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ABSTRACT
Virtual Reality (VR) applications constantly strive for more realism, immersion and intuitive user experiences.
Traditional VR controllers can hinder full immersion, since they form an additional barrier between the user’s
thoughts or intentions and the virtual world. Brain computer interfaces (BCIs) have the potential to close this
gap by enabling an immediate translation of human thoughts to commands that can be processed by a computer.
This paper investigates the feasibility of employing an affordable commercial BCI device for VR interaction. In a
preliminary study conducted in a Cave Automatic Virtual Environment (CAVE), we evaluate both the effectiveness
and limitations of the popular BCI device Emotiv Insight.
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1 INTRODUCTION
In recent years interest and popularity in virtual reality
(VR) devices has increased drastically and has attracted
the attention of the research world and consumers alike
[1]. Today, VR experiences are more realistic and en-
gaging than ever. Different input devices allow users to
engage with their virtual environment and play an im-
portant role in increasing immersion [2]. Unlike tradi-
tional computers, where the interaction usually involves
mouse and keyboard, VR applications use alternative
input devices and aim for a more intuitive control. Be-
sides input methods like gesture [2], or head-movement
[32], brain computer interfaces (BCI) offer a promis-
ing alternative as a communication tool. These sys-
tems work by reading the user’s brain signals, applying
machine-learning algorithms to classify the brain state,
and then based on the signal, trigger an action on the
computer [11].

BCIs have the advantage that no muscular movements
are needed, instead systems are only controlled by
thoughts or emotion, which is why BCIs are often
discussed as an alternative input device to help users
with motion impairments to interact with a computer
[26]. More recently BCIs have been explored as an
additional input channel in video games and VR [22].

For noninvasive acquisition of brain activity, electroen-
cephalography (EEG) [29] has been the most widely

used method, due to its relatively low cost, high resolu-
tion and portability [21]. EEGs measure electrical ac-
tivity resulting from current flows, which are produced
when neurons are activated. Signals are read by elec-
trodes that are placed on different regions of the skull
[31]. The recorded brain activity can be seen as waves
that can be categorized based on their frequency [31].
The dominance of each wave type is heavily influenced
by the user’s current emotional state and where the elec-
trodes are placed [31].

In recent years, consumer-grade EEGs have found
their way from research into real-world environments
[22]. Despite limitations compared to medical-grade
devices including lower sensor counts, accuracy and
transfer rates, commercial EEG devices are still a
popular choice for immersive experiences due to their
affordable price and ease of use [22].

This paper presents an exploratory study on the appli-
cability of BCIs in conjunction with virtual environ-
ments, aiming to test the technical feasibility of utiliz-
ing consumer-level BCIs for this purpose in a practi-
cal setting. We conducted experiments with the com-
mercial and affordable EEG headset Emotiv Insight 2.0
(shown in Figure 1) in order to evaluate, whether cost-
efficient BCIs can be used as an intuitive input device
for VR applications. We chose to utilize Emotiv Insight
for our experiments due to the minimal setup time of 1

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

331https://www.doi.org/10.24132/CSRN.3401.36



Figure 1: Emotiv Insight. Image taken from [4].

- 2 minutes, the seamless integration within the Unity
game engine through Emotiv’s API, and it’s popularity
in research. Emotiv offers a Pro license for 149$ per
month that offers high-resolution performance metrics
with a higher sampling rate than the free license. How-
ever, the Pro license would not have made an impact on
the overall quality of the device, which is why we opted
for the free license. Choosing the free license over the
Pro license also ensured alignment with our goal of a
low-cost interaction method [5]. To assess its applica-
bility as an input device for VR we used the Emotiv
headset to trigger different animations in a Cave Auto-
matic Virtual Environment (CAVE).

All experiments were performed in the CAVE, a four
sided, projection-based VR setup with lightweight LCD
shutter glasses which offer improved wearing comfort
compared to head-mounted displays, and minimise ob-
structions and interference between VR and BCI head-
sets.

2 RELATED WORK
Brain Computer Interfaces (BCI) have enabled many
different possibilities over the years. Traditionally, BCI
focused on medical applications, developing applica-
tions to allow patients to control and communicate with
things in all aspects of life [22]. Research in this field
has undergone major advances over the years, with BCI
being used as an assistive technology to enable patients
with a paralyzed body to communicate [15], to control-
lable wheelchairs [9] and many other applications.

