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ABSTRACT

The paper gives an overview of algorithms for the terrain visibility problem. First, a comprehensive
background of the problem is given. It is explained how the 2,5D problem is transformed to a
1,5D problem. Next, six algorithms (a naive approach, an approach with the height of line-of-
sight (LOS), an approach with the biggest slope of LOS, an approach with the cross product,
an incremental approach, and an improved incremental approach) are briefly explained and their
theoretical time complexities are given. After that, run-times of the algorithms are measured for
different terrain configurations and different viewpoint heights. The best algorithm is selected at

the end.
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1 INTRODUCTION

Visibility analysis is a fundamental problem of
many applications, which concern the geograph-
ical information systems (GIS), computer graph-
ics, computer games, navigation, and engineer-
ing applications. Visibility problems deal with
the computation of visibility information from a
viewpoint, which can lie outside or inside the
terrain domain, or use the visibility informa-
tion to solve optimization problems. The most
used visibility computations compute a viewshed
and/or find a horizon. Examples of visibility opti-
mization problems are determining the minimum
number of terrain guards, calculating the mini-
mum path with specific visibility characteristics
(e.g., scenic paths and hidden paths). Applica-
tions include the location of radar facilities, ob-
servation towers, radio, TV or telephone trans-
mitters, path planning, navigation and orienta-
tion. For an extensive survey on this subject see
[Cole89, DeFlo99a, DeFlo99b).

At such applications, two contradictory problems
oceur:

e The quality of the terrain representation de-
pends on the resolution of sampled terrain
data. Better resolution leads to more ac-
curate terrain analysis, which is desired by
the users.

e Better resolution demands considerable
amount of memory space for storing ter-
rain data and the computational time in-
creases significantly. As stated by Franklin,
the naive (traditional) methods and algo-
rithms require more computational capac-
ity that is available now and will be in the
near future [Frank94a, Frank94b).

Because of that, the choice of an appropriate al-
gorithm for the visibility problem is in practice
of great importance. In this paper, an extensive



overview of algorithms for visibility problems in
1,5D is given. The visibility analysis is basically
a 2,5D problem, but as it is shown in the paper,
the analysis is actually done in 1,5D. The paper
starts with a brief theoretical background. To the
knowledge of the authors, all known 1,5D algo-
rithms are presented and analyzed in the third
Section. All the algorithms have been imple-
mented and in the fourth Section, they are com-
pared and evaluated using several terrain config-
urations. In the last, the fifth Section, the paper
is summarized.

2 PRELIMINARIES

Terrain data are related with a 3D configuration
of the Earth’s surface. The geometry of a ter-
rain is modeled as a 2,5D surface, i.e. a surface
in 3D space described by a bivariate function. A
model representing a terrain relief using a finite
number of samples is known as a Digital Terrain
Model (DTM). As its representation is extremely
suitable for computer-based analysis and manip-
ulation, it is also very frequently used for the vis-
ibility problem.

DTM is usually defined by a set of points p =
(Zp,Yp, zp). Two points p; and ps are mutually
visible (intervisible) iff every point q = (z,y, 2z) =
p1 + t(p2 — p1), 0 < ¢t < 1, lies above the cor-
responding point p, of the terrain, ie. z > z,
[DeFlo99a]. In other words, two points are mutu-
ally visible when straight line p;p- lies above the
terrain and touches it only at its end points. If
one of these two points is a special point called
viewpoint (labeled with O in the continuation),
the ray from O through the second point is called
a line-of-sight (LOS). If LOS Op, is not ob-
structed (with the terrain or with the objects on
the terrain), point ps is visible.

The definition of the visibility can be further ex-
tended to the points called targets. The targets
are not parts of the terrain and lie above it. An
example of the visibility of terrain points and tar-
gets can be seen in Fig. 1. We have a terrain,
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Figure 1: Visibility of terrain points and targets

viewpoint O and three targets: P4, P, and Pc.
From the viewpoint, all point sets of the terrain
shaded with thick gray lines are visible. From
the point p; to the point ps all terrain points be-
low LOS Op; are invisible. Similarly, target Pp
is not visible because LOS through Pg does not
lie above the terrain. As seen, the point p; in
Fig. 1 represents the highest obstacle at deter-
mining visibility of the points on its right side.

