
Analysis of different color recognition methods
for active markers in a motion capture system

Przemysław Kowalski
Kipertech Consulting,

ul. Szwedzka 52,
30-315, Kraków, Poland

przemyslaw.kowalski@kipertech.com

Jan Mrzygłód
Kipertech Consulting,

ul. Szwedzka 52,
30-315, Kraków, Poland

jan.mrzyglod@kipertech.com

ABSTRACT
The article focuses on a method for reliably identify moving colored artificial markers in real-time. The
marker was used to determine the 3D position in the space of the user(s).

The goal was to ensure that points were found and identified predictably and reliably by many cameras
simultaneously, which, with appropriate calibration, merging, and processing of the data, could provide
reliable information about the current 3D position of a given point in real-time. This information was
crucial to other components of the broader vision system (VR platform).

The problems encountered and the remedial methods discussed in the presentation concern several aspects
that we encountered during research, such as changes in lighting conditions, the quality (and stability) of
the generated light and color, the dependence of color recognition on the distance of the light source from
the camera matrix, aspects of light reflections, and many others. During our research, we analyzed various
RGB/RGBW LED light sources from different manufacturers, which are characterized by different light
generation characteristics. We also used a light diffuser. Using different sets of cameras and lighting
conditions, we conducted several studies and experiments.

During the research, we managed to find basic colors for our marker-tracking visual system that met the
goals. We have proposed an algorithm to deal with the problem and demonstrate the reliability of the visual
layout with the algorithm. During our research, we used both conventional and alternative techniques
related to ML.

Keywords

Color Space, Color Detection, Marker Detection, Image Processing, Computer Vision, Virtual Reality,
Machine Learning, Real Time

1. INTRODUCTION
Our goal was to track users in real-time and
visualize their position in VR. For our system
Virtual Entertainment Enhanced Platform (VEEP),
we proposed a vision-based motion capture system
[9]. The system uses cameras to track and identify
artificial active markers in 2D (application:
tracker) and an additional module to calculate 3D
positions from the positions reported by cameras
(application: coupler; fig. 1). Systems that combine
marker and motion tracking are a popular solution
[10, 16]. In our application, we wanted to combine
the real position with the virtual one so that the user
feels the space naturally at any time.

Markers are placed on the player's head, and the
aim of the system is to locate the player so that
players can be located in real time. The players are
wearing VR head-mounted display (HMD); the

system should ensure safe and comfortable
movement for the players, where their sensors are
responsible for the orientation of the HMD and our
vision system is responsible for the location, i.e.,
rendering real movement. Players thus move freely
in space; their position is transmitted from the
system to the HMD (Occulus Go or those based on
Samsung Android phones) via a wireless network.

There are two reasons for placing the marker on the
head: to reduce the obstacles between the camera
and the marker, and to easily connect the position
with the position of the player from which he or she
is observing the world.

Such assumptions lead to requirements related to
reliability and efficiency (working in real-time at
not less than 60 fps, preferably 90 fps [13] or
more). Our test experience confirms these
requirements: delivering positions at a frequency of

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

395https://www.doi.org/10.24132/CSRN.3401.44

approx. 30–40 fps induced poor player experience
(VR sickness). The unpleasant feeling could be
caused by the erratic data delivery itself (we were
forced to ensure that the real-time requirements
were met by using the Xenomai library on Linux
computers (i5-6400T CPU 2.20GHz, 16GB RAM).
We replaced the standard v412 Linux interface by
communicating directly with the cameras using the
LIBUSB library, and we experimentally selected a
WiFi router with a 5GHz band to reduce data
latency for an Android phone).

Image processing is simplified – pixels exceeding
the threshold value are searched for (unless they
have been used before), the neighboring area (with
a lower threshold and an additional condition of
maximum color change) is then filled in as being
used, and the pixels are counted to determine the
average color (RGB) and center of gravity (thus
achieving sub-pixel accuracy of the marker
indication). In extreme cases a distant marker may
be represented by only 2 pixels.

