
Study of Evolution in Virtual Worlds

Hassene Ben Amar
Polytech Marseille,
Doshisha University

163 Avenue de Luminy
France, 13009, Marseille
hassenebenamar03@gmail.com

Masashi Okubo
Doshisha University

Tataratanioku, Keikikan
Building

Japan, 610-0321,
Kyotanabe

mokubo@mail.doshisha.ac.jp

ABSTRACT
This paper investigates the evolution of agents within a virtual world, focusing on DNA transfer between gener-
ations, identification of significant genes and the explorations of parameters influencing survival and gene signif-
icance. To address these questions, we create an artificial life simulation within Unreal Engine 5, which mirrors
real-life characteristics and behaviors of animals. The methodology involves running a genetic algorithm with
binary tournament, uniform crossover and n-point mutation and analyzing the collected data to determine the most
significant genes in different cases. We demonstrate that parameters such as sensory capabilities, resource avail-
ability and mutation thresholds greatly influenced species’ survival and their success in the virtual environment.
The difference of size, health and sight capabilities is crucial for the survival of deers and their interaction with
the environment. In conclusion, this study offers an insight on evolution and evolution dynamics, denoting the
influence of resource availability, competition between agents, mutation thresholds and sensory capabilities, with
a substantial potential if time and resources were allocated to the research.

0.1 Keywords
Virtual Worlds, Predator-Prey Problem, Genetic Algorithms, Computer Generated Simulations

1 INTRODUCTION

In a world where the environment is constantly chang-
ing due to various factors such as climate change, mi-
gration to the cities, industrialization, etc, we would
like to predict or at least have an idea on how the dif-
ferent species that live on the globe might evolve in the
future. We would also like to be able to understand how
species used to be in the past and how they did evolve
from their past self to their current descendant. The
method we will use to try to bring an answer to this
problem is to simulate the evolution system by using
the concept of Artificial Life itself in a graphic engine
(in our case, Unreal Engine 5). In this paper, replicating
life and simulate the evolutionary system would follow
a modified version of the genetic algorithm based on
multiple conditions - the agent attribute or A.A which
contains multiple statistics that we will develop more in
the later of the paper. Depending on the agent species
we will evolve, we want to be able to have multiple
levels that simulate different types of environments, for
example - a mountain range, a cave, a forest, plains, etc.
We bring a new approach to the traditional genetic al-
gorithm by implementing different species in the same
level and creating a randomness of environment with
the different resources available to the agent during his
artificial life. The agents that exist in the level are not
at all static and live depending on goals we implement

in their A.I behavior. Finally, the performance evalu-
ation index is based on the overall performance of the
simulation and the gap between reality and our virtual
world.

2 CREATING A REAL WORLD SIMU-
LATION

The purpose of this paper is to create a realistic life sim-
ulation in Unreal Engine 5 (UE5) and study the evolu-
tion process of agents inside of it. We have to consider
different factors to achieve such a result. These fac-
tors include giving the agents a physical form to interact
with the environment, with other agents (predator and
prey alike), being able to differentiate the agents with
the help of attributes, implementing sight and hearing
capabilities and automatically creating and managing
resources. In the following sections, we will examine
each of these factors in detail to develop a comprehen-
sive realist life simulation.

2.1 The agent
The natural world is home to a vast array of ecosystems,
blooming with a wide range of flora and fauna. To sim-
ulate these ecosystems and the organisms that inhabit
them in a realistic manner, we must strive to accurately
replicate their biological processes. Nevertheless, this

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

381https://www.doi.org/10.24132/CSRN.3401.42



task is challenging due to the limitations of computa-
tional power. Our objective is to create virtual models
of life that closely approximate reality while maintain-
ing optimal performance. Therefore, we have to first
recreate the fauna.

2.1.1 External representation
To interact with its environment and other agents in the
system, each agent is required to possess a physical
form (a 3D mesh) in the virtual world. Compared to
[Ric01a], we did not model the assets ourselves, which
could limit the computational performance of the sys-
tem during collisions’ calculations. Meshes used were
complex and irregular in shapes, leading to a difficulty
in defining collisions using primitives shapes. A solu-
tion was found using "Bounding Spheres" or "Sphere
Capsule Collision" to wrap the model in an invisible
sphere hence a simpler method to calculate collisions.

2.1.2 Internal representation
An agent has a physical form but it lacks the complexity
that stems from life. Each species has abilities, faculties
that separate them from others. In a more local scope,
each of the members of these species is unique and has
a different value on how much those abilities express
themselves. DNA contains the information required to
determine an animal’s abilities. Due to a current lim-
itation of computational power, modeling an animal’s
DNA the way it appears in the real world would prove
challenging. Therefore, we found that the creation of a
simplified DNA structure along with attributes that de-
pend on the structure fixes our issue.

The agent’s DNA

In animals, the length of the DNA structure can vary.

