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ABSTRACT
Considering the need for lightweight and fast implementations, this paper presents an architecture based on a Mo-
bileVit encoder for efficiency and speed, introducing a fully convolutional lightweight decoder with skip connec-
tions for feature extraction. The main purpose of this network is to address the problem of single image dehazing.
Recognizing the critical role of depth information in assisting the above task, the merging of these two tasks into
a single network was performed in a supervised manner. Taking into account that there is a shortage of datasets
that provide both dehazing and relative depth estimation ground truths, Depth Anything was utilized to extract the
relative depth values of the images, which is the SOTA network in this task.
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1 INTRODUCTION

Despite the recent advancements in computer vision
research, scene understanding remains a fundamen-
tal problem. Monocular depth estimation provides a
deeper insight to the scene, capturing depth information
and transforming perception from a two-dimensional
representation to a richer three-dimensional under-
standing. It has a potential to revolutionize applications
such as autonomous navigation [4], augmented reality,
and scene understanding.

In the presence of haze, because it has a strong effect
on visual clarity and detail, comprehending a scene be-
comes really challenging. Single image dehazing aims
to mitigate the adverse effects of atmospheric scatter-
ing, enhancing the visibility and fidelity of images cap-
tured in hazy or foggy conditions and aims to restore
the true radiance of objects obscured by haze or fog.
In essence, both depth estimation and image dehazing
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share a common goal: the recovery of a more faithful
representation of the scene.
Recent studies of both monocular depth estimation and
single image dehazing methods, have introduced Vision
Transformers [25, 1, 8] as a fundamental component for
a global understanding of the scene, unlike traditional
methods which rely on convolutional neural networks
[17], [7], [5] with limited receptive field.
Tasks like self-driving cars require real-time process-
ing, because it directly impacts user experience and
safety. Single image dehazing is essential in scenarios
where visibility is compromised due to adverse weather
conditions. Real-time dehazing can enhance image
clarity and enable immediate responses. Real-time pro-
cessing ensures that the information provided is cur-
rent, allowing systems to react swiftly and effectively to
changing environments and unforeseen obstacles. That
is the reason why a lightweight model has been devel-
oped in this paper.
The proposed model is based on an encoder-decoder ar-
chitecture. MobileVit [22], a Vision Transformer with
a low complexity, is employed in the encoder, aiming
to minimize the model’s parameter count. The decoder
is a fully-convolutional neural network. In the earlier
stages of the decoder both dehazing and depth estima-
tion are learned simultaneously and in later stages these
tasks are separated into 2 branches. Skip-connections
from the encoder to the decoder result in an efficient and
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effective feature processing pipeline and enable the net-
work to leverage both fine and coarse-grained details.
The combination of these components allows the de-
coder to generate accurate pixel-wise predictions. This
approach contributes to the ability of the network to ef-
ficiently and accurately process visual data.

The main contributions in this paper are summarized
below:

• Proposition of a lightweight network for single im-
age dehazing utilizing MobileVit [22] in the encoder

• Utilization of the relative depth values in order to
help the image dehazing tasks and also extract a rel-
ative depth image from the input hazy image.

• Utilization of a fully-convolutional, fast and accu-
rate decoder with skip connections that requires few
parameters.

2 RELATED WORK

2.1 Monocular depth estimation

An early work on monocular depth estimation is that
of Eigen et al. [7], which uses two CNNs. The first is
used to predict a coarse global depth, and the second to
refine the prediction locally. Jung et al. [13] proposed
a solution for poor boundary localization and spurious
regions by using a two-stage convolutional network as
a generator. Their approach employs a deep adversarial
learning framework, with an adversarial discriminator
training criterion aiming to effectively tell real and syn-
thetically generated depth images apart. A lightweight
model was proposed by Wofk et al. [31], utilizing Mo-
bileNet [12] as the decoder in order to have a low count
of parameters. They also incorporated skip-connections
between the encoder and the decoder. Rudolph et al.
[28] used a Guided Upsampling Block (GUB) for build-
ing the decoder. GUB relies on the image to guide the
decoder in upsampling the feature representation and
the depth map reconstruction, achieving high resolution
results with fine-grained details. Lee et al. [16] pro-
posed a token sharing transformer that utilizes global
token sharing, which enables the model to obtain an
accurate depth prediction with high throughput in em-
bedded devices. The model used for the ground truth
relative depth images is Depth Anything [33], a practi-
cal solution for robust monocular depth estimation, fo-
cusing on simplicity and effectiveness. By scaling up
the dataset to approximately 62 million unlabeled im-
ages and employing data augmentation techniques and
auxiliary supervision, the method achieves impressive
generalization across various datasets.