The coupler calculates the 3D position from the
submitted vectors (which originate at the focal
point of the camera and indicate the marker in 3D).
The procedure uses the method of calculating the
nearest point to a given straight line, on a second
straight line. For a pair of straights, it is performed
twice and the two resulting points are compared. If
their distance is within acceptable accuracy (as
determined by the calibration quality of the
cameras), an average is calculated. We apply the
same principle to multiple pairs of cameras –
averaging positions as long as they are within an
acceptable distance and discarding them when they
exceed this value.

Delays or instability also create a lack of
confidence in the system among users who do not
feel free to move around the room.

Experience gained during the construction of the
system has shown that speed (low maximum delay)
and certainty of location are decisive.

The system also requires tremendous reliability,
assuming 99% correct marker identifications (color
detection and recognition) per frame for a camera,
At 120FPS and eight cameras (current
configuration), this means 9.6 errors per second.
We can't allow a single error in about twenty
minutes of gameplay. Of course, this is a higher
level of reliability than the described algorithm
provides; we use numerous methods to verify and
correct the result during further processing, but our
primary goal is the speed and reliability of marker
recognition, which has led to many simplifying
assumptions: using active markers, darkening the
room, or limiting the distinguishable features of the

marker.

We can track markers through time using the
distance between consecutive positions, but such a
solution is prone to error because of the higher
possibility of calculating and tracking errors.

Using the characteristics of markers can reduce
calculation time and be less error-prone. Because
we chose to work with (various) cameras working
in the visible light range, the obvious characteristic
of the marker was its color (we also considered the
frequency), but it leads to two problems: we need to
recognize the color of the marker with the changing
light conditions, and we should distinguish the
colors. In other words, our system should always be
able to identify a color.

In our system, we use a dark room and active
markers. We adopted such simplifications due to
the requirement of fast (lasting a few milliseconds)
and reliable identification of markers in the image.
In practical implementations, "darkness" differs
depending on the methods used to block external
light sources and is practically never complete; it
should rather be understood as a significantly
limiting amount of light in a room than its complete
elimination. The light conditions still differ from
acquisition to acquisition, although the differences
are reduced.

Figure 1. VEEP-system idea. Two (at least)
cameras with trackers (C1 & C2) have a

localized marker (M1) worn by a user. Vectors
(C1→M1; C2→M1) are sent to the coupler. The
coupler calculates user position, which is sent to

the VR set (HMD) worn by the user.

Theoretically, the task should be simple: the
combination of a color invariant and an active
marker should result in a constant color.

In practice, the measured color of the marker
changes. There are several reasons: the design of
the marker itself (slight surface irregularities,
quality of the diodes used, power supply), changes
in lighting conditions, differences in color
recognition by cameras, noise, and the and the
small size of the marker expressed in the number of
pixels (a large percentage of pixels partially
representing the marker, whose color corresponds

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

396https://www.doi.org/10.24132/CSRN.3401.44

to the combination of marker color and background
color).

Cameras
During the development our solution, we faced the
problem of choosing cheap, fast, and reliable
cameras. We have tested different models of
cameras, and we chose the PlayStation PS4
cameras, which are significantly cheaper than their
counterparts and equipped with a lens that produces
very little distortion (although we also tested other
solutions, and the system allows us to work with a
heterogeneous set of cameras). While working with
the cameras, we also faced a choice of operating
mode—whether we preferred resolution or speed.
In the practice of our issue—providing reliable
positioning to a player moving with HMD —
operating time proved critical. By choosing to run
at 120FPS, we reduced the resolution requirements,
which reflected positively on computation time and
negatively on image resolution (and color
recognition quality).

Active Markers
The active markers (Fig. 2) were developed as a
programmed embedded system with color LEDs
and a silicone sphere that uniformly diffuses the
light. We have used different kinds of LEDs; we
focused on two products, one of which is SMD
(Surface Mounted Diode) and the other is THT
(Through Hole Technology), and we were able to
set one of the 360 colors (colors are set by using
RGB LED combinations with filling; there is one
color per degree of arc on the color circle). For
simplicity, the results for both types of diodes will
be described using the assembly method (THT,
SMD). To control the LED, we use the
microcontroller's PWM module, which generates a
signal at 490 Hz.