Fig. 2 considers the visibility problem in 2,5D. Let

H,
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Figure 2: The visibility problem in 25D,
translated to the visibility problem in 1,5D

E be the plane passing through the viewpoint O
being perpendicular to the plane zy. Using E, a
1,5D coordinate system with axis H, U is defined.
The origin of the HU coordinate system coincides
with the point of viewpoint’s vertical projection
on the plane zy. An intersection between E and
the surface of a terrain is a curve L, which visibil-
ity it is investigated. By rotating plane E around
axe H for a small discrete steps, a set of discrete
curves is obtained, approximating a terrain of in-
terest. In this way, the 2,5D visibility problem
is transformed to the set of 1,5D visibility prob-
lems, i.e., for each curve L. Curve L is usually
represented as a discrete profile D; (see Fig. 2).
Similar discrete profiles (but parallel) are used in
the more general visualization [Skala87].

3 THE ALGORITHMS

In the continuation, short descriptions of all
known algorithms for the 1,5D visibility problem
are given:

a) A naive approach (Naive): In this approach,
only the simplest fact about the slope of the LOS
is used. Namely, the point from the viewpoint
is visible, if the slope of the LOS to that point
is bigger than the slopes of LOSs to all previous
points. Therefore, the algorithm calculates the
slope of current point’s LOS and checks it with



the slopes of LOSs of all previous points. If a
bigger slope of the LOS has been encountered the
point is not visible, otherwise it is visible.

Because all previous points are checked, the algo-
rithm exposes O(n?) time complexity. The algo-
rithm is the slowest with the monotone increasing
heights of the terrain, where all points are visible.
The best case represents a terrain where only the
first two points are visible and all others are in-
visible.

b) An approach with the height of LOS
(LOSHeight): The process runs by walking on
each LOS. For every point, its LOS is computed
first. By walking on that LOS, the height of the
LOS is compared at every step with the height
of the corresponding point of the terrain. If the
height of the LOS is lower then the height of the
terrain, the point is visible, otherwise it is invisi-
ble. This approach has been used by Shapira and
mentioned in [DeFlo94].

Because the heights of all LOSs above all pre-
vious points are checked, the time complexity re-
mains O(n?). It is only for a constant factor faster
than the previous algorithm. The worst and the
best case of the algorithm performance remain
the same, too.

c) An approach with the biggest slope of
LOSs (BiggestSlope): The approach is an im-
provement of the above mentioned approaches by
taking into account the knowledge about the pre-
vious point [Cohen95, DeFlo99a]. For each point,
the slope of its LOS is calculated. If the slope of
the current LOS is bigger then the biggest slope so
far, the point is visible and the new biggest slope
of all LOSs is updated. Otherwise, the point is in-
visible. This approach can be found in [Trobe98]
and at Blelloch [DeFlo94] who called LOSs the
tangents.

For each point only one computation of the slope
of the LOS and one comparison is needed that
results in O(n) time complexity. The worst and
the best case of the algorithm performance re-
main the same as in the naive approach.

d) An approach with the cross product
(CrossProduct): The LOS to p; can also be imag-
ined as a vector p; — O [Cohen95]. Suppose that
point p; is visible. To determine the visibility of
point p;y1, vector p; 11 — p; is observed whether it
points to the right or to the left halfplane of vec-
tor p; — O. Point p;41 is visible when it points to
the left halfplane, otherwise it is invisible (Fig. 3).

The visibility of point p; is determined as follows.

D

U, U, U, Us i v
Figure 3: Determining of the visibility with
the cross product

Let p, represent the last computed visible point
before p; and let S be the value of the cross prod-
uct’s z component:

(pv — O) X (pi — O) = uy(h;y — ho) —ui(hy —ho) (1)

If S > 0, point p; is visible and a new point p, is
set.