Animal
Class

Average
Length
(base pairs
- bp)

Minimum
Length
(base pairs)

Maximum
Length
(base pairs)

Mammals 3.5 billion 242 million 6.3 billion
Avian 1.385 bil-

lion
1.15 billion 1.62 billion

Serpentes 2.8 billion 1.3 billion 3.8 billion
Fishes 1.4 billion 103 million 133 billion

Table 1: Average, minimum, and maximum length of
the DNA structure in the mammal, avian, serpentes, and
fish classes.

In terms of memory, 1000000 base pairs (bp) = 1 Mb
and 1000000000 bp = 1 Gb. With the number of
agents required for the simulation and the technical
constraints, even when considering modern computa-
tional power, we need to simplify the DNA data struc-
ture. We will discuss the implementation of the simpli-
fied DNA in a later part.

The agent’s attributes

An animal is defined by its DNA and the abilities that
the structure codes. An example of one of those abil-
ities is the speed of the Cheetah, which has the title
of "Land’s fastest animal" [cheetah01] They are able
to run extremely fast (at 70 mph or 112,654 km/h) be-
cause of a combination of physical traits and genetic
adaptations such as their slender, muscular body, their
enlarged nostrils and lungs (more oxygen = more en-
ergy), their long tail (maintains balance and control)
and adapted claws (better traction and acceleration).
We formalize those abilities, those adaptations in the
form of attributes that possess numerical values and that
depend on the simplified version of the DNA mentioned
in the previous part. We created different variables that
encompass all that is necessary to define an agent’s abil-
ities, for example: AgentID (unique identifier), Agent-
Damage (amount of damage the agent can inflict on
hostile agents), SightRadius (radius of the agent’s field
of view). It should be noted that these attributes are an
oversimplification of the true nature, primarily due to
computational limitations and the inherent complexities
involved in managing such extensive data. Simplifying
the DNA data structure was necessary to navigate these
complexities effectively. To initialize all attributes of an
agent and automate the task, we created an algorithm
which is explained hereafter.

Algorithm 1 Agent Initialization and Attribute Calcu-
lation

Initialize DNA structure of the Agent
Set sensory attributes: SightRange, Radius, Offset,
HearingThreshold
for each sense do

Calculate sense bonus
end for
Calculate statistics for each agent species with
species-specific formulas
Initialize float attributes: AgentSize, Speed, Dam-
age, Health, Survivability Score
Calculate:
AgentSize
Speed
Damage
Health
Survivability Score
Initialize Int Stats:
Set AgentID by random

2.2 Birth and Death simulation
In our world, birth and death are two processes that
can make the number in a population of animals grow,
wither or stay the same. Birth is the way new children
come to life whereas death is the way life purges popu-
lations to keep numbers stable. This cycle of birth/death

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

382https://www.doi.org/10.24132/CSRN.3401.42



is the most important part of life since it enables the
ecosystems to preserve resources and maintain life as it
is. The paper [Ric01a] defines the cycle in their sim-
ulation of Omosa with the creation of the agent as a
baby (birth) that go through the multiple stages of life
and death by old age or its health points dropping to
0 in case of a fight with a predator. Our simulation
takes an entirely another approach to define the cycle
of birth and death. Birth is defined by the live creation
of an agent inside the level (one of the environments) or
spawn for short. Death is defined by the live destruction
of an agent inside the level or despawn.

2.2.1 Simulation of birth
To simulate said process in our virtual environment,
we defined an invisible box called an AgentSpawner
that possesses multiple characteristics - TotalToSpawn
(the number of agents to spawn), MaxSpawnRange(the
maximum distance at which the spawner can spawn
agents), etc. If the location of the attempted spawn al-
ready contains an agent or another physical entity (ac-
tor in UE5) with collision enabled, the attempted agent
spawn will fail and go to the next one.

Step 1: Check if the TotalToSpawn is higher than 0.
Step 2: Initialize i = 0
Step 3: Loop until i >= TotalToSpawn

• Calculate a random position with the Per-
lin variables on X and Y

• Spawn the actor

The first spawning process is completely different than
for the rest of the simulation.

2.2.2 Simulation of death
In real life, death is essential to preserve the balance in
ecosystems between the number of predators and prey,
the availability and scarcity of resources. An animal can
die of old age or from its wounds due to a fight with
another animal, trying to defend its territory or while
roaming freely in the environment. Our goal is not
to simulate and solve the predator-prey but to see how
DNA would travel between the generations. We don’t
create sub-populations of agents, which could lead to
inner fighting over prey and resources and "unneces-
sary" deaths. Instead, all agents of the same specie
are "friendly" with each other and don’t have default
interaction between them. The despawn of the agent
would happen in two cases. The first case is that the
AgentHealth attribute drops to 0. It is possible that
there was a fight between predator(s) and prey(s) or if
the AgentEnergy is under a threshold for a certain time.
The second case is when the simulation passes to the
next generation of agents. The figure 1 showcases a
graph that sums up the cycle of birth/death for our sim-
ulation.