Figure 2. Active marker connected to VR head-
mounted display.

We have prepared a test to see how the 360
programmed colors are visible by the camera; we
displayed successive colors in a loop (the beginning
is the same as the end). In our example, a PS4
camera was used.

The results show Figs. 3 and 4. We can see that not
all changes in LED light are visible for the camera
(for both types of markers). It means the real
number of colors to find is much smaller than 360.

To propose which colors to use, we have analyzed
the RGB (in fact, normalized RGB) distance
between neighboring colors with different steps,
which suggests basically six colors to use: red,
green, blue, cyan, yellow, and magenta. Such colors
give us the maximal distances, i.e., they are the
easiest to detect.

Figure 3. RGB components for SDM LEDs. (The
blue bars correspond to the blue component, the
yellow bars to the green component and the red

bars to the red component.)

 Figure 4. RGB components for THT LEDs.
(Color designation – as in fig. 3.)

Search for solution
Basically – cameras return RGB images. The RGB
image does not give us color-invariant components.
The simplest solution is normalized RGB, where
the red, green, and blue values are normalized by
the pixel brightness. We have tested the normalized
RGB, but the analysis of the output had to contain
rules for at least three components and tolerate
"gray" pixels (too light or too dark to represent
marker color properly). The system worked with
such a solution but was sensitive to light condition
changes.

The color identification algorithm consists of image
transformation into a chosen color space and a
color classification method. The main color spaces
used are: normalized RGB [2], HSV [3], YCbCr,
LAB [4], RGB-L*a*b* [12], MCSS [5]. We have
tried to use other color spaces: YUV (with two
chrominance components: U and V), YCbCr [14],

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

397https://www.doi.org/10.24132/CSRN.3401.44

LAB, and HSV [1, 6, 7, 8, 11, 14, 15]. The best
results (i.e. easiest color detection) were given to us
by HSV, and we have focused on this color space.

Tests indicated that practically the best results,
taking into account differences in distance and
marker reproduction quality, are given by
maximizing the spacing between colors in the H
(hue) component.

Practical problems
Our active markers were developed to maximize
color uniformity on the surface, but in fact, they are
not uniform. It may be justified by the limitations
shown in Figs. 3, 4, and 5 (and Fig. 5 for a marker
seen by a camera): the color is distorted by too-
light areas of the marker. We used the average color
that reduces the observed distortion.

The other problems are connected with camera
noise—the values of the pixel was changing from
frame to frame.

Figure 5. Example image of a marker captured
by the camera at medium distance. (The image

quality matches that of the camera, and visibility
of the marker in the darkened room.)

Additionally, there was a problem with lightning
conditions. We assume the system works in a dark
room where the light sources are turned off (for
artificial) or occluded (for natural). Additional
sources of light are markers themselves; if many
markers are used in the room, the whole room can
be slightly illuminated. We keep the high contrast
between the marker and the background, but the
brightness of the marker (and its color) changes.

There is a similar problem with the marker’s power
supply; a discharged battery first changes the
brightness of the marker, which may previously
have affected the camera's perception or been
perceived by a human being.

The basic research was done in the office, with
limited distances between markers and cameras. We
have overlooked the scale problem caused by the
color of small marker images, i.e., a situation with
the distant markers when we increase the size of the
scene. The problem was even bigger because we
have reduced image resolution (from 1280×800 to

640×400), which was caused by an increase in
camera speed (from 60 fps to 120 fps), which is
essential for VR immersion. The marker surface
becomes less than 20 pixels at a distance of about 5
meters. With the decrease in marker size, the
quality of color detection using hue (from HSV)
decreases, and often, the hue changes for the same
markers.

The problems identified above means that the color
of the marker differs during the system life-cycle.
We can increase the quality of the analyzed images,
e.g., by equipping our system with higher-quality
cameras (frequency greater or equal to 120FPS at
higher resolution), thus reducing the problem of
unevenness of color perception. However, such a
decision affects the cost of the system; we
considered the adopted solution of Sony PS4
cameras as a reasonable compromise between
quality and price.

