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ABSTRACT
The article focuses on a method for reliably identify moving colored artificial markers in real-time. The 
marker was used to determine the 3D position in the space of the user(s).

The goal was to ensure that points were found and identified predictably and reliably by many cameras  
simultaneously, which, with appropriate calibration, merging, and processing of the data, could provide 
reliable information about the current 3D position of a given point in real-time. This information was  
crucial to other components of the broader vision system (VR platform).

The problems encountered and the remedial methods discussed in the presentation concern several aspects 
that we encountered during research, such as changes in lighting conditions, the quality (and stability) of  
the generated light and color, the dependence of color recognition on the distance of the light source from 
the camera matrix, aspects of light reflections, and many others. During our research, we analyzed various  
RGB/RGBW LED light sources from different manufacturers, which are characterized by different light 
generation  characteristics.  We also  used  a  light  diffuser.  Using  different  sets  of  cameras  and  lighting  
conditions, we conducted several studies and experiments.

During the research, we managed to find basic colors for our marker-tracking visual system that met the  
goals. We have proposed an algorithm to deal with the problem and demonstrate the reliability of the visual  
layout  with the algorithm. During our research,  we used both conventional  and alternative techniques 
related to ML.
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1. INTRODUCTION
Our  goal  was  to  track  users  in  real-time  and 
visualize  their  position  in  VR.  For  our  system 
Virtual Entertainment Enhanced Platform (VEEP), 
we proposed a vision-based motion capture system 
[9]. The system uses cameras to track and identify 
artificial  active  markers  in  2D  (application: 
tracker) and an additional module to calculate 3D 
positions  from the  positions  reported  by  cameras 
(application: coupler; fig. 1). Systems that combine 
marker and motion tracking are a popular solution 
[10, 16]. In our application, we wanted to combine 
the real position with the virtual one so that the user 
feels the space naturally at any time. 

Markers are placed on the player's  head,  and the 
aim of  the system is  to  locate  the player  so that 
players can be located in real time. The players are 
wearing  VR  head-mounted  display  (HMD);  the 

system  should  ensure  safe  and  comfortable 
movement for the players, where their sensors are 
responsible for the orientation of the HMD and our 
vision system is responsible for the location, i.e., 
rendering real movement. Players thus move freely 
in  space;  their  position  is  transmitted  from  the 
system to the HMD (Occulus Go or those based on 
Samsung Android phones) via a wireless network.

There are two reasons for placing the marker on the 
head: to reduce the obstacles between the camera 
and the marker, and to easily connect the position 
with the position of the player from which he or she 
is observing the world.

Such assumptions lead to  requirements  related to 
reliability  and efficiency (working in  real-time at 
not  less  than  60  fps,  preferably  90  fps  [13]  or 
more).  Our  test  experience  confirms  these 
requirements: delivering positions at a frequency of 
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approx. 30–40 fps induced poor player experience 
(VR  sickness).  The  unpleasant  feeling  could  be 
caused by the erratic data delivery itself (we were 
forced  to  ensure  that  the  real-time  requirements 
were met by using the Xenomai library on Linux 
computers (i5-6400T CPU 2.20GHz, 16GB RAM). 
We replaced the standard v412 Linux interface by 
communicating directly with the cameras using the 
LIBUSB library, and we experimentally selected a 
WiFi  router  with  a  5GHz  band  to  reduce  data 
latency for an Android phone).

Image processing is simplified – pixels exceeding 
the  threshold  value  are  searched  for  (unless  they 
have been used before), the neighboring area (with 
a  lower  threshold  and  an  additional  condition  of 
maximum color change) is then filled in as being 
used, and the pixels are counted to determine the 
average  color  (RGB)  and  center  of  gravity  (thus 
achieving  sub-pixel  accuracy  of  the  marker 
indication). In extreme cases a distant marker may 
be represented by only 2 pixels. 

The  coupler  calculates  the  3D  position  from the 
submitted  vectors  (which  originate  at  the  focal 
point of the camera and indicate the marker in 3D). 
The procedure uses the method of calculating the 
nearest point to a given straight line, on a second 
straight line. For a pair of straights, it is performed 
twice and the two resulting points are compared. If 
their  distance  is  within  acceptable  accuracy  (as 
determined  by  the  calibration  quality  of  the 
cameras),  an average is  calculated.  We apply the 
same  principle  to  multiple  pairs  of  cameras  – 
averaging positions as long as they are within an 
acceptable distance and discarding them when they 
exceed this value.

