A QoS FRAMEWORK FOR INTERACTIVE 3D APPLICATIONS

N. Pham Ngoc', W. van Raemdonck?, G. Lafruit’, G. Deconinck', and R. Lauwereins’

'Katholieke Universiteit Leuven-ESAT/ACCA
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee, Belgium
Email: Nam.Phamngoc@esat.kuleuven.ac.be

2IMEC-DESICS, Kapeldreef 75, B-3001 Leuven-Heverlee, Belgium

ABSTRACT

We present a QoS (Quality of Service) framework for interactive 3D applications, in which the QoS
management relies on high-level QoS parameters of quality scalable 3D objects, which are transmitted from the
service provider to the user terminals. PSNR is used as one of these high level parameters for representing the
perception quality of 3D objects. In real-time, interactive 3D applications, one of the tasks of the QoS
management at the end-user’s terminal consists in keeping a constant interactive frame rate, by trading off the 3D
scene perception quality for frame rate, under resource constraints. We show that this task involves solving a NP-
hard optimization problem and we present an approximation algorithm that solves the problem with an accuracy
of more than 95%, compared to the optimal solution, while representing a negligible computation effort for every
frame. Experimental results show the soundness of the proposed framework and algorithm.

Keywords: 3D Quality of Service, level of detail, interactive applications, optimization, PSNR

1. INRODUCTION

Currently, with the increasing processor
performance and network bandwidth, many
interactive virtual realjty applications such as 3D
games, virtual museum or virtual shop applications
have become feasible on a wide range of platforms.
One important requirement of these applications is
that the interactive frame rate should be high
enough and should be constant in order to give the
user a smooth navigation in the virtual
environment. However, due to the heterogeneity in
end-system processing capacities and the un-
bounded complexity of 3D contents, this
requirement can hardly be met without adapting the
applications to the processing power of the user
terminal. There have been a number of adaptation
techniques such as visibility processing and level of
detail selection [Schma97a], which have different
efficiency under different assumptions.

! See http://www.fnmt.es/esp/museo/evisita.htm for
an example of a virtual museum.

In this paper we present a QoS framework for
guaranteeing the user specified interactive frame
rate by degrading the quality of 3D objects in such
a way that a minimal overall quality degradation
over the scene is obtained. This process involves
solving a NP-hard optimization problem at every
frame. In the framework, the management of QoS
at end-user systems relies on high-level QoS
parameters of quality scalable 3D objects, which
are transmitted from the service provider to the user
terminals. In addition, we consider only those kinds
of scalable mesh objects that can be simplified non-
uniformly in order to preserve as much as possible
the object’s silhouette [Benic99, Sande2000,
Cohen98, Hoppe97, Hoppe98, Luebk97]. With this
assumption, the quality degradation can be
approximated by the PSNR between the object’s
image, rendered at full mesh resolution and the
object’s 2D image obtained after rendering with
degraded settings (less mesh resolution). We also
propose in the framework an approximation
algorithm as a solution for the NP-hard problem
that yields an approximated solution with a high
accuracy, within a very short time.

The rest of the paper is structured as follows.
Section 2 presents related work. Section 3 describes
the QoS framework including a QoS architecture,
QoS and resources models. The optimization
problem is also presented in this section. Section 4
presents the approximation algorithm for the
optimization problem. Experimental results and
discussion are given in section 5 and finally section
6 presents our conclusions and future work.

2. RELATED WORK

As respect to QoS at the end-systems, much effort
has been spent on video domain [PhamO0]. For
example, Bril [Bril01] describes a QoS framework
for adapting the quality of scalable videos to the
processing capacity of the video decoder. In this
paper, we follow the same lines of thought for
scalable 3D objects. Earlier, Brandt [Brand9§]
proposed a simple QoS management framework,
which guarantees QoS for a small number of 3D
objects, in which each object has only a few quality
levels. Our framework, on the contrary, deals with
much more complex applications, having a large
number of possible quality settings and objects.