2. EXPERIMENTS
We have tested six markers, each in one color. The
markers were in the same position, which
facilitated the acquisition and limited the impact of
changes in brightness. The hue was represented by
one byte, i.e., the possible range for hue is 0..255.
We have tested markers twice: first, as static (fixed
position), and as moving marker (marker moved by
the user) in a small office room.

Static Moving

Min Max Diff Min Max Diff

MG 211 222 11 202 244 42

GN 82 85 3 76 85 9

RD 174 176 2 171 178 7

BL 0 10 10 0 39 39

CY 33 48 15 29 55 26

YL 127 131 4 113 154 41

Table. 1. Hue range for marker tests at short
distances (less than 5m).

For the static marker – the changes in the hue value
were small; for such conditions, we can define
much more color range and precisely identify
markers. For the moving markers, the differences
are bigger, and we can see that the fixed ranges for
camera types cause the marker to misinterpret the
color.

We have proposed an algorithm that uses hue and
marker tracking. If the marker can be tracked, we

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

398https://www.doi.org/10.24132/CSRN.3401.44

smooth the marker position and compare the hue
with the previous color. If the previous color can be
tolerated (i.e., the distance between hue and color
hue limits is acceptable), the previous color is set;
otherwise – we use hue ranges for colors.

The change of space made it necessary to work at
distances of up to seven meters. Tests quickly
showed that the method that works well in office
conditions is effective up to approximately 5
meters. An additional two meters forced a change
in the acceptable size of the marker. For the dark
markers (displaying the primary color (red, blue,
green) means one component of the RGB LED is
lit, while the other three colors (magenta, yellow,
and cyan) mean two components are lit and the
brightness is higher), we have to reduce the
minimal brightness of the acceptable marker pixel,
which increases the influence of the camera noise.
The color identification algorithm has become
unreliable.

Figure 6. Relation between hue (y) and the size
(x) of the marker in pixels (for yellow marker).

Figure 7. Pairs hue saturation for all six used
colors. Hue: horizontal; saturation: vertical. The

colors used correspond approximately to the
colors of the markers.

As an example of the problem, we can see (Fig. 6)
the hue values for one yellow marker in relation to
the marker size.

A part of the wrong H values for the marker comes
from the unnecessarily recognized marker
reflection, but it is a potential source of error, and
we should be ready to handle it.

The tests indicate that markers bigger than 20–25

pixels can be properly recognized (the ranges for
colors do not overlap), but for smaller markers,
overlapping ranges are possible. The tests also
suggest that while hue ranges are often overlapped,
a pair hue-saturation, or hue-value, is rarely
overlapped, and triplet hue-value-saturation is even
more rarely overlapped.

The data obtained for the calculation of the hue-
saturation (fig. 7) and hue-value (fig. 8)
dependence come from eight PS4 cameras for
individual colors: blue was calculated using 21033
measurements of moving marker’s color (worn and
moved by the player, simulating gameplay behavior
and using all available room space), cyan using
112769 measurements, green using 105709
measurements, magenta using 68132
measurements, red using 83070 measurements, and
yellow using 124841 measurements. Totally,
515554 measurements were used with the final
setting of the system (camera parameters, etc.).

On figs. 7 and 8, we can see the overlapping areas
for hue ranges: blue, cyan, and green have seamless
transitions; a similar situation can be seen for green
and yellow, and red and magenta (the magenta
range covers the whole red range).

For practical purposes, we have reduced our usage
of blue (we have some problems with this color for
marker detection: the marker was poorly detected
and color was sometimes confused with cyan) and
proposed a new algorithm for color detection.

Figure 8. Pairs hue value for all six used colors.
Hue: horizontal; value: vertical.

3. PROPOSED ALGORITHMS
There are two main procedures: color recognition
and marker tracking/recognition.

The first procedure is used for the base recognition
of the color: we have developed tables (fig. 9, 10)
for this application that are based on the data from
fig. 7, 8; the space has been transformed into a table
(one table field represents space 1x1).