Delays  or  instability  also  create  a  lack  of 
confidence in the system among users who do not 
feel free to move around the room.

Experience  gained  during  the  construction  of  the 
system has shown that speed (low maximum delay) 
and certainty of location are decisive. 

The  system  also  requires  tremendous  reliability, 
assuming 99% correct marker identifications (color 
detection and recognition) per frame for a camera, 
At  120FPS  and  eight  cameras  (current 
configuration),  this  means  9.6  errors  per  second. 
We  can't  allow  a  single  error  in  about  twenty 
minutes  of  gameplay.  Of  course,  this  is  a  higher 
level  of  reliability  than  the  described  algorithm 
provides; we use numerous methods to verify and 
correct the result during further processing, but our 
primary goal is the speed and reliability of marker 
recognition,  which  has  led  to  many  simplifying 
assumptions:  using  active  markers,  darkening  the 
room, or limiting the distinguishable features of the 

marker.

We  can  track  markers  through  time  using  the 
distance between consecutive positions, but such a 
solution  is  prone  to  error  because  of  the  higher 
possibility of calculating and tracking errors. 

Using  the  characteristics  of  markers  can  reduce 
calculation time and be less error-prone.  Because 
we chose to work with (various) cameras working 
in the visible light range, the obvious characteristic 
of the marker was its color (we also considered the 
frequency), but it leads to two problems: we need to 
recognize the color of the marker with the changing 
light  conditions,  and  we  should  distinguish  the 
colors. In other words, our system should always be 
able to identify a color.

In  our  system,  we  use  a  dark  room  and  active 
markers.  We adopted  such  simplifications  due  to 
the requirement of fast (lasting a few milliseconds) 
and reliable identification of markers in the image. 
In  practical  implementations,  "darkness"  differs 
depending on the methods used to block external 
light sources and is practically never complete; it 
should  rather  be  understood  as  a  significantly 
limiting amount of light in a room than its complete 
elimination.  The  light  conditions  still  differ  from 
acquisition to acquisition, although the differences 
are reduced.

Figure 1. VEEP-system idea. Two (at least) 
cameras with trackers (C1 & C2) have a 

localized marker (M1) worn by a user. Vectors 
(C1→M1; C2→M1) are sent to the coupler. The 
coupler calculates user position, which is sent to 

the VR set (HMD) worn by the user. 

Theoretically,  the  task  should  be  simple:  the 
combination  of  a  color  invariant  and  an  active 
marker should result in a constant color. 

In  practice,  the  measured  color  of  the  marker 
changes.  There are several  reasons: the design of 
the  marker  itself  (slight  surface  irregularities, 
quality of the diodes used, power supply), changes 
in  lighting  conditions,  differences  in  color 
recognition  by  cameras,  noise,  and  the  and  the 
small size of the marker expressed in the number of 
pixels  (a  large  percentage  of  pixels  partially 
representing the marker,  whose color corresponds 
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to the combination of marker color and background 
color).

Cameras
During the development our solution, we faced the 
problem  of  choosing  cheap,  fast,  and  reliable 
cameras.  We  have  tested  different  models  of 
cameras,  and  we  chose  the  PlayStation  PS4 
cameras, which are significantly cheaper than their 
counterparts and equipped with a lens that produces 
very little distortion (although we also tested other 
solutions, and the system allows us to work with a 
heterogeneous set of cameras). While working with 
the cameras,  we also faced a choice of operating 
mode—whether we preferred resolution or speed. 
In  the  practice  of  our  issue—providing  reliable 
positioning  to  a  player  moving  with  HMD  —
operating time proved critical. By choosing to run 
at 120FPS, we reduced the resolution requirements, 
which reflected positively on computation time and 
negatively  on  image  resolution  (and  color 
recognition quality). 

Active Markers
The active markers  (Fig.  2)  were developed as  a 
programmed  embedded  system  with  color  LEDs 
and  a  silicone  sphere  that  uniformly  diffuses  the 
light.  We have used different  kinds of  LEDs; we 
focused  on  two  products,  one  of  which  is  SMD 
(Surface  Mounted  Diode)  and  the  other  is  THT 
(Through Hole Technology), and we were able to 
set one of the 360 colors (colors are set by using 
RGB LED combinations with filling; there is one 
color  per  degree  of  arc  on  the  color  circle).  For 
simplicity, the results for both types of diodes will 
be  described  using  the  assembly  method  (THT, 
SMD).  To  control  the  LED,  we  use  the 
microcontroller's PWM module, which generates a 
signal at 490 Hz.