2.2 Single image dehazing
To describe the formation of a hazy image, the atmo-
spheric scattering model was first proposed by McCart-
ney [21]. The equation of this model can be written as

I(x) = J(x) · t(x)+a · (1− t(x)) (1)

where I(x) is a hazy image, J(x) is the real scene to
be recovered, t(x) is the medium transmission, a is the
global atmospheric light.

DCP Net [9] is a simple but effective image prior -
dark channel prior to remove haze from a single input
image. DehazeNet [2], which is one of the earliest
deep learning works, uses a CNN with specialized
Maxout layers for haze-related feature extraction and
introduces the Bilateral Rectified Linear Unit (BReLU)
activation function to enhance haze-free image quality.
Ren et al. [27] used an encoder-decoder architecture
and adopted a novel fusion-based strategy which
derives three inputs from an original hazy image by
applying white balance, contrast enhancement, and
gamma correction. Dong et al. [5] presented a Multi-
Scale Boosted Dehazing Network using the U-Net
framework, which is designed based on two principles:
boosting and error feedback. The model incorporates
the Strengthen-Operate-Subtract boosting strategy in
the decoder, gradually enhancing the haze-free image.
They introduced a dense feature fusion module with
back-projection feedback in the U-Net architecture to
maintain spatial information. Hong et al. [11] intro-
duced a knowledge distillation-based dehazing network
that employs process-oriented learning with the student
network mimicking image reconstruction. Wu et al.
[32] introduced a novel regularization technique that
utilizes contrastive learning. CR leverages hazy images
as negatives and clear images as positives, guiding the
restored image closer to clear images and away from
hazy ones in the representation space. Cui et al. [3]
was inspired by the consistent degradation of various
regions in corrupted images, and suggested a shift
towards prioritizing essential areas for reconstruction.
In the latter approach, they introduced a dual-domain
selection mechanism to accentuate critical information
for restoration, including elements like edge signals
and challenging regions. FFA-NET [24] is an end-
to-end feature fusion attention network, consisting of
three key components.1) Channel Attention with Pixel
Attention mechanism, 2) Local Residual Learning, and
3) An Attention-based different levels Feature Fusion
(FFA) structure, that performs especially outstanding
in regions with thick haze and rich texture details.
AOD-Net [18] is designed based on a re-formulated
atmospheric scattering model and directly generates
clean images through a lightweight CNN, making it
easily embeddable into other deep models. MSCNN
[26] is a multi-scale CNN consisting of a coarse-scale
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net that predicts a holistic transmission map based
on the entire image, and a fine-scale net that refines
results locally. LightDehazeNet [29] jointly estimates
both the transmission map and atmospheric light using
a transformed atmospheric scattering model. There
are not many lightweight models to perform image
dehazing delivering good results. The proposed method
targets these two goals concurrently.

2.3 Vision Transformers
Vision Transformer (ViT) [6] adapts the transformer ar-
chitecture used in natural language processing to extract
multiscale information from images by breaking them
down into smaller patches. The most important part
is the self-attention mechanism which helps to encode
relationships between the patches. ViT-based models
have achieved remarkable results in tasks like image
classification and segmentation, depth estimation, and
single-image dehazing. Depth estimation works like
Ada-Bins [1] proposed a transformer-based architec-
ture block that divides the depth range into bins whose
center value is estimated adaptively per image. The fi-
nal depth values are estimated as linear combinations
of the bin centers. Ranft et al. [25] gathered tokens
from different stages in the vision transformer to create
representations that resemble images at various resolu-
tions. These representations are gradually fused to pro-
duce full-resolution predictions using a convolutional
decoder. In another encoder-decoder architecture, Kim
et al. [14] deployed a hierarchical transformer-based
encoder to capture the global information in an im-
age, and a lightweight decoder to generate an estimated
depth-map, while also considering local connectivity.
Vision transformers are also used in single-image de-
hazing. Guo et al. [8] proposed a novel transmission-
aware 3D position embedding to involve haze density-
related prior information into the vision transformer.
Lu et al. [20] created two modules, one for handling
both fine textures and large hazy areas, and another
for addressing uneven haze distribution in image de-
hazing. The first module uses parallel dilated convo-
lutions with large receptive fields, while the second ef-
ficiently extracts global and local information in paral-
lel to improve dehazing results. Zhao et al. [34] com-
bined intrinsic image decomposition and image dehaz-
ing, enhancing the generation of high-quality haze-free
images. The Complementary Feature Selection Mod-
ule (CFSM) was used to effectively fuse complemen-
tary features, thereby boosting feature aggregation. In
the scope of this research paper, vision transformers
are adopted as the encoder of the network. The reason
for this selection relies on the proven capacity of vi-
sion transformers to produce rapid and precise results.
Vision transformers are favored for their adeptness in
managing visual data, detecting patterns, and compre-
hending the content of images.