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

399https://www.doi.org/10.24132/CSRN.3401.44

In the table we store:

• certain colors: where hue-saturation and
hue-value gives the same color, or where
certain color was matched with uncertain;

• uncertain colors; for pairs where data
comes from at least two color markers, the
more likely color is pointed;

• unknown color – there are no data and no
guesses what color the pair represents.

The color of the found marker is represented by
two parts: the main color and the complementary
color. At the same time, both colors can be
described as 'uncertain'.

Figure 9. Hue-saturation table for color
detection (man-made based on measurement

data).

Figure 10. Hue-value table for color detection
(man-made based on measurement data).

The algorithm calculates HSV for the found marker
and looks for the proper color in both tables (hue-

saturation, Fig. 9, and hue-value, Fig. 10).

//color:
// mainCol, complementaryCol, certain

colorUsingHSV(h, s, v) → color
if hsCol[h,s].val==hvCol[h,v].val
 return color(hsCol[h,s].val, null, true)
else
 if (hsCol[h,s].certain) and
 (hvCol[h,v].certain)
 return color(hsCol[h,s].val,
 hvCol[h,v].val, false)

 else if (hsCol[h,s].certain)
 return color(hsCol[h,s].val, null, true)
 else if (hvCol[h,v].certain)
 return color(hvCol[h,v].val, null, true)
 else
 return color(hvCol[h,v].val, null, true)

The second procedure is used for markers tracking:

pos2d = findCenterOfGravity(marker)
rgb = findRGB(marker)
hsv = rgb2hsv(rgb)
col = colorUsingHSV(hsv)

for old in allMarkersPrevFrame:
 spatDist = dist(odl.pos2d, pos2d)
 colDist = colDist(old.hsv, hsv)
 if (spatDist<maxSpatial) and
 (colDist<maxCol)
 new2d = (a*pos2d+b*old.pos2d)/(a+b)
 if (old.col == col)
 newMarkers.add(marker(new2d, old.col,
 hsv, true))
 else if (old.col.certain)
 newMarkers.add(marker(new2d, old.col,
 hsv, true))
 else if (col.certain)
 newMarkers.add(marker(new2d, col,
 hsv, true))
 else
 newColor = color(old.col, col, false)
 newMarkers.add(marker(new2d,
 newColor, hsv, true))
 else
 newMarkers.add(marker(pos2d,col,hsv,false))

The marker "is visible" (sent to the further elements
of the system) if it was found in a series of markers
in consecutive frames (with a given threshold). If
the marker was not found in the analyzed frame but
was found in the series of previous frames, it is still
"visible" (if the visibility break was not too long).
This increases the stability of our system.

4. EXPERIMENTAL RESULTS
Using a system of 8 cameras (PS4) and 4
computers, we collected data on calculated HSV
triplets for markers. The tests were carried out in
conditions imitating the target ones, i.e., the user
walked with a marker at different speeds
throughout the entire system operation area.

Tests were conducted separately for subsequent
colors to ensure that the collected HSV triplets
corresponded exactly to a given color. For the final
tests we collected a new of 262281 samples divided
into six colors. In the tests, we divided the dataset
into a training and a test subset.

When tested for a sample of 268281 measurements,
there were 15497 false matches using the above
algorithm; that is 94.2% correct matches. In
practice, the results obtained are corrected in the
system based on the measurement history, and then
the change in position is analyzed, practically
ensuring that the room can be navigated safely and
realistically.

We have tested some machine learning methods to
compare results. We used saved test data to
determine quality (ML techniques were not tested
with a real-time system). SVC classificators (with

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

400https://www.doi.org/10.24132/CSRN.3401.44

RBF kernels—independent classifiers for different
colors) gave 1276 wrong outputs for 53657 HSV
positions (size of test set; the remainder of the
268281 measurements was used as a learning set)
—which means proper results where achieved for
97.6% (for polynominal kernels: 95.2%). Some
colors were classified better (e.g., for yellow, red,
and magenta, the proper results were above 99%),
while others were classified worse—for blue, it was
only 86.8%, and for cyan, it was 96.7%.