Figure 2. Active marker connected to VR head-
mounted display. 

We  have  prepared  a  test  to  see  how  the  360 
programmed colors are visible by the camera; we 
displayed successive colors in a loop (the beginning 
is  the  same  as  the  end).  In  our  example,  a  PS4 
camera was used.

The results show Figs. 3 and 4. We can see that not 
all changes in LED light are visible for the camera 
(for  both  types  of  markers).  It  means  the  real 
number of colors to find is much smaller than 360.

To propose which colors to use, we have analyzed 
the  RGB  (in  fact,  normalized  RGB)  distance 
between  neighboring  colors  with  different  steps, 
which  suggests  basically  six  colors  to  use:  red, 
green, blue, cyan, yellow, and magenta. Such colors 
give  us  the  maximal  distances,  i.e.,  they  are  the 
easiest to detect. 

Figure 3. RGB components for SDM LEDs. (The 
blue bars correspond to the blue component, the 
yellow bars to the green component and the red 

bars to the red component.)

 Figure 4. RGB components for THT LEDs. 
(Color designation – as in fig. 3.)

Search for solution
Basically – cameras return RGB images. The RGB 
image does not give us color-invariant components. 
The  simplest  solution  is  normalized  RGB,  where 
the red, green, and blue values are normalized by 
the pixel brightness. We have tested the normalized 
RGB, but the analysis of the output had to contain 
rules  for  at  least  three  components  and  tolerate 
"gray"  pixels  (too  light  or  too  dark  to  represent 
marker  color  properly).  The  system worked  with 
such a solution but was sensitive to light condition 
changes.

The color identification algorithm consists of image 
transformation  into  a  chosen  color  space  and  a 
color classification method. The main color spaces 
used are:  normalized RGB [2],  HSV [3],  YCbCr, 
LAB [4],  RGB-L*a*b* [12], MCSS [5]. We have 
tried  to  use  other  color  spaces:  YUV (with  two 
chrominance components: U and V), YCbCr [14], 
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LAB, and HSV [1, 6, 7, 8, 11, 14, 15]. The best 
results (i.e. easiest color detection) were given to us 
by HSV, and we have focused on this color space. 

Tests  indicated  that  practically  the  best  results, 
taking  into  account  differences  in  distance  and 
marker  reproduction  quality,  are  given  by 
maximizing  the  spacing  between colors  in  the  H 
(hue) component.

Practical problems
Our  active  markers  were  developed  to  maximize 
color uniformity on the surface, but in fact, they are 
not uniform. It may be justified by the limitations 
shown in Figs. 3, 4, and 5 (and Fig. 5 for a marker 
seen by a  camera):  the color  is  distorted by too-
light areas of the marker. We used the average color 
that reduces the observed distortion. 

The  other  problems  are  connected  with  camera 
noise—the values of the pixel was changing from 
frame to frame.

Figure 5. Example image of a marker captured 
by the camera at medium distance.  (The image 

quality matches that of the camera, and visibility 
of the marker in the darkened room. )

Additionally,  there  was  a  problem with  lightning 
conditions. We assume the system works in a dark 
room where  the  light  sources  are  turned  off  (for 
artificial)  or  occluded  (for  natural).  Additional 
sources of  light  are  markers  themselves;  if  many 
markers are used in the room, the whole room can 
be slightly illuminated. We keep the high contrast 
between the  marker  and  the  background,  but  the 
brightness of the marker (and its color) changes. 

There is a similar problem with the marker’s power 
supply;  a  discharged  battery  first  changes  the 
brightness  of  the  marker,  which  may  previously 
have  affected  the  camera's  perception  or  been 
perceived by a human being.

The  basic  research  was  done  in  the  office,  with 
limited distances between markers and cameras. We 
have overlooked the scale problem caused by the 
color of small marker images, i.e., a situation with 
the distant markers when we increase the size of the 
scene.  The problem was even bigger  because we 
have reduced image resolution (from 1280×800 to 

640×400),  which  was  caused  by  an  increase  in 
camera speed (from 60 fps to 120 fps),  which is 
essential  for  VR  immersion.  The  marker  surface 
becomes less than 20 pixels at a distance of about 5 
meters.  With  the  decrease  in  marker  size,  the 
quality  of  color  detection  using  hue  (from HSV) 
decreases, and often, the hue changes for the same 
markers.

