DESIGN AND CONSTRUCTION OF A WDM TRANSCIEVER WITH VHGT USING HYBRID INTEGRATION TECHNOLOGY

Vítězslav Jeřábek, Václav Prajzler, Karel Bušek, J.A. Arciniega, David Mareš
Department of Microelectronics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, Prague 6
E-mail: jerabek@fel.cvut.cz

Abstract:
We report about design and construction of WDM bidirectional transceiver module (TRx) for the passive optical network (PON) of a fiber to the home FTTH topology. The TRx uses a microoptics hybrid integration technology with volume holographic Bragg grating triplex filter (VHGT) and a collimation lenses for wavelength multiplexing/demultiplexing. Our optical WDM transceiver TRx has been constructed using system of a four micromodules in the new circle topology. The optical micromodul with VHGT filter, two optoelectronic receivers’ micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting of a upload information.

INTRODUCTION
The microoptical lightwave circuit (MLC) and planar lightwave circuit (PLC) hybrid integration technology enables us to construct component by combining MLC or PLC with passive function (fiber, planar waveguides, collimation lenses, optical gratings etc.) and active optoelectronic devices (laser diodes, semiconductor optical amplifiers, photodiodes etc.) hybridized on a MLC or PLC [1], [2]. WDM type triplex transceiver TRx is useful for a subscriber part of the passive optical network PON for a fiber to the home FTTH topology. An optical TRx transmits a 1310 nm radiation upload and receives a 1490 nm download internet data as well as a 1550 nm download digital video signals for wavelength division multiplexing WDM cable TV application. The TRx uses a microoptics or planar lightwave hybrid integration technology. For wavelength multiplexing/demultiplexing (MUX/DEMUX) were used TFF (thin-film filters), optical mirrors and prisms [3]. Our optical WDM transceiver TRx has been constructed using system of a four micromodules in the new circle topology. The triplex optical MUX/DEMUX micromodule was composed of VHGT filter made by BK7 glass made by Ondax Ltd. with collimating cylindrical microlens 2.2 mm in radius and optical multimode fiber 50/125 µm. The end of the fiber was fixed in a metallic tube. A VHGT filters are ideal microoptical beam distribution element having high diffraction efficiency and very low insertion loses and optical crosstalk. The volume holographic transmission gratings are an extremely accurate and temperature-stable means of filtering a narrow band optical spectrum.

We measured the diffraction angles as first step, to determine geometry of location of the receiving and transmitting micromodule
\[\theta_{\text{diff}} = 18.4^\circ \text{ for } \lambda_1 = 1490 \text{ nm and } \theta_{\text{diff}} = 19.1^\circ \text{ for } \lambda_2 = 1550 \text{ nm} \]
determine Bragg constants of the VHGT after (1),
\[\Lambda = \frac{\lambda_B}{2 \sin(\theta_{\text{diff}}/2)} \]

where \(\Lambda \) is the Bragg constant, \(\lambda_B \) is the Bragg wavelength and \(\theta_{\text{diff}} \) is the Bragg diffraction angle of a grating. The Bragg constant \(\Lambda = 4.66 \mu m \) for \(\lambda_1 = 1490 \text{ nm and } \Lambda = 4.671 \mu m \) for \(\lambda_2 = 1550 \text{ nm was calculated after (1)}.\]
The diffraction efficiency given by (2) was calculated \(\eta = 99.8\% \) for wavelength 1490 and \(\eta = 97.4\% \) for 1550 nm. The results of the measuring are shown in Fig. 1, 2 and Tab. 1. For measuring was used ten axis micromanipulator and Beam Profiler BP104-IR.

\[
\eta_b = \sin^2 \left(\frac{\pi \Delta n d}{\lambda_b \cos \alpha_b} \right) \tag{2}
\]

where \(\alpha_b \) is the Bragg-matched incident angle in the medium, \(\Delta n \) is grating strength refraction index modulation, \(d \) is thickness of the grating

