3 Filt model) has more
accurate bounding box sizes and positions, however, the
predictions made by the base model on the left have
more accurate orientation estimation.

4.2 Dataset Combination
Based on the results in Table 6, incorporating an ad-
ditional dataset with its own focal length and matrix
did not consistently lead to a complete decrease in 3D
metrics. This unexpected outcome suggests that the ac-
curacy of the synthetic 3D position data, despite intro-
ducing contradictory focal length information, may par-
tially compensate for such discrepancies. Utilizing a
dataset with precise ground truth compared to the im-
age may allow the accuracy of the additional data to
offset the negative impact of conflicting focal lengths
and matrices. As we can see in Table 5, the depth esti-
mations in the combined models were often better than
the ones made by the regular model.

Further deviating from expectations, introducing the
new synthetic dataset appears to have had a detrimental

effect on 2D metrics, contrary to the usual anticipation
of higher results with additional information. This un-
expected observation is likely attributed to the visual
appearance of the synthetic dataset. Despite its photo-
realism, it remains too far from real-life images to sig-
nificantly enhance 2D object detection performance.

Moreover, the normalization process once again re-
sults in excessive distortion, hindering the attainment
of satisfactory results. While applied to synthetic data,
normalization yielded improved mAP@0.5 results, the
substantial decrease in other 3D metrics outweighs this
improvement. Consequently, the overall impact of nor-
malization on synthetic data appears unfavorable, un-
derscoring the importance of considering the trade-offs
between data preprocessing techniques and resultant
performance metrics.

Another result of the dataset combination that we can
see from the qualitative evaluation in Figure 3 is the
difference in labeling between datasets: in the GTA
dataset, even cut-off objects are labeled, while they are
not in the NuScenes dataset. This means that once
these datasets are combined, our NS3 GTA model can
detect cut-off cars using information from the GTA
dataset, while these are not part of the NuScenes la-
bel, which means that the quantitative evaluation con-
siders these detections as erroneous. This effectively
means that even if the labels themselves are correct,
both datasets must have similar criteria for object la-
belization to avoid contradicting each other.

Table 6: Effect of dataset combination on 2D and 3D object detection metrics on the car class.

Model Epochs P R mAP
@0.5

mAP
@0.95 Depth Err. CS DS OS

NS3 250 0.687 0.785 0.748 0.445 0.0465 0.935 0.869 0.953
NS3 GTA 250 0.679 0.798 0.749 0.447 0.0472 0.937 0.87 0.95
NS3 GTA N 250 0.628 0.78 0.721 0.421 0.0491 0.643 0.745 0.609
NS3 1000 0.68 0.856 0.794 0.534 0.0391 0.948 0.89 0.978
NS3 GTA 1000 0.7 0.85 0.794 0.532 0.0386 0.949 0.891 0.976
NS3 GTA N 1000 0.744 0.817 0.794 0.521 0.0427 0.622 0.79 0.763
NS3 2000 0.795 0.808 0.782 0.548 0.0366 0.954 0.9 0.984
NS3 GTA 2000 0.772 0.821 0.785 0.548 0.0363 0.954 0.9 0.985
NS3 GTA N 2000 0.757 0.824 0.796 0.544 0.0405 0.633 0.815 0.825
NS3 4000 0.843 0.776 0.768 0.558 0.036 0.959 0.909 0.988
NS3 GTA 4000 0.861 0.762 0.764 0.55 0.0347 0.959 0.907 0.987
NS3 GTA N 4000 0.821 0.788 0.783 0.556 0.0393 0.643 0.836 0.867
NS3 6000 0.862 0.762 0.756 0.555 0.0351 0.96 0.914 0.991
NS3 GTA 6000 0.865 0.766 0.755 0.549 0.035 0.959 0.912 0.989
NS3 GTA N 6000 0.835 0.778 0.774 0.556 0.0395 0.65 0.846 0.879
NS3 MAX 0.856 0.766 0.765 0.557 0.0358 0.959 0.91 0.988
NS3 GTA MAX 0.873 0.756 0.755 0.55 0.0351 0.96 0.912 0.989
NS3 GTA N MAX 0.839 0.771 0.773 0.551 0.0392 0.654 0.845 0.886
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Figure 3: Comparison of 3D predictions on the Nuscenes[2] dataset. Left: NS3 model, Center: NS3 Filt model,
Right: NS3 GTA model.

5 DISCUSSION
In this study, we explored the complexities surround-
ing the presence of several camera calibration matrices
within the same dataset, as well as dataset combination
and its impact on 3D monocular object detection.

Firstly, our analysis focused on the comparative per-
formance of filtered and non-filtered datasets within
the context of 3D monocular object detection. Filter-
ing the dataset, which aimed to remove contradictions
introduced by different focal lengths within the same
dataset, yielded positive effects on depth error and di-
mension estimations as expected. However, our re-
sults show that the non-filtered regular dataset often
outperformed its filtered counterpart in metrics such
as mAP@95 and center position & orientation estima-
tions. This discrepancy can be attributed to the larger
quantity of data within the non-filtered dataset, which
benefits 2D object detection by providing additional
properly labeled data.

While dataset combination offers a promising strat-
egy for addressing the limitations inherent in individual
datasets, its efficacy varies depending on several fac-
tors. Despite anticipating improved 2D detection re-
sults with the addition of new synthetic data, we ob-
served a negative impact on 2D metrics. This out-
come suggests that although synthetic datasets offer
perfect annotations, their visual dissimilarity from real-
world images can compromise their utility in practical
applications. Using synthetic datasets in combination
with real ones does not always result in increased per-
formance, and careful consideration must be given to
dataset composition to ensure alignment with the ob-
jectives of the object detection task.

Another finding is the overwhelmingly negative effect
of normalization of the camera matrix through artificial
distortion, both on real and synthetic datasets, whether
it affected the core training data or additional data.
While normalization may improve certain metrics, such
as mAP@0.5, not only are these improvements incon-
sistent, but its adverse effects on other 3D metrics did
outweigh the benefits, and models trained on normal-
ized datasets performed poorly in most cases.

On a more positive note, incorporating additional
datasets with their own focal lengths and matrices did
not consistently result in a complete decrease in 3D
metrics. It seems that datasets with precise ground
truth compared to the image allowed the accuracy
of the additional data to partially compensate for the
introduction of contradictory information induced by
different focal lengths.

6 CONCLUSION
We can conclude that having different camera focal
lengths within a training set does not inherently de-
crease the performance of a 3D monocular object detec-
tion model. While filtering the dataset results in more
accurate depth and dimension estimations, it is at the
expense of other results as filtering gets rid of useful
data. Introducing additional data from other datasets
does not necessarily reduce the accuracy of the model’s
3D estimations as long as this data contains precise
ground truth, the visual appearance of this new data
matters a lot for 2D object detection. Finally, attempt-
ing to normalize the focal length through artificial dis-
tortion just provides unreliable data for 3D estimations.
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