Funkhouser and Sequin [Funkh93] were among the
first to propose a predictive algorithm that
optimizes LOD selection based on benefit and cost
heuristics to guarantee bounded frame times. They
use a well-known greedy algorithm to find an
approximated solution for the optimization problem
which has an accuracy of 50% as compared to the
optimal solution. Gobbetti [Gobbe99] adopts the
same approach and extends it with a more accurate
algorithm with a restriction that benefit and cost
functions must be convex and smooth, which is not
always valid (e.g. the quality of a 3D object with
different rendering modes corresponds to rather a
step benefit function than a smooth function). Both
approaches use the accuracy factor in the benefit
function to measure how well the mesh at a certain
resolution approximates the mesh at maximum
resolution. The accuracy factor was chosen in both
approaches as a function of the number of
polygons, which is independent of the viewpoint
and the quality of the texture. Our PSNR parameter,
although it is not a perfect quality measure, can
express the dependency of the quality of 3D objects
at a certain mesh resolution with the viewpoint and
the quality of the texture. PSNR is therefore clearly
a better quality measure. The approximation
algorithm we propose works on discrete
benefit/cost points and has an accuracy of more
than 95%, which is defined as the ratio of the total
benefit of the approximated solution over the
benefit of the optimal solution.

3. QoS FRAMEWORK
3.1QoS architecture

Our QoS architecture is shown in Fig. 1. In order to
support QoS at the end user terminal, the service
provider (e.g. a web server) should negotiate a QoS
contract with the network and with the user
terminal. It therefore uses (i) a 3D objects database,
in which scalable 3D objects are encoded, (ii) a
QoS profile database in which high level QoS
parameters of 3D objects are stored and finally (iii)
a manager that manages the databases. At the user
terminal, the QoS architecture consists of a QoS
negotiator, a user interface, a QoS manager and a
resource estimator. The QoS negotiator has the
same function as its counterpart at the service
provider side. The user interface allows the user to
specify a desired interactive frame rate and to
interact with the 3D scene. The resource estimator
estimates the processing time for each object based
on high-level QoS parameters of the object and
platform specific parameters. The function of the
QoS manager is to maintain a constant specified
interactive frame rate by executing the control loop
of Fig. 2, i.e. selecting for each viewpoint the best
quality parameters of the visible object portions,
taking the constraints on the resources into account.

Service User
provider Terminal
User

User Interface

QoS profile \|y'3D objects
Database Database

QoS
Negotiator

| CA
Database
Manager

Figure 1. QoS Architecture

Rendering Pipeline

Viewpoint

0

changes ? Yes m Benefit/cost
‘ o update

h 4

Quality
Selection
Figure 2. Frame rate control loop
3.2 QoS model
3.2.1 PSNR as a quality metric

It is clear that the quality of a 3D object depends on
the mesh resolution (or level of detail) and on the
rendering mode (flat shading, smooth shading or

texture rendering). For texture rendering, the
quality of the 3D object depends also on the quality
of the texture. We observe that given a mesh
simplification algorithm that simplifies the mesh at
a lower resolution, the quality degradation is
different for each viewpoint . In addition, at a
certain viewpoint, different mesh resolutions may
give the same observed quality degradation, thanks
to the masking effect of the texture. Therefore,
modeling the quality degradation of 3D objects by a
simple function of the number of polygons as in
[Funkh93] and [Gobbe99] is not appropriate.
Instead, we use PSNR, a well-known quality
measure in the 2D image processing domain, as a
quality metric to approximate the quality
degradation between the object’s image, rendered at
full mesh resolution and the object’s 2D image
obtained after rendering with degraded mesh
resolution. By using PSNR, the dependency of
quality degradation on texture quality can also be
modeled. Note that at the current state of the
framework, we consider only texture rendering and
the quality of the texture is fixed. This assumption
will be released in future work where we will
consider texture degradation mechanisms. The
quality degradation of 3D objects therefore relies
solely on changing mesh resolution. To represent
the viewpoint dependency of quality degradation,
we propose that at each mesh resolution, PSNRs are
measured in advance for a set of viewpoints around
the object, from which the PSNR for any other
viewpoint can be estimated by barycentric
interpolation.