The problems identified above means that the color 
of the marker differs during the system life-cycle. 
We can increase the quality of the analyzed images, 
e.g.,  by equipping our system with higher-quality 
cameras (frequency greater or equal to 120FPS at 
higher  resolution),  thus  reducing  the  problem  of 
unevenness  of  color  perception.  However,  such a 
decision  affects  the  cost  of  the  system;  we 
considered  the  adopted  solution  of  Sony  PS4 
cameras  as  a  reasonable  compromise  between 
quality and price.

2. EXPERIMENTS
We have tested six markers, each in one color. The 
markers  were  in  the  same  position,  which 
facilitated the acquisition and limited the impact of 
changes in brightness. The hue was represented by 
one byte, i.e., the possible range for hue is 0..255. 
We have tested markers twice: first, as static (fixed 
position), and as moving marker (marker moved by 
the user) in a small office room. 

Static Moving

Min Max Diff Min Max Diff

MG 211 222 11 202 244 42

GN 82 85 3 76 85 9

RD 174 176 2 171 178 7

BL 0 10 10 0 39 39

CY 33 48 15 29 55 26

YL 127 131 4 113 154 41

Table. 1. Hue range for marker tests at short 
distances (less than 5m).

For the static marker – the changes in the hue value 
were  small;  for  such  conditions,  we  can  define 
much  more  color  range  and  precisely  identify 
markers.  For the moving markers,  the differences 
are bigger, and we can see that the fixed ranges for 
camera types cause the marker to misinterpret the 
color.

We have proposed an algorithm that uses hue and 
marker tracking. If the marker can be tracked, we 
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smooth the marker position and compare the hue 
with the previous color. If the previous color can be 
tolerated (i.e., the distance between hue and color 
hue limits is acceptable), the previous color is set; 
otherwise – we use hue ranges for colors.

The change of space made it necessary to work at 
distances  of  up  to  seven  meters.  Tests  quickly 
showed that the method that works well in office 
conditions  is  effective  up  to  approximately  5 
meters. An additional two meters forced a change 
in the acceptable size of the marker. For the dark 
markers  (displaying  the  primary  color  (red,  blue, 
green) means one component of the RGB LED is 
lit,  while the other three colors (magenta, yellow, 
and  cyan)  mean  two  components  are  lit  and  the 
brightness  is  higher),  we  have  to  reduce  the 
minimal brightness of the acceptable marker pixel, 
which increases the influence of the camera noise. 
The  color  identification  algorithm  has  become 
unreliable.

Figure 6. Relation between hue (y) and the size 
(x) of the marker in pixels (for yellow marker).

Figure 7. Pairs hue saturation for all six used 
colors. Hue: horizontal; saturation: vertical. The 

colors used correspond approximately to the 
colors of the markers. 

As an example of the problem, we can see (Fig. 6) 
the hue values for one yellow marker in relation to 
the marker size.

A part of the wrong H values for the marker comes 
from  the  unnecessarily  recognized  marker 
reflection, but it is a potential source of error, and 
we should be ready to handle it.

The tests indicate that markers bigger than 20–25 

pixels can be properly recognized (the ranges for 
colors  do  not  overlap),  but  for  smaller  markers, 
overlapping  ranges  are  possible.  The  tests  also 
suggest that while hue ranges are often overlapped, 
a  pair  hue-saturation,  or  hue-value,  is  rarely 
overlapped, and triplet hue-value-saturation is even 
more rarely overlapped. 

The data obtained for the calculation of the hue-
saturation  (fig.  7)  and  hue-value  (fig.  8) 
dependence  come  from  eight  PS4  cameras  for 
individual colors: blue was calculated using 21033 
measurements of moving marker’s color (worn and 
moved by the player, simulating gameplay behavior 
and  using  all  available  room  space),  cyan  using 
112769  measurements,  green  using  105709 
measurements,  magenta  using  68132 
measurements, red using 83070 measurements, and 
yellow  using  124841  measurements.  Totally, 
515554  measurements  were  used  with  the  final 
setting of the system (camera parameters, etc.).

On figs. 7 and 8, we can see the overlapping areas 
for hue ranges: blue, cyan, and green have seamless 
transitions; a similar situation can be seen for green 
and  yellow,  and  red  and  magenta  (the  magenta 
range covers the whole red range).

For practical purposes, we have reduced our usage 
of blue (we have some problems with this color for 
marker detection: the marker was poorly detected 
and color was sometimes confused with cyan) and 
proposed a new algorithm for color detection.