Recently, BCIs have been introduced in the consumer
market and new applications have been developed in
particular for the entertainment/gaming area [22]. In
this area, combining BCI devices and VR has led to
promising results [22]. Friedman et al. [8] showed
that BCIs can be suitable to interact with virtual envi-
ronments. In their work, they used the Graz-BCI [25]
to carry out different experiments with three subjects
in different VR setups. The authors came to the con-
clusion that BCI has potential as an input device in
VR. They also found that accuracy was the highest in

a CAVE environment, which was also the preferred en-
vironment of all subjects. Leeb et al. [19] aimed to
overcome the use of cue-based BCI and get closer to
real world conditions. Therefore, the VR application
must allow the users to freely decide, what they want
to do. For their study, they built a freely explorable
apartment and asked 10 test subjects to walk to a de-
fined target room using EEG signals from only three
channels. They concluded that also with a simple EEG
setup of only three channels, the users could success-
fully navigate through the apartment. The study also
showed that motivated users performed better than un-
motivated ones, which indicates that motivation is an
important factor during BCI training.

VR setups are also an ideal test environment for BCI
research and for scenarios that would be too costly or
dangerous under normal circumstances [18, 17]. Leeb
et al. [18] showed that combining VR and BCIs can be
a useful tool to control a wheelchair in VR. Guger et al.
[10] demonstrated in a VR setup that BCI devices can
be successfully used to control smart home devices and
applications, such as opening doors.

In recent years, multiple studies have indicated that Vir-
tual Reality can convey feedback to BCI users better
than simpler 2D approaches [19]. Ron-Angevin and
Díaz-Estrella [27] found in their research that receiving
feedback through an immersive experience can have a
positive impact on BCI accuracy. In this study, users,
who performed BCI tasks in VR, demonstrated reduced
error rates and also reported a motivational effect com-
pared to a traditional 2D screens. This effect may arise
from the increased immersion and realism in virtual
scenes provided by VR that can lead to more distinct
brain patterns, which can be better recognised by BCI
devices [23].

Due to advancements in technology, EEG devices have
recently entered the consumer market [22] and sev-
eral commercial EEG devices have emerged. Exam-
ples include Emotiv Epoc, Emotiv Insight, Neurosky
Mindwave, & the OpenBCI headsets, which vary in
price & the amount of sensors. In their review on the
use of consumer-level BCIs in research, Sabio et al.
showed, that Emotiv devices were the most extensively
utilized, followed by Neurosky Mindwave [28]. Neu-
rosky Mindwave offers only one electrode and one ref-
erence electrode next to the ear, which might be the
reason for it’s low accuracy, as indicated by multiple
works [22]. Other BCIs such as OpenBCI have re-
ceived limited attention in research [28]. Zabcikova
[33] investigated the quality of Insight’s EEG signals
with the help of subjects that were exposed to visual
and auditory stimuli. Other application where Emotiv
Insight has been used include drone control [20] and
controllable smart wheelchairs [6]. In combination with
a head-mounted display, Fayed et al. [7] used Emotiv
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Insight to create a cognitive training program to train
focus. A cognitive approach was also taken in [12],
where Hu and Roberts used an Emotiv Insight device
with a VR setup to study the correlation between the
emotional state and the built environment characters.
In this paper we employ the Emotiv Insight device to
control VR scenes which surround the user in a CAVE.
We chose this specific device due to it’s widespread
adoption in research and the acceptable count of five
sensors. Aiming for affordability, Emotiv Insight ad-
ditionally emerges as a cost-effective alternative com-
pared to higher-priced products like Emotiv Epoc.

3 METHOD
This section provides insight into the input device, the
test environment, as well as the animations that can be
triggered by the EEG signals. Our proposed BCI-VR
setup allows users to experience a changing environ-
ment that responds to the user’s thoughts. A schematic
model of our system is illustrated in Figure 2. The
user’s thoughts or mental commands, are picked up by
the Emotiv Insight device and are used as an input for
the VR Scene depicted in the CAVE.