3.2.2 Other high level QoS parameters

Besides providing PSNRs, the service provider
should also provide for each object the following
high level QoS parameters: (i)the semantic relative
importance B(O) of the object in the scene (e.g. in a
virtual shop the 3D model of a product is more
important than the 3D model of the wall of the
shop), (ii) the number P of polygons for each
quality level and (iii) a set of number S of projected
pixels for some viewpoints around the object.
Similar to PSNR, the value S at any other viewpoint
can be estimated by barycentric interpolation. P and
S will be used by the resource estimator to estimate
the rendering time of the object as will be explained
in section 3.3. S will also be used by the QoS
manager as one factor to calculate the benefit value
as will be explained in section 3.2.3. All these high
level parameters may be stored in a table in the QoS
profile database, as given by the example of Table
1.

Table 1. QoS profile

Object name: chair =0.5
Viewpoint Vpl Vp2 .. | VpN
Level S (pixels) 100000 | 200000 | ... | 50000
#Polygons PSNR PSNR PSNR
1 200 30.5 34 35
2 400 34 37 40
L 2000 47 50.7 47

3.2.3 View-dependent benefit function

Denote B(O, L, V) to be the benefit of object O,
rendered at quality level L and viewpoint V. The
benefit value represents the amount of perception
contribution of the object to the overall scene. It
depends on the PSNR(O, L, V), the size of the
object S(O) (in % screen coverage), the semantic
meaning B(O) of the object in the scene and the
viewing angle o from the user viewpoint to the
object. In the following benefit function:

B(O,L,V)= B(0) *S(0)* cos(cr)* PSNR(O,L,V)

B(O) is the only viewpoint independent parameter.
The other factors have to be recalculated whenever
the viewpoint changes (benefit/cost update step in
Fig. 2).

3.3 Resource model

In order to estimate accurately the time needed to
render an object at a certain quality level for
quality—frame rate trade off, it is important to have
an accurate resource consumption (i.e. CPU time)
model. For this purpose we have profiled Mesa3D -
a widespread implementation of OpenGL - to the
number of OpenGL primitive function calls and
their corresponding data accesses [Lafru98,
Lafru00]. We conclude that the execution time of
the 3D rendering engine is related to the number P
of polygons and the number S of projected pixels.
For low and moderate-end platforms without
hardware accelerated cards, parameter S has a large
impact on the total rendering time. However, for
powerful 3D graphics hardware accelerated
platforms, the number S of projected pixels has
little impact on the execution time, since the
bottleneck is located around the 3D mesh
processing, rather than in the texture processing.
Fig. 3 shows the relation between number of
polygons and execution time for different rendering
platforms with (HW) and without (SW) 3D
graphics acceleration card. A dependency with the
number S of projected pixels is observable when no

3D graphics acceleration card is used (SW).
SW_y% corresponds to rendering with y% screen
coverage. HW_y% is plotted “for any value of y”.

Runtime vs. # Polygons

N
o

o
]

@
o
L

Runtime (ms)
5 8

N
o

5000 10000 15000 20000
#Polygons

——SW_19% —®—SW_85% —A—SW_4.8%
SW_3% —%—SW_2% —e—HW_y%

o
o

Figure 3.

Thus, if we let T(O, L, V) be the time needed to
render object O at quality level L and at viewpoint
V, the following relation holds:

T(O, L, V) =f (P, S), where function f is specific
for each platform.

The resource estimator in our QoS architecture
actually implements this function and therefore
belongs to the platform dependent part of the
architecture.

3.4 Optimization problem

The objective of the quality level selection step in
the control loop in Fig. 2 is to select a combination
of quality levels of all visible objects in the scene in
such a way that the overall benefit of the scene is
maximized while the total rendering time does not
exceed the target frame time. Mathematically, the
optimization problem can be stated as follows:

Maximize:

iBi(Oi’Li’Vi)

i=1

Subject to:

N
Z T,(0,,L,, V,) £ TargetFrameTime

i=1

Where N is the number of visible objects at the
viewpoint under consideration.