The visibility of all points is computed in one pass
over all points. Because the cross product and the
comparison is done in O(1), the time complexity
of the algorithm remains O(n). The worst and
the best case of the algorithm performance stay
the same as in the naive approach.

e) An incremental approach: (Incremental):
The approach with the cross product can be im-
proved with an incremental computing if the con-
stant distance between adjacent points on axis U,
w41 — u; = 1, is supposed [Cohen95].

Two cases are possible. Firstly, point p;_; is rec-
ognized as a visible. Then, the visibility of point
p; is computed using equation:

(Pi-1 —vo) X (pi —vo) = ui—1(hi —h;—1)— )
(hi—1 —ho)
In the second case, point p;_; is identified as
invisible. If the last visible point has been p,,
v < i — 1, the value of the cross product for the
next point p; can be determined by adding the
difference to the previous cross product, calcu-
lated for the point p;_1. Let w;_1 represent the
value of the cross product determined at the vis-
ibility of point p;—;. Then w; can be computed
as:
wi = wi—1 + uy(hi — hi—1) — (ho — ko) (3)

To determine the visibility of every point, O(1)
time is needed, resulting in an overall time com-
plexity of O(n). The worst case occurs when the
visibility of points is alternating, while the best
case is obtained when all points of the terrain are
visible.



f) An improved incremental approach (In-
cremental+): In the previous approach, when the
invisible point has been encountered, all further
points are invisible as long as their heights re-
main under the LOS of the last visible point
[Cohen95, Trobe98]. Fig. 4 shows such case.
Suppose that point p; is visible, and point p;11
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Figure 4: Determining the visibility in the
invisible zone

is invisible. When point p;y; is identified as in-
visible, the slope of the LOS to p; (for example in
variable los) is calculated. Because the length of
the step over the axis U is one, the height of los
above point w;+1 equals hyqy = h; + los. There-
fore, for every next point, starting with p;yo only
the value los is added to the temporary height
of the ray and compared with the height of the
terrain point.

The visibility of each point is determined simi-
larly as in the previous algorithm. The deter-
mination of the visibility in invisible zone is im-
proved, but before that, the slope of the LOS
has to be calculated. The time complexity stays
O(n), only for a constant factor faster. The worst
and the best case of the algorithm performance
stay the same as in the incremental approach.

The first two algorithms represent the early ideas
of how to determine the visibility by the com-
puter using DTM. Other mentioned algorithms
have been developed after careful study of the
problem, and they reflect discovered properties.
The last two algorithms work only, if all terrain
points are spaced equally. This fact can be suc-
cessfully used in regular square grids that seem
to be increasingly used in GIS applications.

4 TESTING THE ALGORITHMS

All mentioned algorithms were implemented in
C++ by the authors of the paper. They are di-
vided in two categories, based on the time com-
plexity: O(n?) and O(n). For testing, five differ-
ent types of terrain profiles were used:

a) Random terrain (i): The terrain heights
with uniform distributed values between 0 and
1000 meters have been generated randomly.

b) Monotone increasing terrain (ii): Each
consecutive terrain height is higher. In this way,
all points are visible.

¢) Two visible points (iii): Only the first two
points of the terrain are visible, all others are in-
visible.

d) Alternating visibility (iv): Every second
terrain point is visible, while all others are in-
visible. Fig. 5 shows an example of such terrain
profile.

* visible points
o invisible points

Figure 5: Alternating visibility of terrain points

e) Fractal terrain (v): Fractal Brownian mo-
tion has been applied for the generation of the
terrain [Peitg88]. Fractal dimensions between 0,2
and 0,9, frequency factors between 0,5 and 2,0,
and numbers of octaves between 5 and 10, have
been generated randomly. The values between 0
and 1000 meters have been obtained.