Figure 2: Schematic model of our Emotiv Insight-VR
setup. EEG data is acquired by the Insight device, and
processed to a mental command, which is subsequently
used as an input for our VR system, which responds
with visual feedback to the user.

3.1 The Virtual Environment
A CAVE offers an immersive experience and unlike
head-mounted displays (HMD), also allows users to
feel their presence in the virtual world [30]. In our
case, the CAVE is a projection-based VR setup, which
consists of four projection walls, four stereoscopic pro-
jectors and two standard hardware computers for each
projection wall rendering the image for the left and the
right eye respectively [16]. Additionally, users wear
lightweight LCD shutter glasses, which can be com-
fortably worn together with the BCI. A schematic of
our CAVE is shown in Figure 3.

Figure 3: A schematic of the CAVE setup. Images are
projected on the side walls from the back and on the
floor from above. Mirrors are used to reduce spatial
requirements.

3.2 The Brain Computer Interface
Emotiv Insight is a portable, consumer-grade EEG
headset and is a cost efficient alternative to other EEG
devices. The headset is designed for every day use and
features 2 reference sensors and 5 channels which are
located on the scalp according to the 10-20 electrode
system [14] on positions AF3, AF4, T7, T8 and Pz.
The connection between the computer that runs the
CAVE application and the headset is established via
Bluetooth. Communication with the headset is done
with Emotiv’s Cortex API, which is based on JSON and
Websockets [3]. Additionally, the Emotiv App is also
needed to authorize the application. The API can be
used to obtain different data from the headset, namely
facial expressions, mental commands and so called
performance metrics that represent values of the user’s
current stress, relaxation, focus, excitement, interest
and engagement levels. The data rate of the device is
128 Hz, which corresponds to 128 JSON messages per
second for each opened data stream. Nevertheless, the
actual data sampling rate heavily depends on the type
of license. In this case, we used the free license, which
allowed us to receive new performance metrics every
10 seconds. Since the use of such a device requires
focus on the task, the time was used by applicants to
really focus on the thought.

To trigger animations in VR we used mental commands.
This functionality allows users to trigger events based
on their thoughts and allowed us to receive data in real-
time.Therefore, a profile must be trained with Emo-
tiv’s BCI software, which associates thoughts to spe-
cific events. Besides the neutral command, which rep-
resents a relaxed and calm state, this EEG headset is
able to differentiate up to 4 different commands at a
time, which are named as push, pull, left, right.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

333https://www.doi.org/10.24132/CSRN.3401.36



After sufficient training, we ensured that a good con-
nection is established before we could use it in our
CAVE application. For this, the Emotiv App indicates
the EEG quality for each sensor with a color. Before us-
age, it is crucial that the headset fits firmly on the user’s
scalp and that the sensors are moisturized with contact
lens fluid. Only if all sensors report a good EEG quality,
high-quality mental commands can be received. In the
API, mental commands come as string tuples that con-
tain the mental command’s name, the power, and the
time. The current mental command and its power were
then used, to trigger an animation. To sort out faulty and
inaccurate mental commands that can be caused by bad
EEG quality, we introduced a threshold on the power.
The mental command was only used, if it exceeded the
defined threshold. This allowed us to receive consis-
tent data without the need of computationally intensive
smoothing.

3.3 VR Animations
To assess the applicability of the commercial BCI input
device for VR control, we used three animations which
the user may control via a mental command. The
experiments were carried out by a 22-year-old male
participant. All animations where developed using
Unity 3D.

3.3.1 Accelerating Sphere
In this animation, the user can accelerate a sphere and
move it through hoops, Figure 4.

If the mental command is neutral, the sphere deceler-
ates until it eventually comes to a standstill. If the user
focuses on pushing the sphere through the hoops, the
sphere accelerates and rolls through the hoops, much
like a VR game of croquet.

Figure 4: The sphere’s acceleration is controlled by the
power of the triggered mental command.

3.3.2 Terrain
A planar terrain, Figure 5, is modified by generating
Perlin noise [24] using a users thoughts.

The hills increase in depth when the user starts to trig-
ger a mental command. The longer the user holds on
to the thought and the stronger the current command is

picked up, the deeper the valleys and hills get. When
users relaxes from the thought, the surface starts to get
smoother, until it reaches a flat and even surface.