It can be easily seen that this optimization problem
can be reduced to the 0-1 Knapsack problem and
therefore is a NP-hard optimization problem for
which an optimal solution cannot be found in real
time [Garey79]. Heuristics are thus needed to find
approximated solutions as fast as possible within an

acceptable accuracy. The execution time of such an
approximation algorithm should be much smaller,
compared to the target frame time, in order to be
used at every frame. In the following section, an
approximation algorithm that satisfies this
constraint is presented.

4. A SOLUTION FOR THE OPTIMIZATION
PROBLEM

For each object O; we define a list L[i] of (benefit,
cost), i.e. (B, T), points. The first point in the list
corresponds to the lowest quality level of object O;
and the last point in the list corresponds to the
highest quality level. L[i] is thus a sorted list in the
order of increasing rendering time (and also in the
order of increasing benefit). The problem in section
3.4 is equivalent to finding a point in each list L[i]
such that the overall benefit is maximized, while
satisfying the timing constraint. Let:

e LJ[i].NrOfPoint be the number of point in
list L[i]

e L[i][j] be the point j in list L[i].
L[i][j].1evel, L[i][j].benefit, L[i][j].cost be
the quality level, the benefit value and the
rendering time associated to L[i][j],
respectively.

e (q[1], q[2]..--, [N]) be the solution vector.
For example, the vector (2, 3, 5) means
that object 1 can be rendered at quality
level 2, object 2 at quality level 3 and
object 3 at quality level 5.

e index[i] represents the current position of a
point in list L[i].

e slack represents the remaining of rendering
time that can be used to improve the
quality levels of objects.

The pseudo code of the algorithm is given in Fig. 4.
The algorithm is based on two heuristics,
corresponding to two phases. In the first phase, a
heuristic similar to the one in [Lee99] is used,
which reduces the number of (benefit, cost) points
in list L for each object to a smaller number of
representative points in list L’. This is obtained by
calling the RepresentativeList(L) function. This
function implements an algorithm similar to
Graham-Scan algorithm [Cormen90], which finds
the convex hull of a set of points. In the second
phase, we use the second heuristic, which is based
on the benefit/cost ratio and a nice property of the
list L’, i.e. L’ consists of non-decreasing slope
segments (Fig. 5).

Algorithm (N, L[1], L[2],...L[N])

mincost=0;
for i=1 to N do

L’[i] = RepresentativeList(L[i]);

index[i]=1;

//Initialise the solution with the lowest quality

///for each object

q[i]=L’[i][index[i]].level;

mincost=mincost+L’[i][1].cost
slack=targetframetime-mincost;

LS S

g2 =@

9. //Now gradually improve the solution
// with the improvement that corresponds t0 Otmax
10. While (true) do

11. Olmax=0;

12. for i=1 to N do

13. If (index[i] < L’[i].NrOfPoint)

14. j=index[i] +1;

15. feasible=true;

16. costDiff=L"[1][j].cost-L’[i][index[i]].cost;
17. benefitDiff= L’[i][j].benefit-L’[i][index[i]].benefit;
18. o= benefitDiff/costDiff;

19. if (L’[1][j].cost- L’[i][index[i]].cost > slack)
20. feasible=false;

21. if (feasible) and (0L > Otmax)

22. Olmax =04

23. il=i; j1=j;

24. if (Olmax=0) break; //No more improvement

25. slack=slack-(L’[i1][j1].cost- L’[il][index[il]].cost);
26. q[il]=L’[i1][j1].1evel;//Update quality level object il
27. Return (q[1], q[2],....q[N])

Figure 4.