In all cases, the viewpoint has been set on four
different heights:

a) A human view (+1,6 m): The viewpoint was
set on an approximate height of a human view, 1,6
meter above the first point of the terrain profile.

b) An observation view I (+25 m): A view
from an observation tower was simulated, and the
viewpoint was set 25 meters above the first point
of the terrain profile.

¢) An observation view IT (+40 m): Similar
as in the previous case, the viewpoint was set 40
meters above the first point of the terrain profile.

d) A fixed height (1500 m): The viewpoint was
set on the height of 1500 meters to simulate a
view from a flying object (e.g. a balloon or a
helicopter).

Tests have been done on a portable computer
with Intel Pentium III 500 MHz processor and



64 MB of memory under Windows operating sys-
tem. Each test was repeated 20 times, always for
10 different numbers of terrain points (n). In the
continuation, the tables for both classes of the al-
gorithms are given in a condensed form. For all
algorithms the number of terrain points and the
average spent CPU time in seconds are given.

Because during the test, the results for different
viewpoint heights did not differ significantly, only
the results for viewpoint height +1,6 m are given
in the continuation. Table 1 show the results for
the first two algorithms. For the terrain types
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LOSHeight,+1.6 m
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time (s)

83 83883

num of points

Figure 7:
rithm for the

CPU time of LOSHeight algo-

best case (iii), the worst case

(il) and fractal terrain (v)

| Algorithm\n | 10000 20000 30000 40000 |
Naive (i) 0,00 0,0l 0,02 0,00
LOSHeight (i) | 0,05 001 002 0,01 . . .
Visible points 2,07 2,11 353 0,01 Similar e}'cp'erlmental analys1s has been done for
Naive (1) 153 17,95 49,73 10273 the remaining O(n) ?ngorljchms. Table 2 shows
LOSHeight (ii) | 2,61 11,67 36,72 79,20 the results at viewpoint height +1,6 m.
Naive (iii) 0,00 0,00 0,00 0,01
LOSHeight (iii)| 0,01 0,00 000 0,02
Nawe (iv) | 1,77 9,14 22,83 43,29 [ Algorithm\n | 1-10° 2-10° 3-10° 4-10° ]
LQSHezght (iv)| 3,64 6,11 16,01 31,04 BiggesiSiope (1) 0,14 0.26 0,40 0.56
Naive (v) 3,65 17,23 42,86 83,11 CrossProduct (i) | 0,16 0,30 0,48 0,65
LOSHeight (v) | 2,12 10,18 29,97 62,01 Incremental (i) 0,15 0,29 0,47 0,60
visible points | 9842,5 16261,1 27114,3 29684,0 Incremental+ (i) | 0,10 0,20 0,31 0,41

Table 1: CPU times (s) and visible points
for O(n?) algorithms at viewpoint height
+1,6 m

(i) and (v), also the average numbers of visible
points are included. As mentioned in the third
Section, the algorithms’ run-time is the shortest
when only two points are visible and the worst
when all points are visible. Run-times can also
be seen in Fig. 6 and Fig. 7, where CPU times for
the best case, the worst case and for the fractal
terrain are given. From the results, it can be also
seen that the fractal-generated terrains are close
to the worst case distribution.

Naive , +1.6 m

visible points

2,6 1,0 3,6 2,8

BiggestSlope (ii)
CrossProduct (ii)
Incremental (ii)
Incremental+ (ii)

0,15 0,31 0,45 0,61
0,17 0,32 0,50 0,66
0,14 0,29 0,44 0,58
0,13 0,24 0,41 0,64

BiggestSlope (iii)
CrossProduct (iii)
Incremental (iii)
Incremental+ (iii)

0,13 0,26 0,39 0,53
0,15 0,29 0,46 0,62
0,14 0,29 0,46 0,60
0,10 0,19 0,28 0,40

BiggestSlope (iv)
CrossProduct (iv)
Incremental (iv)
Incremental+ (iv)