Figure 5: Generated terrain using perlin noise. The
magnitude of the terrain is controlled by the duration
and strength of the mental command.

3.3.3 Forrest Environment
Our third animation is a natural environment with
rocks, trees, and grass that are waving in the wind, as
illustrated in Figure 6. The user can transform this
environment into a flower meadow with mushrooms,
when triggering a mental command. As soon as the
thought is relaxed, the flowers retreat into the ground.

Figure 6: Forrest environment with mushrooms and
flowers.

4 RESULTS
Our results using this headset showed several issues
with the device. Originally, we planned to use the re-
laxation value to control animations, but due to the
low sampling rate and inconsistencies within the met-
rics this plan was discarded. To determine whether
the performance metrics were a reliable input for our
CAVE application, we tested its accuracy by recording
our mental state over a time span of 28 minutes. Dur-
ing the test, a relaxation video ran in the background
and we closed our eyes to enter a state of relaxation. As
shown in Figure 7, the relaxation value increases over
time. However, we also found a correlation between
the stress and relaxation value in our test (see Figure
8). This finding is unexpected, since relaxation and
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stress are emotions that usually do not correlate with
each other.

This correlation and the low sampling rate of 0.1 Hz
were the reason, why we utilized mental commands in-
stead. The mental commands capability has a higher
sampling rate, which allowed us to receive roughly one
data sample per second. Using a single command, we
were able to control the animations successfully. How-
ever, using more than one command severely affected
the accuracy and made the use infeasible. Additionally,
the result depended heavily on the contact quality of the
headset. All electrodes must at least indicate some con-
tact with the scalp to receive any mental commands. In
our testing, we experienced that even subtle movements
could disrupt the signal quality, which affected the ex-
perience in the CAVE significantly.

While training a command, the users were asked to hold
on a thought for eight seconds. After each training, the
users receive feedback on how representative the mea-
surement was and can then decide, whether the training
session should be erased or not. In the beginning, a
profile was only trained with a single command (push)
with a training time of 3-4 hours.

After we had sufficient control over one command, we
tried to train a profile with higher command counts,
with limited results. Even after extensive prior training
the majority of mental commands was detected incor-
rectly. This is on par with other works, like Khan &
Laique [13], who experienced similar results. In their
work, a profile was trained on an Emotiv Epoc headset
for 11 hours with 4 different mental commands, which
resulted in an accuracy of only 25% [13]. This led us to
only use one single command in our animations.

Users also experienced physical discomfort after al-
ready 15 minutes of use, because Emotiv Insight’s sen-
sors press tightly against the skull.

Figure 7: Relaxation value over a time span of 28 min-
utes.

Figure 8: Line graph of the relaxation (Re, top) and
stress (St, bottom) performance metrics. The figure in-
dicates a correlation between the relaxation and stress
value.

5 CONCLUSION AND DISCUSSION
In this preliminary study, we have investigated the use
of the cost-efficient EEG device Emotiv Insight for VR
control and tested the technical and practical feasibil-
ity of such a setup. We developed three different an-
imations that react to the user’s thoughts: A sphere,
which can be accelerated, a procedurally generated ter-
rain that forms valleys and hills and a forest environ-
ment, in which mushrooms and flowers are generated
based on the user’s brain activity.

Our experiments revealed a number of issues with the
Emotiv Insight device. Severe reliability issues with the
sensor data, the low sampling rate, as well as the phys-
ical discomfort of the device, led to the conclusion that
Emotiv Insight is unsuitable as an input device for real-
time applications. Our results further indicate a poor
user experience, particularly due to reported headaches
after only a brief period of wearing the BCI headset.
Due to overwhelmingly negative feedback, a full evalu-
ation of the setup involving this device was abandoned.

We also found that the initial training phase and the
time-consuming task of adjusting the sensors make
Emotiv Insight not suitable for applications in VR.
Additionally, some important features of Emotiv’s
SDK, such as high-resolution performance metrics are
restricted and require a costly monthly subscription.

We conclude that multiple improvements have to be
made such that the Emotiv Insight becomes a viable al-
ternative for controlling VR applications. Our sugges-
tions include a more adjustable design, more sensors to
improve accuracy, and overall a stronger focus on relia-
bility. In the future, we will examine other BCI devices
and conduct comparison experiments evaluating both
usability and reliability. BCI devices are a promising
technology, but need to overcome some shortcomings
to be a practical input method for real-time interaction
in VR environments.