Figure 1: Graph of cycle of birth/death in our simula-
tion

2.3 The Environment

The purpose of our research is to be able to create a re-
alistic life simulation. In the real world, animals live
in a variety of ecosystems, such as forests, mountains,
caves, seas, etc. Each of these ecosystems contains an
array of resources that are necessary for the survival and
development of each species. For example, cheetahs
live in grasslands, savannas and some mountainous re-
gions. Those environments are all open landscapes with
a lot of resources (food, shelter and water) where the
cheetah can use its speed to its maximum potential to
chase down prey. Based on this example, we can infer
that each animal has an ideal environment where it can
use to its fullest its capabilities. Therefore, to mimic
reality as closely as possible, we need to try to recreate
to its maximum possible the vast array of environments
where all of the agent species prosper.

2.3.1 Initial level

Mimicking reality is a process that takes a lot of time
and resources, to imagine and create the environment
itself. To be able to test our agents’ fundamental fea-
tures while not having our environments yet ready, we
created a simple level field consisting of basic shapes
provided by Epic Games in UE5. This level does not ac-
curately reproduce the environments in which the agent
species typically live.

2.3.2 Environment design

Multiple ecosystems nurture life as we know it. In re-
ality, here is a random factor that will determine where
the fauna and flora will end up living. To fully mimic
an actual environment, we need to recreate that random-
ness and make our worlds more realistic. Furthermore,
we study the evolution of a multitude of agents. Some
agent species won’t share the same ecosystem because
their real-life counterparts could never survive there.
Hence, a need to create a multitude of ecosystems in
order to cover a certain percentage of the environments
the animals live in.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

383https://www.doi.org/10.24132/CSRN.3401.42



Simulating the resources

To infuse the simulated environments with the unpre-
dictability of life, we take inspiration from solutions
implemented by level developers over the course of
video level history. A common solution in level de-
sign to create this chance factor or randomness is to
use procedural foliage. It would be a good idea if
we didn’t want to add randomness to each restart of
the simulation. Unfortunately, there is no free proce-
dural foliage library on the Epic Games marketplace,
hence a need to develop a solution for ourselves. We
believe that changing the environment every 2 gener-
ations could influence DNA changes between genera-
tions of agents. The solution we developed is based
on the AgentSpawner. We reused the concept of a
transparent box with a physical location in the environ-
ment. Although the AgentSpawner architecture makes
it only able to spawn one kind of agent, the Environ-
mentSpawner is able to spawn a vast array of special
actors called EnvironmentActor. An EnvironmentAc-
tor is an spawnable or placeable actor (depending on
the needs) in the level that has multiple variables re-
quired to simulate how its real counterpart would be-
have (while being static). All the meshes that we use for
the EnvironmentActor come from the megascans col-
lection in Quixel Bridge (free with UE5).

2.4 Predator and prey system
As we try to reproduce their behavior in virtual worlds.
We recreate the diet plan of each agent species. Our
solution was inspired from the paper [Geo01a]. Both
types of agents (predator and prey) in the paper possess
the capability to get information from their environment
and act based on their perceptions, though in different
manners. The predator agent can only see in a straight
line with a high range of sight while the prey can see in
all directions with a lower sight range to not give it an
unfair advantage.

2.4.1 Agent’s perceptions
The paper [Geo01a]’s agents use sensors to provide the
perception information to the robots. Without a per-
ception system to detect hostile agents or resources, an
artificial life simulation would not be complete. The
simulation in the paper [Ric01a] collected "the total
population, numbers of births and deaths for both prey
and predators as well as the number of predator kills
and prey deaths from old age" with different settings
(predator/prey awareness, flocking, herding). When the
predator class isn’t aware of the prey, it fails to func-
tion properly and when the prey class isn’t aware of
the predator, it quickly becomes extinct. Unreal En-
gine 5 provides some systems to implement senses in
the level but after careful consideration, we decided to
implement our own sense of sight. We use "Multi Ob-
ject Sphere Trace" x times per second, which consists

of sweeping a view range and detecting objects in the
agent’s field of view. This would compensate for the
short-comings of the UE5 powered systems and enable
herbivore and omnivore agents to detect sources of food
as well as enemies. All agents share the same set of at-
tributes, including SightRange, SightRadius, SightOff-
set and HearingThreshold for the senses configuration.
Nevertheless, we define how much an agent’s senses are
expressed based on the real-life counterpart’s known
ability and a bonus coming from DNA structure.

The DNA’s structure is defined with 8 values - Sigh-
tRange, SightRadius, SightOffset, HearingThreshold,
AgentSize, AgentSpeed, AgentDamage, AgentHealth.

The architecture of the DNA bonus is a bonus that is
calculated (randomly between 0 and x) and added to
the value of the attribute only if the gene is equal to 1.
This could either advantage or disadvantage an agent
depending on how its perceptions would affect its ac-
tions.