3 METHOD
An image dehazing network is trained Fig.1 which aims
to predict the dehazed image Y ∈ ℜH×W×3 and the rela-
tive depth map D ∈ ℜH×W×1 from an RGB hazy image
X ∈ ℜH×W×3. The primary focus lies on the dehazing
output, with the relative depth output serving a supple-
mentary role. The relative depth information primarily
aids the image dehazing task, given its inherent inclu-
sion within the haze-scattering model. Eq.1.

To accomplish that, a model based on an encoder-
decoder architecture was implemented. In the encoder,
a pre-trained MobileVit [22] was used, and in the de-
coder a fully convolutional network. MobileViT is de-
signed to bring together the strengths of CNNs and vi-
sion transformers to create a lightweight and fast-to-
evaluate network for mobile vision tasks. It offers a new
perspective on how to process visual information effi-
ciently using transformer-based approaches in the con-
text of mobile devices. Most of the standard encoders
like ResNet [10] are fully convolutional and do not uti-
lize the benefits of Vision Transformers. The resulting
feature map is further upscaled and integrated with the
MobileVit layer outputs. To the best of our knowledge,
this is the first paper that uses MobileVit as the encoder
for the single image dehazing problem. The model has
a total of 2.29 million parameters, positioning it as a
lightweight solution without compromising its perfor-
mance.

3.1 Encoder
The encoder extracts the feature map from the input im-
age. For this extraction to be possible the classification
layer of MobileVit was deleted. MobileViT block com-
bines CNN (local information) and transformers (global
information). It uses convolutions for local details, then
transforms patches to capture relationships between im-
age parts. Four intermediate blocks and the output of
the Encoder are used for feature extraction, each cap-
turing different aspects of the input image. As shown
in Fig.1 each of these blocks (light blue color), has a
different width, height and channel values.

• Block 1: 1
2 ×

1
2 ×C1

• Block 2: 1
4 ×

1
4 ×C2

• Block 3: 1
8 ×

1
8 ×C3

• Block 4: 1
16 ×

1
16 ×C4

• Out: 1
32 ×

1
32 ×C5

As these stages progress, the feature maps become
smaller but contain richer information. This helps in
the understanding of the relationships between differ-
ent parts of the image.
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Figure 1: Model used for image dehazing utilizing relative depth. Each feature extraction block of MobileVit
is concatenated with the output at different stages of the decoder. All the convolutions have kernel size=3 and
stride=1.

3.2 Decoder

The decoder is the part of the network where the infor-
mation provided from the features extracted from the
encoder is used to reconstruct both the clear image and
the relative depth map. The features from the Mobile-
Vit blocks are passed through a series of convolution,
upsampling, and concatenation. As depicted in Fig.1
the first input of the decoder is the output of MobileVit
with dimensions: 1

32 ·H × 1
32 ·W ×C5. After undergo-

ing a 3× 3 convolution, the output is upsampled using
Bilinear Interpolation. This enables the concatenation
of features with those extracted from Block 4, as they
share the same dimensions, specifically 1

16 ·H × 1
16 ·W

of the original input. This process iterates through all
blocks until the output matches the dimensions of the
input hazy image (H ×W ). The rationale behind this
approach lies in the simultaneous presence of dehaz-
ing and depth feature information, which mutually re-
inforce each other, thereby enhancing overall perfor-
mance.