Figure 8. Pairs hue value for all six used colors. 
Hue: horizontal; value: vertical.

3. PROPOSED ALGORITHMS
There are two main procedures: color recognition 
and marker tracking/recognition.

The first procedure is used for the base recognition 
of the color: we have developed tables (fig. 9, 10) 
for this application that are based on the data from 
fig. 7, 8; the space has been transformed into a table 
(one table field represents space 1x1).
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In the table we store:

• certain  colors:  where  hue-saturation  and 
hue-value gives the same color, or where 
certain color was matched with uncertain;

• uncertain  colors;  for  pairs  where  data 
comes from at least two color markers, the 
more likely color is pointed;

• unknown color – there are no data and no 
guesses what color the pair represents.

The color  of  the  found marker  is  represented by 
two parts: the main color and the complementary 
color.  At  the  same  time,  both  colors  can  be 
described as 'uncertain'. 

Figure 9. Hue-saturation table for color 
detection (man-made based on measurement 

data). 

Figure 10. Hue-value table for color detection 
(man-made based on measurement data).

The algorithm calculates HSV for the found marker 
and looks for the proper color in both tables (hue-

saturation, Fig. 9, and hue-value, Fig. 10).  

//color: 
// mainCol, complementaryCol, certain

colorUsingHSV(h, s, v) → color
if hsCol[h,s].val==hvCol[h,v].val
  return color(hsCol[h,s].val, null, true)
else
  if (hsCol[h,s].certain) and 
            (hvCol[h,v].certain)
     return color(hsCol[h,s].val, 
            hvCol[h,v].val, false)

  else if (hsCol[h,s].certain)
     return color(hsCol[h,s].val, null, true)
  else if (hvCol[h,v].certain)
     return color(hvCol[h,v].val, null, true)
  else 
     return color(hvCol[h,v].val, null, true)

The second procedure is used for markers tracking:

pos2d = findCenterOfGravity(marker)
rgb = findRGB(marker)
hsv = rgb2hsv(rgb)
col = colorUsingHSV(hsv)

for old in allMarkersPrevFrame:
  spatDist = dist(odl.pos2d, pos2d)
  colDist = colDist(old.hsv, hsv)
  if (spatDist<maxSpatial) and
         (colDist<maxCol)
     new2d = (a*pos2d+b*old.pos2d)/(a+b)
     if (old.col == col)
       newMarkers.add(marker(new2d, old.col,
           hsv, true))
     else if (old.col.certain)
       newMarkers.add(marker(new2d, old.col,
            hsv, true))
     else if (col.certain)
       newMarkers.add(marker(new2d, col,
           hsv, true))
     else
       newColor = color(old.col, col, false)
       newMarkers.add(marker(new2d,
           newColor, hsv, true))
  else
    newMarkers.add(marker(pos2d,col,hsv,false))

The marker "is visible" (sent to the further elements 
of the system) if it was found in a series of markers 
in consecutive frames (with a given threshold). If 
the marker was not found in the analyzed frame but 
was found in the series of previous frames, it is still 
"visible" (if the visibility break was not too long). 
This increases the stability of our system. 

4. EXPERIMENTAL RESULTS
Using  a  system  of  8  cameras  (PS4)  and  4 
computers,  we  collected  data  on  calculated  HSV 
triplets for markers. The tests were carried out in 
conditions imitating the target  ones,  i.e.,  the user 
walked  with  a  marker  at  different  speeds 
throughout the entire system operation area.

Tests  were  conducted  separately  for  subsequent 
colors  to  ensure  that  the  collected  HSV  triplets 
corresponded exactly to a given color. For the final 
tests we collected a new of 262281 samples divided 
into six colors. In the tests, we divided the dataset 
into a training and a test subset.

When tested for a sample of 268281 measurements, 
there  were  15497  false  matches  using  the  above 
algorithm;  that  is  94.2%  correct  matches.  In 
practice,  the results  obtained are  corrected in  the 
system based on the measurement history, and then 
the  change  in  position  is  analyzed,  practically 
ensuring that the room can be navigated safely and 
realistically.