2.4.2 Agent’s actions and decision making

Our perception system reacts to the stimuli around it
(in a limited range). The agent is an A.I powered actor
in the level that has predefined actions based on what
the agent’s perception system would register from the
environment. If the stimuli detected comes from a hos-
tile agent (H.A), the agent could react via two distinct
ways. If the H.A is one of its predators, the agent would
run away from it until reaching a safe location where
the perception system doesn’t detect the H.A anymore.
In the case of the H.A being a prey, the agent would
chase it until reaching a radius called the CombatRa-
dius where it could start attacking it until one of them
dies. In addition to the predator-prey pursuit and com-
bat system, an agent would also be able to register what
EnvironmentActors exist in its field of view. It would
calculate automatically the closest resource and move
in its direction in order to consume its content. The
next figure shows a graph summarizing how an agent
can register perceptions and the decision making it can
make.

It is safe to say that we managed to reproduce the dif-
ferent parts of an ecosystem, fauna and flora as well
as the animals’ behavior. The reproduction of animals
in the level was made by giving agents a physical and
internal representation to help them interact with the
world, while simultaneously remaking the cycle of birth
and death with the AgentSpawner and destruction func-
tions. We made the environment with heightmaps and
artistic techniques and recreated the unpredictability of
resources location with perlin noise [perlin01]. Finally,
we created a system to reproduce an agent’s sight, hear-
ing being too complex to add on our own for now.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

384https://www.doi.org/10.24132/CSRN.3401.42



Figure 2: AI behavior, perceptions and decision making

3 AGENTS’ EVOLUTION
Evolution is the process over which heritable charac-
teristics change in a certain population during the flow
of time. The purpose of the paper is to study how our
agents will evolve over the course of time and multiple
generations, or tuning. Unfortunately, a problem such
as this could not be solved using classical computing
methods. Therefore, we follow the work of [Hol01a]
with his well defined "Genetic Algorithm". In this part,
we will view how this algorithm works, the different
processes involved in it and how we remade them to fit
our needs.

3.1 Overview of the genetic algorithm
3.1.1 Pseudo-code

A genetic algorithm or G.A is an algorithm that is used
to tune certain traits in populations and arrive at a cer-
tain solution, best or accepted in a certain amount of
time. It has the advantage of being able to look for so-
lutions inside a wide solution space without needing a
lot of information and being able to maintain a good
performance.

3.1.2 Genetic representation

The reason why some problems require G.As is because
the problem is way too complex to be solved using tra-
ditional methods. As stated in the introduction, these
types of algorithms are commonly wielded to find solu-
tions in a large search space and maintain a good exe-
cution time. However, G.As have a technical limitation.
We have to represent all possible solutions of our prob-
lem with a linear representation. (for example, an array
or a list) In consequence, we have to represent our DNA
in a linear representation because it is the variable that
we want to evolve. An agent’s DNA is an array of size

Algorithm 2 Pseudocode of a Genetic Algorithm
Initialize the first generation
Evaluate the given generation based on a fitness func-
tion
if the first generation is the solution then

return solution
end if
Selection of parent
Crossover of the parents’ genetic representation and
creation of children
Mutation of the offspring’s genes
Check if we reached the termination condition
if not reached then

Repeat from Step 2 with the offspring population
else

Stop execution and print the found solution
end if

8 that can only contain 0 and 1. We could fill it with
numbers from R (real numbers) instead of just the {0,
1} set. Putting real numbers inside the DNA instead
of 0 and 1 could possibly cause more harm than good
because of two main reasons

• Truly random numbers are impossible to gen-
erate based on the deterministic nature of the
algorithm used to create them in Unreal Engine
5[UE5Random]

• It would make the solution space go from 28 (256)
to infinite.

The real-life counterpart of DNA can only take 4 possi-
ble values, which are adenine (A), cytosine (C), guanine
(G), and thymine (T). These bases form specific pairs
(A with T, and G with C), which makes the possibilities
even lower. A possibility would be to change the set {0,
1} to {0, 1, 2, 3} but that would be something to discuss
more in the next parts of the paper.

3.1.3 Fitness function
We implement a fitness function, which is simply a
function that returns how close a solution is to the op-
timal solution of a problem. At the evaluation time in
our simulation, we use the survivability time of alive
agents as a fitness function. The survivability score is
calculated based on the following formula:

SurvivabilityScore = (1.5 · log2(Speed)+
3 · (log10(Size)+ log10(Health))

+3.5 ·Damage)+SenseBonus;

The different constants {1.5f, 3.5f, 3} were chosen and
assigned a weight to underline the importance of each

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

385https://www.doi.org/10.24132/CSRN.3401.42



value into the hypothetical chance of survival. We also
added a SenseBonus to the equation of the Survivabil-
ityScore since it’s theoretically accurate to hypothe-
size on the fact that better senses is equal to a survival
chance for an agent. It is calculated using the following
formula:

SenseBonus =
SightRange
SightRadius

·

SightOffset ·
(

1
HearingThreshold

)
;

The ratio (SightRange / SightRadius) is used to perform
the sphere trace function. A high ratio indicates a wide
field of vision. However, a larger radius will increase
the time needed to perform the trace, leading to a lower
bonus. The higher the SightOffset is, the higher the
bonus will be. This takes root in the fact that height is
an advantage that can lead to agents being able to de-
tect enemies as they approach as well as find resources
easily. Finally, the (1.f / HearingThreshold) is such as
when an agent’s hearing ability is good, the higher the
bonus will be.

