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ABSTRACT

3D modelling and visualization based on general meshes needs a great amount of memory
demands. Regular grids can substantially decrease them. Moreover, using the regular
data structures results in efficient numerical procedures and simplicity of algorithms. On
the other hand, disadvantage of regular grids is in lower flexibility of shape expression.
One of the possibilities how to improve the shape expression of a regular grid is its decom-
position to tetrahedra. The paper concerns the problem which arises here — nonconformity

of decomposition.
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1 INTRODUCTION

The decomposition of the space to polygons
in 2D, resp. to polyhedra in 3D is very
important step within the numerical mod-
elling of any physical phenomena. Physically
based modelling of complex phenomena often
leads to high performance computing prob-
lems. So the reduction of memory demands
and the proposal of efficient numerical pro-
cedures used in solver are very important.
To achieve this, meshes with regular struc-
ture are suitable [Blaheta99]. We shall con-
sider structured mesh which can be obtained
as a result of

1. the deformation of regular
rectangular grid (i.e. we can
shift the nodes of the grid but
we cannot change coincidency of
them) ,

2. decomposition of the cells to
triangles in 2D, resp. to
tetrahedra in 3D; here no new
nodes are added to the resulting
mesh.

In the paper we want to describe the prob-
lem of nonconformity of decomposition which
arise when we go from 2D to 3D mesh genera-
tion: two elements of decomposition are con-
form if their intersection is either empty, or
s a common face, or is a common edge or is a
common corner. In the opposite case the pair
of elements is nonconform. Decomposition is
conform if each pair of its elements is con-
form.

The paper is organized as follows. The 2nd
section describes the 2D case of mesh gener-
ation. Here the most important properties of
3D decompositions are mentioned too. Next
section describes the arising of nonconformi-



ties and in the 4th section it is shown how
the nonconformities can be removed.

2 MESH GENERATION

In [Kolcun96] the following sequence for
the structured mesh generation is proposed:

A. generate regular grid,

B. shift nodes due to geometry
of domain,

C. indicate the diagonals due

to geometry of domain,

. add the rest of diagonals,

E. identify the decompositions
of cells.

o

2D case of the sequence is illustrated in Fig.1.

Figure 1: Required geometry of domain
and steps A.-D. of the generation of
structured triangulation in 2D.

Various approaches of grid deformation —
step B. can be used, e.g. methods based on

the solving the P.D.E., transport mapping
(algebraic) methods, methods used general
parametrisation, etc., [Grids91], [George91],
[Thompson98]. In our case the strategy of
grid deformation is based on averaging of
the neighbour nodes of the grid [Kolcun94a],
[Kolcun99b].

The main emphasis of the whole process of
the mesh generation in our approach is in
the steps C.-E. It is important that in 2D
case 1. there is only a restriction for diag-
onals in case of nonconvex tetragon — steps
C, D, 2. in any case of choice of diago-
nals we obtain the conform decomposition,
3. decomposition of tetragon doesn’t depend
on decompositions of neighbour tetragons —
steps C, D, 4. decomposition to triangles
with determined diagonal is unambiguous —
step E.

As it is proved in [Kolcun94b],[Kolcun99b],
the situation in 3D is much more difficult:
1. there exist configurations of diagonals in
the grid cell for which there are only non-
conform decompositions — Fig.2a) 2. there
exist configurations of diagonals for which
there are no decompositions to tetrahedra
- Fig.2b), 3. there are more different de-
compositions with the same configuration of
the face diagonals of the cell, 4. there exist
72 conform decompositions of cell to six, and
two decompositions to five tetrahedra (de-
compositions to six tetrahedra are prefered
due to preserve the regularity of data struc-
tures).

Figure 2: ”Forbidden” configurations
of diagonals: none node is incident to
three diagonals and a) exactly one
pair of diagonals in the pair of opposite
faces is parallel, b) no pair of diago-
nals in the opposite faces is parallel.