After that, the decoder is split into 2 modules, a
dehazing-module and a depth-module. The dehazing
module utilizes this mixed information to refine its
image reconstruction process, ensuring that the final
output is visually coherent and faithful to the input.
Similarly, the depth module benefits from this com-
bined information to achieve more discernible depth
cues.

3.3 Loss Function
Let ygt (ground truth) be the clear image, yp the pre-
dicted dehazed image, dgt (ground truth) relative depth
values from Depth Anything and dpred the predicted
depth values from the model. For single image dehaz-
ing L1 loss was chosen and for depth estimation a com-
bination of 2 losses was implemented Structural Simi-
larity (SSIM) [30] and L1 loss.

The dehazing and depth loss were combined to get the
final loss function.

LHaze(yp,ygt) = |yp − ygt | (2)

LDepth(dp,dgt) = α ·LSSIM(dp,dgt)+β · |dp −dgt |
(3)

LCombined(yp,dp,ygt ,dgt) = γ ·LHaze(yp,ygt)

+δ ·LDepth(dp,dgt)
(4)

4 EXPERIMENTS
In this section, the evaluation of the proposed model is
conducted using standard benchmarks for image dehaz-
ing. The presented implementation is compared with
existing lightweight and heavyweight models.
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Method RESIDE-IN RESIDE-OUT RESIDE(IN+OUT) Inference (ms)

PSNR(M) SSIM PSNR(M) SSIM PSNR(M) SSIM

DCP [9] (2010) 16.627 0.818 19.13 0.815 17.875 0.816 -
MSCNN [26] (2016) - - - - 17.57 0.8125 -
AOD-Net [18] (2017) 20.51 0.816 24.14 0.920 22.325 0.868 -
FFA-NET [24] (2021) 36.39 0.9886 33.57 0.9840 34.98 0.8963 310.15

Light-DehazeNet [29] [29] (2021) - - - - 28.39 0.9487 9.28
MixDehazeNet-S [20] (2023) 39.47 0.995 35.09 0.985 37.28 0.99 131.62

Proposed Model 30.339 0.965 - - - - 43.01

Table 1: Performance evaluation of the models on RESIDE-SOTS dataset [19].

(a) Hazy Image (b) Dehazed (c) Clear (d) Depth (e) GT depth [33]

Figure 2: Qualitative analysis on RESIDE-SOTS indoors dataset for both dehazing and depth [19]. The proposed
model takes four hazy images as input. Ground truth (GT) depth is determined using DepthAnything outputs.

4.1 Implementation details

PyTorch [23] was the framework used for the imple-
mentation. A training regimen comprising 40 epochs
was adopted, with an initial learning rate of 3×10−4 for
the first 20 epochs, followed by a reduction to 3×10−5

for the next 20 epochs. Adam optimizer with default
settings [15] and a batch size of 4 was utilized for both
models.

4.2 Datasets

RESIDE [19] provides a comprehensive collection of
hazy images, encompassing both real-world and syn-
thetic scenes. Three subsets of the dataset were uti-
lized: RESIDE-IN(ITS), comprising 13,990 hazy im-
ages along with their corresponding clear counterparts
from indoor environments, RESIDE-OUT(OTS), com-
prising 50,874 hazy images and their corresponding
clear images captured in outdoor settings, and Synthetic
Objective Testing task (SOTS), consisting of 1000 clear
images from indoor and outdoor scenes, each paired
with its hazy counterpart.

For every clear image Depth anything [33] was em-
ployed to extract the relative depth map, serving as the
ground truth value.

Two separate models were trained, one using the im-
ages from the indoor scenes and the other with the im-
ages from the outdoor scenes. For each model there are
two ground truth values, the clear image and the rela-
tive depth map and one input value which is the hazy
image.

Evaluation metrics: The standard evaluation metrics
employed for single image dehazing are utilized.

• Structural Similarity Index(SSIM):

(2µŷµy +C1)+(2σŷy +C2)

(µ2
ŷ +µ2

y +C1)(σŷ2 +σ2
y +C2)

(5)

• Peak Signal-to-Noise Ratio (PSNR):

20 · log10
1

RMSE
(6)

where RMSE =
√

1
n ∑

n
i=1(yi − ŷi)2
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(a) Hazy Image (b) Dehazed (c) Clear (d) Depth (e) GT depth [33]

Figure 3: Qualitative analysis on RESIDE-SOTS outdoors dataset for both dehazing and depth [19]. The proposed
model takes four hazy images as input. Ground truth (GT) depth is determined using DepthAnything outputs.