3.1.4 Termination criteria
If a termination criteria is not implemented for a G.A,
it will continue to run indefinitely because it wouldn’t
know what solution to look for in a given problem. In a
problem such as ours without "conventional solutions",
a termination criteria could probably be the number of
generations, which could be changed between runs).
The reason for such criteria is because of the intent be-
hind our study. How genetic information would get
transferred between generations and which combina-
tions were the most interesting to keep by nature’s law ?
To avoid having the same solution over and over again,
It could also be a good idea to implement a convergent
protection. That means to stop running the algorithm
if the N+1 generation’s DNA set is very close to the N
generation’s DNA set.

3.2 Genetic operations
When new offspring are created in our world via re-
production, they undergo multiple stages and multiple
processes until reaching birth. The real-life processes
are vastly numbered and not the subject of this paper.
However, the G.A is rendered useless if some of those
processes are not reproduced in a virtual environment.
They are called selection, crossover and mutation in a
genetic algorithm.

3.2.1 Binary Tournament
After the evaluation is done, we have to select suitable
parents for the crossover (C.R.O) step. In classical ge-
netic algorithms, there are two methods to select par-
ents. The "roulette wheel" method, which follows the

"survival of the fittest" concept and consists of giving a
probability of choosing a parent based on the ratio of its
fitness to the sum of all fitnesses in a generation. This
raises an issue of selecting only the best solutions in a
set, which might lead to getting a suboptimal or not op-
timal solution for a given problem. The other method is
called the binary tournament (B.T). It simply consists of
taking two random solutions from the set and compar-
ing the return value of their fitness function. The solu-
tion with the higher fitness will end up winning and get
chosen. The paper [Eib01a] describes the selection pro-
cess as a way to exploit current solutions and improve
their fitness function. We changed its implementation
to suit our need of having two parents/ two children and
maintaining the population’s numbers.

3.2.2 Uniform crossover

In real-life, crossover would happen when same type
chromosomes meet during meiosis. Both can switch
different parts when they are lined up. In our virtual
world, we will avoid this method since our chromo-
somes do not have the same length as the real life DNA.
C.R.O is crucial to G.As, it explores the set of solutions
and looks for new ones that weren’t available before-
hand. In our paper, we shall use the uniform crossover.
It separates the linear representation we evolve into n
bits and randomly gives one of the parents’ bits to the
first child and the other parent’s bit to the second child
(based on a uniformly generated number). Therefore,
such a method ensures we have explored more solu-
tions. If we only had the selection process, it would
mean staying in an area where the fitness might con-
verge to a sub-optimal value.

Figure 3: Graph of the uniform crossover with two par-
ents and two offsprings

3.2.3 N-point mutation

Mutation in biology is described as the alteration of the
DNA sequence of a bacteria, an organism, etc. It is said
to be able to create changes in one’s phenotype (observ-
able characteristics). Nature of the changes are to be de-
termined during the life of the individual whose DNA
has changed. In traditional genetic algorithms, there are
a few methods to reproduce the mutation (M.U.T) step
(in a binary linear representation) such as the random
mutation, which randomly selects a bit and changes its

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

386https://www.doi.org/10.24132/CSRN.3401.42



Figure 4: Comparison of the random mutation (binary-
coded chromosomes) [Av01a] and the swap mutation
(decimal-coded chromosomes) [Shih01a]

value, the swap mutation which selects two genes ran-
domly and switches their value.

These mutation methods can bring new information
to light but we consider them quite limited for tuning
our agent’s DNA. That being the case, we developed a
novel yet simple algorithm called the n-point mutation
which steps are developed in Algorithm 3.

Algorithm 3 N-point mutation algorithm
Get an agent’s DNA
if length of the DNA not reached then

Generate a uniformly distributed float between 0
and 1

if generated float > 0.79 then
change the value of the bit

else
Go to the next bit

end if
end if

Keeping the threshold to a high value (0.79) helps us
create a balance between creating new genetic repre-
sentations for the offspring (exploration of the solution
search space) and preserving the DNA structure from an
unnatural disruption. We used a derivation of [Hol01a]
to be able to fine tune and observe how a DNA struc-
ture would evolve through time and a limited amount
of generations. Our agents’ DNA are represented by
a binary array of size 8, which could be changed. We
evaluate them with a score that depends on their the-
oretical aptitude to survive in their environment, select
them via B.T and reorganize them in an array for C.R.O,
ensuring protection from premature convergence to a
suboptimal solution. We apply the N-point crossover
method as well as the N-point mutation with the hope
of discovering more solutions during our run. To gap
between reality and our world by changing the repre-
sentation of the DNA to a linear array with {0, 1, 2, 3}
as the possible genes instead of a binary array.