For decision trees, the results were similar: 97.5%
properly classified triplets h, s, and v; the best
results (better than 99%) for yellow, green,
magenta, and red; the worst for blue (87.7%). We
have also tested neural networks (simple
perceptrons) from SciKit-Learn. Simple perceptron
(for three parameters) gives us 97.7% proper
results. The worst results were given by a blue
marker – 91.5%. We have used the same method
(but models were built for pairs: h, s, and h, v) to
create new tables, and our simple algorithm yielded
97.1% correct matches. Perceptron build for h-s
pairs, gave 64.5% proper answers, and for h-v
pairs, gave 97.5% proper answers.

Figiue 11. Color maps h-s created by multilayer
perceptron. Note: The colors do not correspond
to the actual marker colors or the colors in the

earlier illustrations.

The worst results where given by the blue marker;
after eliminating it (it means using blue and cyan as
one color), the neural network gave 99.4% proper
results for triplets h, s, and v, while the neural
networks for the h-s pair and the h-v pair gave
respectively 99.2% and 99.4%.

We have used perceptron to create new color maps
for h-s (fig. 11) and h-v (fig. 12). Tests suggest that
new color maps give slightly better results with our
algorithm.

We performed the above tests using Python (with
the Anaconda environment and the SciKit Learn
library), which we also used to build tables
describing the relationships of h-s and h-v pairs
with colors.

When testing the algorithms above, we were
interested in quality—to identify candidates for

system improvement. So we didn't test the
execution time.

Otherwise, in the real system, we put great
importance on the calculation time. There, we
examined the time needed to calculate position
information, and we built both programs (detecting
markers and their colors, calculating 3D positions
for markers) using the Xenomai library, which
ensures real-time implementation. We assumed an
8-ms loop for both programs.

In the tested configuration our system consists of
four computers to which 8 cameras are connected
to (2 per computer), and each camera corresponds
to one running marker detector application. One of
the computers runs a “coupler" app, a program that
calculates the 3D position from the positions sent
by the marker detectors; and on another of the 4
computers, there is a server prepared in Unity,
which is used to coordinate game events between
client applications (running on stand-alone VR
HMD).

Figure 12. Color maps h-v created by multilayer
perceptron. Note: the colors do not correspond
to the actual marker colors or the colors in the

earlier illustrations.
Average calculation time for 1003 test frames in a
typical configuration (2 PS4 cameras connected via
USB ports to a computer with Linux, 16GB of
RAM, and an i5 processor, 2.20GHz; so two
marker detection programs were running in parallel
on one computer), total time for calculating the
position and color of the marker (from the image
acquisition to sending output data to the next
program) was on average 1.51ms. The calculation
in the second program, which determines the
player's position from the sent markers and
transmits it to the players, takes an average of 1.08
ms.

5. SUMMARY
To summarize, we developed an algorithm for
identifying the marker color. We demonstrated that
the changes in the observed marker are significant
and require the development of an appropriate
algorithm. The algorithm is simple, highly reliable,
and fits our problem. We have also tested ML

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

401https://www.doi.org/10.24132/CSRN.3401.44

algorithms, and simple perceptrons give better
results than our algorithm. While this is better
solution, transferring it to a real-time tracker could
present difficulties, so we only used this solution to
improve the recording of the color tables for our
algorithm. The transfer of neural network solutions
to the real-time tracker can be done as part of the
work to improve the system in the future.

Acknowledgments
This work was supported by the NCBiR (National
Centre for Research and Development), project
VEPP (Virtual Entertainment Enhanced Platform),
no. POIR.01.02.00-00-0155/17-00.