We have tested some machine learning methods to 
compare  results.  We  used  saved  test  data  to 
determine quality (ML techniques were not tested 
with a real-time system). SVC classificators (with 
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RBF kernels—independent classifiers for different 
colors) gave 1276 wrong outputs for 53657 HSV 
positions  (size  of  test  set;  the  remainder  of  the 
268281 measurements was used as a learning set)
—which means proper results where achieved for 
97.6%  (for  polynominal  kernels:  95.2%).  Some 
colors were classified better (e.g., for yellow, red, 
and magenta, the proper results were above 99%), 
while others were classified worse—for blue, it was 
only 86.8%, and for cyan, it was 96.7%.

For decision trees, the results were similar: 97.5% 
properly  classified  triplets  h,  s,  and  v;  the  best 
results  (better  than  99%)  for  yellow,  green, 
magenta, and red; the worst for blue (87.7%). We 
have  also  tested  neural  networks  (simple 
perceptrons) from SciKit-Learn. Simple perceptron 
(for  three  parameters)  gives  us  97.7%  proper 
results.  The  worst  results  were  given  by  a  blue 
marker – 91.5%. We have used the same method 
(but models were built for pairs: h, s, and h, v) to 
create new tables, and our simple algorithm yielded 
97.1%  correct  matches.  Perceptron  build  for  h-s 
pairs,  gave  64.5%  proper  answers,  and  for  h-v 
pairs, gave 97.5% proper answers.

Figiue 11. Color maps h-s created by multilayer 
perceptron. Note: The colors do not correspond 
to the actual marker colors or the colors in the 

earlier illustrations.

The worst results where given by the blue marker; 
after eliminating it (it means using blue and cyan as 
one color), the neural network gave 99.4% proper 
results  for  triplets  h,  s,  and  v,  while  the  neural 
networks  for  the  h-s  pair  and  the  h-v  pair  gave 
respectively 99.2% and 99.4%. 

We have used perceptron to create new color maps 
for h-s (fig. 11) and h-v (fig. 12). Tests suggest that 
new color maps give slightly better results with our 
algorithm.

We performed the above tests using Python (with 
the  Anaconda  environment  and  the  SciKit  Learn 
library),  which  we  also  used  to  build  tables 
describing  the  relationships  of  h-s  and  h-v  pairs 
with colors. 

When  testing  the  algorithms  above,  we  were 
interested  in  quality—to  identify  candidates  for 

system  improvement.  So  we  didn't  test  the 
execution time. 

Otherwise,  in  the  real  system,  we  put  great 
importance  on  the  calculation  time.  There,  we 
examined  the  time  needed  to  calculate  position 
information, and we built both programs (detecting 
markers and their colors, calculating 3D positions 
for  markers)  using  the  Xenomai  library,  which 
ensures real-time implementation. We assumed an 
8-ms loop for both programs. 

In the tested configuration our system consists of 
four computers to which 8 cameras are connected 
to (2 per computer), and each camera corresponds 
to one running marker detector application. One of 
the computers runs a “coupler" app, a program that 
calculates the 3D position from the positions sent 
by the marker detectors;  and on another of the 4 
computers,  there  is  a  server  prepared  in  Unity, 
which is used to coordinate game events between 
client  applications  (running  on  stand-alone  VR 
HMD). 

Figure 12. Color maps h-v created by multilayer 
perceptron. Note: the colors do not correspond 
to the actual marker colors or the colors in the 

earlier illustrations.
Average calculation time for 1003 test frames in a 
typical configuration (2 PS4 cameras connected via 
USB  ports  to  a  computer  with  Linux,  16GB  of 
RAM,  and  an  i5  processor,  2.20GHz;  so  two 
marker detection programs were running in parallel 
on  one  computer),  total  time  for  calculating  the 
position and color of the marker (from the image 
acquisition  to  sending  output  data  to  the  next 
program) was on average 1.51ms. The calculation 
in  the  second  program,  which  determines  the 
player's  position  from  the  sent  markers  and 
transmits it to the players, takes an average of 1.08 
ms.

5. SUMMARY
To  summarize,  we  developed  an  algorithm  for 
identifying the marker color. We demonstrated that 
the changes in the observed marker are significant 
and  require  the  development  of  an  appropriate 
algorithm. The algorithm is simple, highly reliable, 
and  fits  our  problem.  We  have  also  tested  ML 
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algorithms,  and  simple  perceptrons  give  better 
results  than  our  algorithm.  While  this  is  better 
solution, transferring it to a real-time tracker could 
present difficulties, so we only used this solution to 
improve the recording of the color tables for our 
algorithm. The transfer of neural network solutions 
to the real-time tracker can be done as part of the 
work to improve the system in the future.
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