4 RESULTS AND FURTHER POSSI-
BILITIES

Creating the simulation was half of the process. The
other half is to run some experiments with it. In or-
der to obtain results with our G.A, we created a code
which saves the agent species, survivability score, gen-
eration and DNA structure. In the following sections,
we will analyze and interpret the data, discuss the re-
sults, and draw some observations. We would also like
to define the next possible steps for this research, keep
what is positive and understand where the simulation
could be improved. (More data is available in the full
thesis [Hba01])

4.1 Analysis of the results
These runs were made by changing the formulas and
making the genes more significant for each attribute,
and we did runs for four cases

• 75t and 150t with a M.U.T threshold of 0.79

• 75t and 150t with a M.U.T threshold of 0.83

We hope to see if making mutation a rarer occurrence
would make it easier for the population to stay stable or
if it would make it harder to survive. In this paper, we
will only cover the most interesting cases out of the 4 :
75t - 0.79 M.U.T and 75t - 0.83 M.U.T.

Figure 5: Fox and deer populations: Gene comparison
and individuals evolution (75t - 0.79 M.U.T)

Figure 6: Fox and deer populations: Gene comparison
and individuals evolution (75t - 0.83 M.U.T)

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

387https://www.doi.org/10.24132/CSRN.3401.42



In the 75t - 0.79 M.U.T graph, the deer species seems
to be thriving with a count of approximately 26 agents
by the last generation. We also observe an augmenta-
tion of population as well as a higher count of deers
individuals possessing the 3 genes for Sight just be-
fore generation 50. However, we also notice that, at
the same time, the gene for Hearing gains a higher gene
count/individual (g.c/l) too. A hypothesis could be that
the M.U.T threshold is too low and makes gene muta-
tion too common in this case. The fox species doesn’t
seem to be thriving compared to the deer species as their
final numbers decreased by 72% (25 agents to 7 agents).
We can interpret this as the result of competitiveness be-
tween the species and the foxes themselves (inter and
intra species competitiveness). Furthermore, we note
a decrease in population multiple times as the count
of sight genes drops in the foxes’ generation DNA. By
generation 41, the number of individuals seems to sta-
bilize, as the number of environment actor (E.A) al-
ways stays the same and the number of deers also de-
creases, leading to a better distribution of resources
between all the agents in the 75t case. In the 75t -
0.83M.U.T case, the deer species doesn’t thrive as well
as their 75t - 0.79M.U.T counterpart. Their final pop-
ulation numbers decreased by approximately 25.93%.
Gene count/individual pattern seems to be close to the
75t-0.79M.U.T case, except for the Hearing Threshold
gene, whose g.c/l decreased drastically because of the
lower mutation rate. The fox species seems to be thriv-
ing more in this case than their 0.79M.U.T counterpart.
In fact, the hypothesis that sight genes count/individual
and survival rate was linked tend to be validated by our
data as we can see in Figure 7. In generation 10, we had
an increase of ≈ 14.3% for the fox population as well as
an increase of 23.52% of Sight Range gc/l. Having mu-
tation as a rarer occurrence could be beneficial for the
system in its whole as it maintains balance between the
two species used in the simulation. Making it a more
common occurrence seems to tilt the favor to stronger
species (deers) as the weaker species will not be able to
focus on genes that should close the gap between them.
It could also be conceivable that a higher number of re-
sources isn’t necessarily the best as their distribution in
a system should be taken into consideration too. Foxes
in the 75t - 0.79 M.U.T showcases that hypothesis. We
will try to discuss more on the data, about other hy-
potheses and various possibilities for this research.

4.2 Discussion

The research is conducted to gain understanding about
which genes are the most significant in our DNA
structure, depending on the environment and other
parameters. In the previous part, we analyzed the gene
count/individual (g.c/l) for a few cases but we didn’t
focus on the significance of the genes.

< 0.001 : xxx < 0.01 : xx < 0.05 : x > 0.05 : X
Table 2: Legend of the significance levels used in the
following table

M.U.T Fox 75 Fox 150 Deer 75 Deer 150
SRange X xx xxx xxx
SRadius X xxx xxx xxx
SO X x x xxx
HT xx xxx xxx xxx
ASize X X x X
ASpeed X X X X
AD X X X X
AH X x X X

Table 3: Fox and deer populations : Gene significance
(second runs - 0.83M.U.T)