REFERENCES
[1] Cipresso, P., Giglioli, I.A.C., Raya, M.A., Riva,

G., 2018. The Past, Present, and Future of Virtual
and Augmented Reality Research: A Network
and Cluster Analysis of the Literature. Frontiers
in Psychology 9.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

335https://www.doi.org/10.24132/CSRN.3401.36



[2] De Paolis, L., De Luca, V., 2020. The impact of
the input interface in a virtual environment: the
Vive controller and the Myo armband. Virtual
Reality 24, 483–502.

[3] Emotiv, 2022. Cortex API Documentation.
https://emotiv.gitbook.io/
cortex-api. Accessed: 2022-05-19.

[4] Emotiv, 2024a. Emotiv Insight Product Page.
https://www.emotiv.com/insight//.
Accessed: 2022-05-19.

[5] Emotiv, 2024b. Emotiv Pro Licenses.
https://www.emotiv.com/products/
emotivpro. Accessed: 2024-05-03.

[6] Espiritu, N.M.D., Chen, S.A.C., Blasa, T.A.C.,
Munsayac, F.E.T., Arenos, R.P., Baldovino, R.G.,
Bugtai, N.T., Co, H.S., 2019. BCI-controlled
Smart Wheelchair for Amyotrophic Lateral
Sclerosis Patients, in: Proceedings of the
International Conference on Robot Intelligence
Technology and Applications (RiTA), pp.
258–263.

[7] Fayed, A.D., Rodriguez, J., Eisenschmidt, F., Li,
Y., Yang, X., 2018. Virtual Reality Cognitive
Training Program, in: Proceedings of the
International Conference on Applied Cognitive
Computing.

[8] Friedman, D., Leeb, R., Guger, C., Steed, A.,
Pfurtscheller, G., Slater, M., 2007. Navigating
Virtual Reality by Thought: What Is It Like?
Presence 16, 100–110.

[9] Galán, F., Nuttin, M., Lew, E., Ferrez, P.,
Vanacker, G., Philips, J., del R. Millán, J., 2008.
A brain-actuated wheelchair: Asynchronous and
non-invasive Brain-computer interfaces for
continuous control of robots. Clinical
Neurophysiology 119, 2159–2169.

[10] Guger, C., Holzner, C., Groenegress, C.,
Edlinger, G., Slater, M., 2009. Brain Computer
Interface for Virtual Reality Control, in:
Proceedings of the European Symposium on
Artificial Neural Networks, pp. 443–448.

[11] Hammon, P.S., de Sa, V.R., 2007. Preprocessing
and Meta-Classification for Brain-Computer
Interfaces. IEEE Transactions on Biomedical
Engineering 54, 518–525.
doi:10.1109/TBME.2006.888833.

[12] Hu, M., Roberts, J., 2020. Built Environment
Evaluation in Virtual Reality Environments-A
Cognitive Neuroscience Approach. Urban
Science 4.
doi:10.3390/urbansci4040048.

[13] Khan, M.H., Laique, T., 2011. An Evaluation of
Gaze and EEG-Based Control of a Mobile Robot.
Master thesis. Blekinge Institute of Technology.

[14] Klem, G., Lüders, H., Jasper, H., Elger, C., 1999.
The ten-twenty electrode system of the
International Federation of Clinical
Neurophysiology. Electroencephalography and
clinical neurophysiology. Supplement 52, 3–6.

[15] Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw,
J., Birbaumer, N., 2001. Brain-computer
communication: Unlocking the Locked In.
Psychological bulletin 127, 358–375.

[16] Lancelle, M., Settgast, V., Fellner, W.D., 2008.
Definitely Affordable Virtual Environment, in:
Proceedings of the Virtual Reality Conference,
pp. 1–1. Video.

[17] Lécuyer, A., Lotte, F., Reilly, R.B., Leeb, R.,
Hirose, M., Slater, M., 2008. Brain-Computer
Interfaces, Virtual Reality, and Videogames.
Computer 41, 66–72.
doi:10.1109/MC.2008.410.