The different steps of the algorithm are summarized
as follows:

e The algorithm takes N lists L[1] to L[N] of
(benefit, cost) points corresponding to N
visible objects as the inputs.

e The function RepresentativeList (L) is
applied for each list L[i] to get the list
L’[i].

e The algorithm starts from the lowest
quality for each object (i.e. the first point
of L’[i]) and iterates to improve the overall
quality until no more improvement can be
obtained. At each iteration, only one object
is selected and its quality level is improved
such that the benefit/cost ratio is
maximum. Fig. 5 shows that if the current
quality level is at point A, we have 3
possibilities to improve the quality either
to B, C or D. Since al>02>03, going
from A to B always gives us the highest
benefit/cost ratio. Therefore, at each
iteration, only the ol of each object is
calculated and compared to this value of
other objects. The object with maximum
ol is selected and its quality level is
improved by going from the current point
in list L’ to the next point in the list. This
is a very important observation that helps
to speed up the algorithm.

Figure S.

The worst case computational complexity of the
algorithm is O (N.L.logL) where L is the number of
quality levels of the object that has the most quality
levels.

5. EXPERIMENTAL
DISCUSSIONS

RESULTS AND

Our implementation of the framework is written in
C++ using OpenGL and GLUT libraries. The
experiments presented in this section have been
carried out on a PIII 866 MHz computer with an
Elsa Gladiac Ultra 64 MB AGP 3D card running
WinNT. A 3D scene of our company’s main
auditorium with 78 objects and a total of 112000
polygons created in Visual 3D Studio Max was
used.

5.1. Performance of the quality selection
algorithm

To evaluate the run-time efficiency of the proposed
algorithm in speed and accuracy, we have run a
number of simulations on randomly created
(benefit, cost) lists. These lists were created
randomly but consistently, i.e. a higher benefit
corresponds to a higher cost. An optimal algorithm
was also implemented in order to measure the
accuracy of the approximation solution as
compared to the optimal one. Fig. 6 shows the
runtime of the approximation algorithms when the
number of objects N varies from 5 to 200, while the
number of quality levels of all objects are fixed at
10 and 50. Each point in the graph is obtained by
taking an average of 5 different sets of data. The
accuracy we measured in most of the runs is better
than 95%.

10 ~
8,
@
£ 4
o
£
£ 44
3
© 2
J AT
o A A A A A : : ‘
0 50 100 150 200 250
Number of Objects N
—&— L=50 - - A - L=10

Figure 6.

5.2. Creation of QoS profile and resource model

We have developed a tool that reads a 3D scene
which contains a lot of 3D objects, that are
automatically transformed into scalable objects. A
QoS profile is created for each object, similar to the
example of table 1. The tool uses the mesh
simplification algorithm of Garland [Garla97]. For
each object in the auditorium model, we created on
average 50 different quality levels. Fig. 7 shows the
PSNR of the chair model at some different
viewpoint as a function of the number of polygons.
From this figure we clearly see the dependency of
the quality degradation with the viewpoint as
discussed in section 3.2.1. We also observe that at
some points, the quality remains almost unchanged
with an increase of the number of polygons. In this
case, the quality selection algorithm will select the
point with minimum number of polygons among all
the points that have the same quality. If we had
used the benefit function of [Funkh93] or
[Gobbe99], the algorithm would have selected
another, less optimal point.

PSNR vs. #Polygons
[R

50
45 4

40

PSNR (dB)

35 1%,

30 T T T T |
200 400 600 800 1000 1200

#Polygons
——\Viewpoint1 ——o—Viewpoint2
Viewpoint3 Viewpoint4

Figure 7. PSNR wvs. #Polygons at different
viewpoints

The resource model was obtained by profiling. For
the test platform, the rendering time mainly varies
as a linear function with the number of polygons.

5.3. Quality and frame rate trading off

To test the effect of trading off quality for frame
rate on the visual quality of the whole scene, we
kept the frame rate fixed and took the snapshot of
the scene at several viewpoints. We then compared
the quality of the scene with and without adaptive
frame rate. Figure 8 shows the snapshots of the
scene at two different viewpoints when the scene is
rendered at the maximum quality (Fig. 8 a) and c))
and when it is rendered at a fixed target frame rate
of 15 fps (Fig. 8 b) and d)). For the first viewpoint
(Fig. 8 a) and b)), all 78 objects are visible and the
frame rate obtained when the scene is rendered
without quality degradation is 7 fps. For the second
viewpoint, (Fig. 8 ¢) and d)), only 60 objects are

visible and the frame rate obtained when the scene
is rendered without quality degradation is 10 fps.
The total time of visibility culling, benefit/cost
updating and quality selections steps for both
viewpoints introduced an overhead of less than 5
ms (i.e. approximately 10 % of the frame time
budget).