In [Kolcun96] it is shown that a few of non-
conformities don’t spoil the iterative FE-
solution when nonconform mesh is used.
However, the ratio of the number of the con-
figurations of type Fig. 2 a), b) is relatively
high — it achieves 37.5% of all configurations
of diagonals. So it is important to understand
the mechanism of the nonconformity arising
in the cell decomposition.

3 NONCONFORM
DECOMPOSITIONS

The nonconformity between elements from
different cells is denoted as a 'face’ nonconfor-
mity. Nonconformity within one cell is "inner’
nonconformity.

There is proved in [KolcunO1] that all inner
nonconform decompositions we can obtain in
following way.

1. We divide the cell to two
3-sided prisms.

2. The space diagonals from
the cutting plane are joint
to prisms - Fig.3.

3. Each prism with the space
diagonal is decomposed to three
tetrahedra - Fig.4.

Figure 3: Two possibilities how
the space diagonals can be joint to
prisms.

The number of possibilities of these steps are

N =6, No=2 N;=3.

Figure 4: Three different decomposi-
tions of prism with the same space di-
agonal to three tetrahedra.

As the steps 1.-3. are mutually indepen-
dent, the number of all nonconfom decompo-
sitions is obviously

N = N1 x Ny x N3? = 108.

4 DECOMPOSITIONS IN GENER-
ALIZED CELL

Let us consider a little bit more generalized
cell of mesh, which is obtained by deforma-
tion of orthogonal cell so, that none four ver-
tices are coplanar. We replace each non-
planar face with the pair of triangles using
the face diagonal from the original cell de-
composition, Fig.5.

We can see obviously, that the face noncon-
formity is now replaced with new tetrahedron
- Fig.6

The same mechanism can be used to remove
inner nonconformity. So the number of tetra-
hedra in the decomposition of generalized cell
vary from five to thirteen. (The last case we
obtain from decomposition to six tetrahedra
with nonconformity in each face and with in-
ner nonconformity too.)
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Figure 5: Generalization of the orthog-
onal cell — example of deformation of
one vertex: (a) — orthogonal cell, (b) —
convex face, (¢) — nonconvex face.

Figure 6: Arising of new tetrahedron
when the cell with face nonconformity
is generalized.

For better illustrativity the dual represen-
tation of decompositions is useful: graph
G(V, H), represents the decomposition

E={ei:i1=1,...,n},

iff
Vv = €,
H = {(ei7 ej) (S V2 : dzm(ez N ej) = 2}

Graph represents ’strong’ neighbourhood of
elements (i.e. the neighbourhood at least
with common part of face).

/
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Figure 7: Dual representation of cell
decompositions with inner nonconfor-
mity. Pairs of nonconform elements are
connected with thin edge.

For nonconform decompositions of orthogo-
nal cell we obtain the representations from
Fig.7.

When we use generalized cell, new tetrahe-
dron appears and the decompositions which
are obtained from Fig.7 have the representa-
tions from Fig.8.
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Figure 8: Dual representation of non-
conform decompositions in the general-
ized cell without ’face’ tetrahedra.

"Face’ nonconformities add next tetrahedra
into decompositions — Fig.9.

Figure 9: Dual representation of cell
decompositions which are obtained

from decomposition 2. from Fig.8 when
face’ nonconformities are added.

5 CONCLUSION

Generalization of decomposition of rectangu-
lar grid to tetrahedral elements enables to
increase the flexibility of geometry expres-
sion. But the problem of nonconformity in
3D arises. It is possible to remove the non-
conformity problem using the cell deforma-
tion approach but number of elements of de-
composition increases. Hence, regularity of
data structures is spoilt.



Future work will be focused on analysis of
metric properties of structured decomposi-
tions [Korotov99].

Presented structured meshes are based on
"brick’ grids. Effort will be done to analysis of
the structured decompositions with different
basis [Goldberg74], [Jucovic81] too.
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