BIBLIOGRAPHY
[1] Muhammet Fatih Aslan, Akif Durdu, Kadir Sabanci,
Shopping Robot That Make Real Time Color Tracking
Using Image Processing Techniqes, Journal of Applied
Mathematics, Electronics and Computers, 5(3):62-66,
2017, DOI: {10.18100/ijamec.2017331881}
[2] Homayoun Bagherinia, Roberto Manduchi, Robust
real-time detection of multi-color markers on a cell
phone, Journal of Real-time Image Processing, 8:1-17,
2013, DOI: {10.1007/s11554-011-0206-9}
[3] Fabrizio Cutolo, Cinzia Freschi, Stefano Mascioli,
Paolo Parchi, Mauro Ferrari, Vincenzo Ferrari, Robust
and Accurate Algorithm for Wearable Stereoscopic
Augmented Reality with Three Indistinguishable
Markers, Electronics, 5, 2016, DOI:
{10.3390/electronics5030059}
[4] Joseph DeGol, Timothy Bretl, Derek Hoiem,
ChromaTag: A Colored Marker and Fast Detection
Algorithm, Proceedings ofInternational Conference on
Computer Vision, Venice, 2017, DOI:
{10.1109/ICCV.2017.164}
[5] Hesam Eskandari, Detection and tracking of sphere
markers, Master Thesis, École de technologie supérieure,
Montreal, 2009
[6] Rabah Hamdini, Nacira Diffellah, Abderrahmane
Namane, Abderrahmane, Robust Local Descriptor for
Color Object Recognition, Traiment du Signa, 36(6):471-
482, 2019, DOI: {10.18280/ts.360601}
[7] Allan Hanbury, Constructing cylindrical coordinate
colour spaces, Pattern Recognition Letters, 29(4): 494-

500, 2008, DOI: {10.1016/j.patrec.2007.11.002}
[8] Priyanto Hidayatullah, Miftahuddin Zuhdi, Color-
Texture Based Object Tracking HSV Color Space and
Local Binary Pattern, International Journal on Electrical
Engineering and Informatics, 7(2):161-176, 2015, DOI:
{10.15676/ijeei.2015.7.2.1}
[9] Przemysław Kowalski, Krzysztof Skabek, Jan
Mrzygłód, Jan, VEEP – The System for Motion Tracking
in Virtual Reality, Proceedings of 6th International
Conference on Man-Machine, Cracow, 1:12-22, 2019,
DOI: {10.1007/978-3-030-31964-9_2}
[10] Liu Jiamin, Chen Shuo, Sun Hongxing, Qin
Yongxu, Wang Xibo, Real Time Tracking Method by
Using Color Markers, Proceedings of \em International
Conference on Virtual Reality and Visualization, X'ian,
1:106-111, 2013, DOI: 10.1109/ICVRV.2013.25}
[11] Martin Loesdau, Sébastien Chabrier, Alban
Gabillon, Hue and Saturation in the RGB Color Space,
Proceedings of International Conference on Image and
Signal Processing, Cherbourg, 1:203-212, 2014, DOI:
{10.1007/978-3-319-07998-1_23}
[12] Chanh-Nghiem Nguyen, Van-Thoai V, Nguyen Cong
Ha, Developing a computer vision system for real-time
color measurement – A case study with color
characterization of roasted rice, Journal of Food
Engineering, vol. 316, 2022, DOI:
{10.1016/j.foodeng.2021.110821}
[13] Erin Pangilinan, Steven Lukas, Vasanth Mohan,
Creating Augmented & Virtual Realities: Theory and
Practice for Next-Generation Spatial Computing,
O'Reilly, 2019
[14] Patrick Sebastian, Vooi Yap, Ross Comley, The
effect of colour space on tracking robustness,
Proceedings of IEEE Conference on Industrial Eletronics
and Applications, Singapore, 1:2512-2516, 2008, DOI:
{10.1109/ICIEA.2008.4582971}
[15] Minjie Wan, Guohua Gu, Weixian Qian, Kan Renm,
Qian Chen, Hue preservation based color space
transformation for brightness-robust tracking, Optik -
International Journal for Light and Electron Optics, 144,
2017, DOI: {10.1016/j.ijleo.2017.06.073}
[16] Yueting Zhuang, Yunhe Pan, Jun Xiao, Human
Motion Capture Using Color Markers, in A Modern
Approach to Intelligent Animation: Theory and Practice,
Springer-Verlag, Berlin Heidelberg New York, 59-75,
2008, DOI: {10.1007/978-3-540-73760-5}

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu

WSCG 2024
POSTERS

402https://www.doi.org/10.24132/CSRN.3401.44