We note that AgentSize, Speed, Damage and Health are
the most significant. It can be explained as all those de-
fine how an agent will survive in its environment, find
resources and fare against its enemies. A real life ex-
ample could be the gazelle and the lion. A lion might
be stronger than a gazelle but a gazelle can outrun a
lion on long distances. All sight genes significance for
deers are inferior to 0.001 except for SightOffset in the
deer75 (is inferior to 0.05). For the fox75, sight genes
all possess a significance higher than 0.05. That could
be explained by the scarcity of the resource and the
competition the species has to go through with deers.
Fox150, doesn’t seem to possess that much significance
for SightRadius (inferior to 0.001) and SightRange (in-
ferior to 0.01) as the resources are abundant and fairly
close to the foxes. The lower distance between foxes
and resources could also explain why its AgentHealth
significance went from X to x in table 3. Less health
and less energy is needed to find resources. The Hear-
ing Threshold gene always has a significance inferior to
0.001 (except for fox75 in 0.83 M.U.T). This gene, no
matter this value, will never hold a significance in this
version of the simulation as the hearing sense of agents
wasn’t replicated. In real life, foxes have a very sensi-
tive hearing and use it to gather information about their
environment. It enables them to hear sounds from be-
hind, better than a deer, giving them a clear advantage
during hunting. During all the runs, no combat hap-
pened between prey and predator as each agent tele-
ports to its next location and never managed to get
closer to its enemy. If agents moved in a traditional
way, we could probably observe multiple foxes team-
ing up to chase one or multiple deers, cornering them
and defeating them in battle. Agents shouldn’t be dy-
ing as combat doesn’t happen. Nevertheless, population
numbers decrease as a result of an U.E5 bug where the
calculation of a random position inside the navigable
radius leads to the void and an automatic destruction of
the falling agent by the engine.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

388https://www.doi.org/10.24132/CSRN.3401.42



4.2.1 Outlook and Future Directions
In this paper, we use a binary representation for the
agents’ DNA, to simplify operations. As stated in that
part, life doesn’t represent genes with a {0, 1} set but
with a {C, G, A, T} set. The letters that creates the real
DNA are nucleobases, which can only link in a certain
way :

• Adenine (A) with thymine (T)

• Cytosine (C) with guanine (G)

Having 8 genes with {0, 1} as the values is simple but
limited, as we only have 256 possible combinations for
all agents. Using a numbered set like {0, 1, 2, 3} could
be the solution as it would make the number of possi-
bilities equal to

4^8= 65536

However, DNA is a polymer in the form of a double he-
lix where nucleobases only link a certain way as stated
before. Replicating the double helix form would mean
using a non linear representation for the AT, CG pairs.
It is impossible to keep using a G.A for this kind of
representation as a G.A is only usable for linear repre-
sentation per the definition of its operators (selection,
crossover, mutation). We could use a set equivalent to
{AT, CG} in order to achieve that with a G.A but it
would basically lead to the same result as using {0, 1}
as our gene set (256 combinations) It is possible to com-
pletely change the DNA structure to get more combina-
tions but that would mean changing how we calculate
the A.A. It is unnecessary to modify the DNA as {0, 1}
can be considered like {AT, CG} and the mathematical
model seems to hold itself vis a vis the ecological dy-
namic patterns for our species survival. A direction the
study should take is the correction of the agent teleport-
ing, which would lead to more combat between species
and hence more data concerning the predator/prey prob-
lem, as well as refining the agent attributes calculations.
In the current state of the simulation, we overlook cer-
tain complexities real organisms face, simplifying inter-
actions between agents. Moreover, we didn’t develop
parameters that have the potential to turn around the
ecological dynamics in our simulation such as temper-
ature variations, diurnal cycle, season changes, natu-
ral catastrophes, diseasesand the effect of human ac-
tivities on the environment. Those should prove them-
selves extremely complicated to replicate in the U.E5
engine but could have a really interesting effect on our
results and should be taken into consideration for the
future of this research. It is also possible to expand the
range of species in the simulation as only two species
exist in the virtual world for now. We hope that bring-
ing new species with unique genetic traits and behav-
ior will help us observe more complex population dy-
namics and ecological relationships. Another key com-
ponent for this research is the investigation of the role

of mutation and its effect on survival and evolutionary
process. Exploring different thresholds (example : 0.79
M.U.T, 0.83 M.U.T) and adding other types of mutation
could enable us to gain understanding on the M.U.T op-
erator’s influence on survival, persistence of species and
genetic variations over time.