The minimal optical crosstalk of the optical beam for both wavelength was very important requirement to reach good BER. The optical crosstalk was given by (3), (4)

\[
A_{\lambda} = \frac{P_{1\lambda}}{P_{2\lambda}}\%
\tag{3}
\]

\[
a_{\lambda} = 10 \log \frac{P_{1\lambda}}{P_{2\lambda}}[dB]
\tag{4}
\]

where \(P_{1\lambda} \) is optical diffracted power, \(P_{2\lambda} \) is optical power diffracted to direction opposite wavelength. For BER = \(10^{-9} \) it was needed \(a_{\lambda} > 11 \) dB. The results of the measuring is shown in Fig. 3, 4 and Tab. 2

It was founded that the measured diffract efficiency \(\eta = 73.6\% \) for wavelength 1550 nm was different from the theoretical computed value \(\eta = 97.4\% \). This phenomenon comes from a grating system imperfection and a material optical dissipation.
The optoelectronic receiver micromodule

Our work was concentrated on design and construction of a microwave hybrid optoelectronic receiver micromodule [5], where the PIN photodiode was connected by microstripe line to input of the HBT amplifier. The all parts are placed on the composite material substrate. The theoretical analysis describes the microstrip connection between the PIN photodiode and the input of the HBT amplifier by the small signal equivalent circuit. For frequency response analysis we used the small signal equivalent circuit of the OE receiver input Fig.5.

\[Z_T(\omega) = \left| Z_T(0) \right| / 2^{1/2} \]

where \(Z_T(0) \) is module of the impedance for \(\omega = 0 \), \(R_s \) is parallel \(R_P \) and \(R_N \) combination. The limit frequency \(f_T \) received by solve equation (7) was \(f_T = 2.78 \) GHz. The module \(|Z_T(0)| = 46.07 \ \Omega \) and \(L = 4.5 \) nH. The small signal equivalent circuit presented in the Fig.5 was implemented for simulation in Win Mide program. The capacity of depletion layer \(C_D \) was a function of reverse bias voltage and for 5 V is catalog value 0.50 pF. \(C_s \) is stray capacity signal connection PIN photodiode SMD assembly. For good high frequency response it is essential to be \(C_D \) and \(C_s \) kept as low as possible. After that it is necessary to reduce \(R_A \) or to provide high-frequency equalization. The inductance and capacity generated by the photodiode SMD carrier was simulated to analyze its influence on the device. The measured and simulated results at the frequency range 0.1 – 3.5 GHz is shown in the Fig. 6.

The simulation and measurement of \(S_{21} \) modulation characteristic reveal that the limit frequency \(f_T \) of the OE receiver was 2.5 GHz. The bandwidth of the OE receiver is limited by the capacity depletion layer \(C_D \) of the photodiode and \(C_s \) stray capacity of the contact spots. The inductance distributed along the signal way between PIN photodiode and input of the HBT amplifier shift the bandwidth of the OE receiver micromodule from 1.91 GHz to 2.5 GHz with reasonable ripple 3 dB.

DESIGN OF MICROOPTICAL WDM TRANSCEIVER TRx

The WDM transceiver TRx has been constructed using system of a four micromodules in the new circle topology set on the alumina or composite substrate. The fundamental layout of the hybrid
An integrated microoptical WDM transceiver is given on Fig. 7.

The triplex optical micromodule was composed of VHGT filter with collimating cylindrical microlens and optical multimode fiber. This transmission type grating filter has high diffraction efficiency, see Tab. 1, very low insertion losses 0.14 to 0.29 dB and optical crosstalk after Tab.2. The optoelectronic part of TRx crate a two OE receiver micromodules with decollimation lenses. The hybrid microwave OE receivers uses InGaAs PIN photodiodes and HBT microwave amplifier made by thin layer hybrid integration technology. The optical beams were coupled on the PIN photodiodes active surface by decollimating lens. The optoelectronic transmitter micromodule uses Fabry-Perot InGaAsP laser diode with optical microisolator, microwave modulator and optical power feedback control electronics.

Alternatively we design a optical WDM transceiver TRx made by the polymer PLC (planar lightwave circuit) hybrid integration technology with a epoxy novolak polymer NANO™ SU-8 2000 monomode ridge waveguides and graded planar optical interference filters.

ACKNOWLEDGMENTS

Our research is supported by the research program MSM6840770014 of the Czech Technical University in Prague.

REFERENCES