[18] Leeb, R., Friedman, D., Müller-Putz, G., Scherer,
R., Slater, M., Pfurtscheller, G., 2007a.
Self-paced (asynchronous) BCI control of a
wheelchair in virtual environments: A case study
with a tetraplegic. Computational intelligence
and neuroscience , 1–8.

[19] Leeb, R., Lee, F., Keinrath, C., Scherer, R.,
Bischof, H., Pfurtscheller, G., 2007b.
Brain-Computer Communication: Motivation,
Aim, and Impact of Exploring a Virtual
Apartment. IEEE Transactions on Neural
Systems and Rehabilitation Engineering 15,
473–482.

[20] Marin, I., Al-BattBootti, M.J.H., Goga, N., 2020.
Drone Control based on Mental Commands and
Facial Expressions, in: Proceedings of the
International Conference on Electronics,
Computers and Artificial Intelligence, pp. 1–4.

[21] Marshall, D., Coyle, D., Wilson, S., Callaghan,
M., 2013. Games, Gameplay, and BCI: The State
of the Art. IEEE Transactions on Computational
Intelligence and AI in Games 5, 82–99.

[22] Maskeliunas, R., Damasevicius, R., Martisius, I.,
Vasiljevas, M., 2016. Consumer grade EEG
devices: Are they usable for control tasks? PeerJ
4. doi:10.7717/peerj.1746.

[23] Millan, J.d.R., Rupp, R., Müller-Putz, G.,
Murray-Smith, R., Giugliemma, C., Tangermann,
M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb,

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

336https://www.doi.org/10.24132/CSRN.3401.36



R., Neuper, C., Müller, K.R., Mattia, D., 2010.
Combining Brain-Computer Interfaces and
Assistive Technologies: State-of-the-Art and
Challenges. Frontiers in neuroscience 4, paper
161. doi:10.3389/fnins.2010.00161.

[24] Perlin, K., 1985. An Image Synthesizer.
SIGGRAPH Computer Graphics 19, 287–296.
URL: https://doi.org/10.1145/
325165.325247,
doi:10.1145/325165.325247.

[25] Pfurtscheller, G., Neuper, C., Muller, G.,
Obermaier, B., Krausz, G., Schlögl, A., Scherer,
R., Graimann, B., Keinrath, C., Skliris, D.,
Wortz, M., Supp, G., Schrank, C., 2003.
Graz-BCI: state of the art and clinical
applications. IEEE Transactions on Neural
Systems and Rehabilitation Engineering 11, 1–4.
doi:10.1109/TNSRE.2003.814454.

[26] Prashant, P., Joshi, A., Gandhi, V., 2015. Brain
computer interface: A review, in: Nirma
University International Conference on
Engineering (NUiCONE), pp. 1–6.
doi:10.1109/NUICONE.2015.7449615.

[27] Ron-Angevin, R., Díaz-Estrella, A., 2009.
Brain-computer interface: Changes in
performance using virtual reality techniques.
Neuroscience Letters 449, 123–127.

[28] Sabio, J., Williams, N.S., McArthur, G.M.,
Badcock, N.A., 2024. A scoping review on the
use of consumer-grade eeg devices for research.
PLOS ONE 19.

[29] Schomer, D.L., da Silva, F.H.L., 2017.
Niedermeyer’s Electroencephalography: Basic
Principles, Clinical Applications, and Related
Fields. Seventh ed., Oxford University Press.

[30] Settgast, V., Pirker, J., Lontschar, S., Maggale, S.,
Guetl, C., 2016. Evaluating Experiences in
Different Virtual Reality Setups, in: Proceedings
of the International Conference on Entertainment
Computing, pp. 115–125.

[31] Teplan, M., 2002. Fundamental of EEG
Measurement. IEEE Measurement Science
Review 2, 1–11.

[32] Tsumoru, O., 1999. Computer input device for a
physically disabled person using head movement.
International Journal of Systems Science 30,
131–134.

[33] Zabcikova, Martina, 2019. Visual and auditory
Stimuli Response, measured by Emotiv Insight
headset. MATEC Web of Conferences 292,

01024.
doi:10.1051/matecconf/201929201024.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

337https://www.doi.org/10.24132/CSRN.3401.36



 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

338https://www.doi.org/10.24132/CSRN.3401.36