5 CONCLUSION
The problematic behind this research was studying the
evolution of agents inside a virtual world. We sought to
understand the mechanisms of DNA transfer between
generations, identify the genes of utmost significance
and pinpoint parameters influencing survival and gene
significance. Those were some of the questions we
asked ourselves while working on this project. The
methodology used to respond to these questions and
the problematic were to create an artificial life simula-
tion in Unreal Engine 5, which aims to mirror real life,
reproduce animals’ traits and behavior, run a genetic
algorithm with binary tournament, uniform crossover
and n-point crossover on each generation and analyze
the data to find what genes hold the most significance
per case. Analyzing the collected data during multi-
ple runs enabled us to understand which parameters in-
fluence the most survival and a species’ success in our
virtual environment. Some species would thrive more
than others in the virtual life environment, and thus
due to recreating or not senses like sight and hearing.
An example of this is how deers always managed to
keep between 60% and 40% of their initial population
whereas foxes always kept between 40% and 20% of
theirs. It is explained by how recreating the hearing
sense in Unreal Engine 5 showed itself to be a chal-
lenging task compared to the sight sense’s recreation.
In our simulation, deers were bigger than foxes and
held a better sight sense than them, hence giving them
an advantage when searching for resources or finding
predators in case of danger. The analysis of the re-
sults denotes how important Sight genes were during
all the runs. Resource availability and the absence of
competition internally and externally of a species is
a key factor for survival and a species’ success. We
noted that mutation, as a process, is important to cre-
ate genetic diversity but a low threshold for mutation
would impact agents’ life and thus, survival in a nega-
tive way. Table 3 shows other genes held a lot of sig-
nificance - AgentSize, Damage, Speed and Health. The
genes are the ones defining how well an agent interacts
with its environment (A.Size) and enemies (A.Speed
and A.Damage) and how long it can search for food be-
fore needing to rest (A.Health). While the simulation,
collected data and their analysis may bring to light some
new information about ecological dynamics and artifi-
cial life simulation, we should acknowledge the lim-
itations of our research. Agents do not move in our
simulation, they teleport, which causes a problem in

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

389https://www.doi.org/10.24132/CSRN.3401.42



terms of chasing/running away between predator and
prey. Agents’ behavior is quite simplistic and could be
improved to create more cases to study. Our formulas
for calculating agent attributes remain quite simple, re-
fining or modifying them might be a route to pursue in
this research’s future. The paper [Ric01a] created an
artificial life simulation where certain parameters like
predator/prey awareness, flocking or herding can be en-
abled or disabled. It focuses on the cycle of life and
death and the predator/prey problem whereas ours fo-
cuses on DNA transmission and evolution in a virtual
world. Implementing these parameters in the future
of our research, as we implement newer species, could
lead to a better and deeper understanding of ecological
dynamics and predator/prey problem. This research en-
deavored to explore the complex concepts of evolution
and ecological dynamics using UE5 and artificial life
simulation. Mimicking animals’ behavior and the envi-
ronment in a realistic manner proved itself a formidable
challenge, but results were satisfactory. The paper con-
tributes to bringing new knowledge as it underlines the
significance of resources availability, mutation thresh-
old and sensory capabilities. Given how this research
overlaps an array of fields, it has the potential to benefit
our knowledge of evolution if resources and time were
allocated to it.

——————————————————————
——-

ACKNOWLEDGMENTS
I would like to express my sincerest gratitude to a few
people that helped me achieve my thesis.

• My French supervisor, Dr. Alexandra Bac.

• My Japanese supervisor, Dr. Okubo Masashi.

• Ms. Rhiannon Follenfant

I also thank my family and friends for their continu-
ous support as well everyone else that was involved and
helped me during this paper, no matter how much they
were involved.

6 REFERENCES
[Hol01a] Holland J. Adaptation in Natural and Artifi-

cial Systems, 1975.
[Ric01a] Richards D, Jacobson M. J. Evaluating the

Models and Behaviour of 3D intelligent Virtual
Animals in a Predator-Prey Relationship, 2012.

[Geo01a] Georgiev M, Tanev I, Shimohara K, and
Ray T. Evolution, Robustness and Generality of
a Team of Simple Agents with Asymmetric Mor-
phology in Predator-Prey Pursuit Problem, 2019

[Eib01a] Eiben A. E, Schippers C. A. On Evolutionary
Exploration and Exploitation, 1998

[Hba01] Hassene Hba Ben Amar, Masashi Okubo.
Study of Evolution in Virtual Worlds. Neural and
Evolutionary Computing [cs.NE]. Doshisha Uni-
versity; Polytech Marseille, 2023.

[Shih01a] Shih-Hsin C. and Mu-Chung C., Operators
of the Two-Part Encoding Genetic Algorithm in
Solving the Multiple Traveling Salesmen Prob-
lem, 2011

[Av01a] One-point mutation figure: https://www.
analyticsvidhya.com/blog/2021/06
/genetic-algorithms-and-its-use
-cases-in-machine-learning/

[cheetah01] Fastest animals on earth: https://ww
w.britannica.com/list/the-fastest
-animals-on-earth

[UE5] Unreal Engine 5 Documentation : https://
docs.unrealengine.com/5.0/en-US/

[UE5Random] Random function documentation in
UE5: https://dev.epicgames.com/
documentation/en-us/unreal-engin
e/BlueprintAPI/Math/Random?appli
cation_version=5.0

[perlin01] Perlin noise https://en.wikipedia
.org/wiki/Perlin_noise

7 ANNEX
• The source code of this project can be accessed via

the link : https://github.com/hassenebe
namar/Research_Project

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu

WSCG 2024 
POSTERS

390https://www.doi.org/10.24132/CSRN.3401.42