4.3 Evaluation protocol
The model was tested on the indoor set which consists
of 500 image pairs of RESIDE-SOTS (indoors) [19] at
full resolution. The GPU used for the calculation of in-
ference time is NVIDIA GeForce RTX 3060. The pro-
posed model produces images at a fixed size, whereas
the samples provided by RESIDE-SOTS (outdoors) ex-
hibit varying resolutions. Consequently, direct compar-
ison of metrics on the RESIDE-SOTS (outdoors) with
other methods that output images at full resolution may
lead to unfair assessments of performance.

4.4 Results
A selection of dehazed images and their correspond-
ing relative depth values will be presented for quali-
tative analysis for both RESIDE-SOTS indoors Fig.2
and RESIDE-SOTS outdoors Fig.3. The implemen-
tations are compared to other models Table.1 and a
quantitative comparison is provided Fig.4. While the
proposed method is lightweight, the results exhibit re-
markable clarity in both the dehazed and depth images,
showing the efficiency and robustness of the approach.
The qualitative evaluation with the heavyweight models
reveals minimal disparities, whereas with lightweight
models, the distinctions are prominently noticeable. In
comparison to the implementations detailed in Table 1,
the proposed model demonstrates better performance in

terms of inference time, with the exception of Light-
DehazeNet. Notably, the proposed architecture stands
out as the sole model providing the relative depth map,
a factor that influences inference time.

4.5 Ablation study
To showcase the efficacy of the proposed architecture,
an ablation study was conducted to analyze the number
of need blocks of MobileVit and the loss function.

The model underwent testing where each of the four
intermediate blocks of the Encoder was systematically
omitted, allowing for an assessment of their individ-
ual impact on performance. Additionally, an evaluation
without any of the intermediate blocks is provided. As
shown in Table 2, the removal of any one of these four
intermediate blocks yields negative effects on perfor-
mance. The first block exhibits the most pronounced
impact, while the fourth block shows the least. When

Blocks PSNR SSIM
1,2,3 29.958 0.963
1,2,4 30.195 0.963
1,3,4 30.039 0.962
2,3,4 28.373 0.931

No Blocks 22.179 0.691
Table 2: Performance Impact of removing intermediate
encoder blocks
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(a) Hazy Image (b) FFA-NET (c) MixDehazeNet (d) LightDehazeNet (e) Proposed model (f) Clear

Figure 4: Qualitative analysis on RESIDE-SOTS indoors [19].

all four blocks are discarded, the performance drops
significantly, underscoring the value they provide.

We also conducted tests on the constants within the loss
function (described in Table 3), which combines the
haze loss with the depth loss.

γ δ PSNR SSIM
0.5 0.5 29.02 0.958
0.6 0.4 29.572 0.960
0.8 0.2 30.339 0.965
0.4 0.6 28.56 0.947
0.2 0.8 28.05 0.941

Table 3: Impact of constants in the loss function

5 CONCLUSION
In conclusion, this paper presents a novel lightweight
architecture tailored for single image dehazing, lever-
aging a MobileVit encoder for efficiency and speed,
alongside a fully convolutional lightweight decoder fea-
turing skip connections for enhanced feature extraction.
By integrating depth estimation into the dehazing task
within a single network in a supervised manner, depth
information aids in scene understanding. Moreover, the
shortage of datasets providing both dehazing and rel-
ative depth ground truths is overcome by employing
state-of-the-art networks like Depth Anything for rel-
ative depth extraction. The main contribution lies in
proposing a lightweight solution for image dehazing,
utilizing MobileVit in the encoder, incorporating rela-
tive depth values to empower dehazing, and employing
a fully convolutional decoder with skip connections for
efficient and accurate processing. The relative depth
output can be leveraged in various other computer vi-
sion tasks to enhance their performance and robustness.

By providing depth information alongside dehazed im-
ages, the proposed model not only improves visual clar-
ity but also enriches the data available for downstream
tasks, thus contributing to more accurate and compre-
hensive computer vision solutions. Overall, this frame-
work offers a promising implementation for enhancing
scene understanding in challenging environmental con-
dition
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