0,14 0,30 0,44 0,60
0,16 0,31 0,47 0,64
0,18 0,34 0,51 0,73
0,18 0,35 0,54 0,75

BiggestSlope (v)
CrossProduct (v)
Incremental (v)
Incremental+ (v)

0,14 0,28 0,42 0,58
0,16 0,30 0,47 0,63
0,14 0,30 0,44 0,59
0,10 0,21 0,31 0,45

visible points

154645,4 111075,0 347268,0 2525399,5

Table 2: CPU times (s) and visible points
for O(n) algorithms at viewpoint height

+1,6 m

time (s)

0 10000 20000 30000 40000
num of points

Figure 6: CPU time of Naive algorithm for
the best case (iii), the worst case (i) and
fractal terrain (v)

It can be noticed that the second group of the
algorithms is relatively immune to the type of
the terrain, as their best and the worst case do
not differ much. The algorithm BiggestSlope is
in the best case for 13% faster than in its worst
case, the algorithm CrossProduct for 8%, and the
algorithm Incremental for 17%. The significant
difference exposes only the algorithm Incremen-
tal+, where the best case is in average for 45%
faster than its worst case. Fig. 8-11 show those
differences.



BiggestSlope , +1.6 m
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Figure 8: CPU time of BiggestSlope algo-
rithm for the best case (iii), the worst case
(ii) and fractal terrain (v)

CrossProduct , +1.6 m

0 1000000 2000000 3000000 4000000
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Figure 9: CPU time of CrossProduct algo-
rithm for the best case (iii), the worst case
(ii) and fractal terrain (v)
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Figure 10: CPU time of Incremental algo-
rithm for the best case (ii), the worst case
(iv) and fractal terrain (v)

Fig. 12 shows a comparison of the worst case run-
times of all O(n) algorithms. Surprisingly, the
algorithm Incremental+ has the worst behavior.
However, in real terrain data the worst case for
that algorithm is not expected.

A similar analysis can be seen in Fig. 13, where all
O(n) algorithms are compared against their best
run-times. The algorithm Incremental+ gives the

Incremental+ ,+1.6 m
0.8
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time (s)
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01 e

0 1000000 2000000
num of points

Figure 11: CPU time of Incremental+ algo-
rithm for the best case (iii), the worst case
(iv) and fractal terrain (v)

‘Worst cases, +1.6 m

w w BiggestSlope
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=~ = ~Incremental
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Figure 12: Comparison of O(n) algorithms
at their worst cases

best result. The same algorithm shows the best

Best cases, +1.6 m

,,,,,,,, BiggestSlope

CrossProduct

~ ~ ~ -Incremental

AIncremental+

0 1000000 2000000 3000000 4000000
num of points

Figure 13: Comparison of O(n) algorithms
at their best cases

performance also with the fractal terrain type (see
Fig. 14). Moreover, it is in average 25% faster
than the second best algorithm, BiggestSlope.

5 CONCLUSION

New applications employing the visibility infor-
mation arise daily. Common to most of them is



Fractal terrain, +1.6 m
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Figure 14: Comparison of O(n) algorithms
at the fractal type of the terrain

that the visibility analyses last long and their fun-
damentals lie in 1,5D. Therefore, the selection of
the most appropriate algorithm in 1,5D is crucial.

The paper gives an overview of all known algo-
rithms for the 1,5D visibility problem. All al-
gorithms have been implemented and compared
using different configurations of the digital ter-
rain model. From the results, it can be concluded
that two algorithms are appropriate to use. The
best algorithm is the improved incremental algo-
rithm [Cohen95]. However, it is useful only when
the points are equally spaced. In the general dis-
tribution of terrain data, the algorithm with the
biggest slope of LOSs [Trobe98] is preferred.

At solving the 1,5D visibility problem, two inter-
esting properties occurred:

e Run-times of the algorithms at different
viewpoint heights did not differ much.

e The algorithms with linear time complexity
behaved similar at different terrain config-
urations.

The challenge to improve those algorithms re-
mains.
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