In Fig. 8 b), we can see that degradation is easily
observed at the chairs, the lamps and the
loudspeakers. Although it is difficult to observe, the
quality of the chairs in front was degraded more
heavily than the quality of the chairs at the back
(which are bigger and closer to the user viewpoint).
Obviously, by applying an almost unnoticeable
quality degradation, we obtain a fixed interactive
frame rate. This fact proves the appropriateness of
our QoS model.

6. CONCLUSIONS AND FUTURE WORK

We have presented a QoS framework that enables
trading off quality for frame rate in order to have a
smooth interaction in 3D interactive applications. In
this paper, we have made three main contributions.
Firstly, we have proposed a QoS architecture for 3D
QoS and identified clearly the role of the service
provider and of the wuser terminal in QoS
specification and management of the overall QoS
framework. Secondly, we have, for the first time,
used PSNR as a quality metric to measure the
quality degradation of 3D objects. It has been
proved that, PSNR is better than other existing
metrics for the same purpose. Thirdly, we have
proposed a fast and accurate approximation
algorithm for performing quality level selection,
which can be used in a large range of emerging 3D
interactive applications, more particularly in
networked PC platforms. The experimental results
have proved the soundness of our framework and
algorithm.

Database management issue and QoS negotiation
for minimizing the application set-up time have not
been addressed and are subjects for future work.
We will also consider the degradation of texture
quality to introduce more freedom in the 3D QoS
management.

ACKNOWLEDGEMENT

Part of the work presented in this paper has been
done in the ITEA-EUROPA project. Geert
Deconinck is a postdoctoral fellow of the Fund for
Scientific Research-Flanders.

a) Original 7fps

¢) Original 10fps

b) 15 fps

PSNR=34 dB

d) 15 fips : PSNR=32 dB

Figure 8.

REFERENCES

[Benic99] F. Benichou, G. Elber, “ Output
Sensitive Extraction of Silhouettes from
Polygonal Geometry,”Proceedings Seventh
Pacific Conference on Computer Graphics and
Applications, pages 60 -69, 1999.

[Brand98] S. Brandt, G. Nutt, T. Berk, and M.
Humphrey, “Soft Real time Application
Execution with Dynamic Quality of Service
Assurance”, Proceedings of the Sixth
IEEE/IFIP International Workshop on Quality
of Service, pages 154-163, May 1998.

[Bril01] R. J. Bril, C. Hentschel, E.F.M. Steffens,
M. Gabrani, G. (Sjir) van Loo and J.H.A.
Gelissen, “Multimedia QoS in Consumer
Terminals,” Invited paper IEEE Workshop on
SignalProcessing Systems (SIPS), Antwerp,
Belgium, September 26-28, 2001.

[Cohen98] J. Cohen, M. Olano and D. Manocha,
“ Appearance-Preserving Simplification,”
Proceedings of SIGGRAPH ’98, pages 115-
122, 1998.

[Corme90] T.H. Cormen, C. E. Leiserson and R.
L. Rivet, “ Introduction to Algorithms”, MIT
Press, McGraw-Hill, 1990.

[Funkh93] T. A. Funkhouser and C. H. Sequin,
“Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex

Virtual Environments”, Computer Graphics
Annual Conference Series, pages 247--254,
August 1993.

[Garey79] M. R. Garey and D.S.
Johnson,“Computers and Intractability: A
Guide to the Theory of NP-Completeness”,
W.H. Freeman and Company, New York,
1979.

[Garla97] M. Garland and P.S. Heckbert,
Surface Simplification using Quadric Error
Metrics”, Proceedings of SIGGRAPH 97. In
Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, pages
209—216, 1997.

[Gobbe99] E. Gobbetti and E. Bouvier, “Time-
Critical Multiresolution Scene Rendering”,
Proceedings IEEE Visualization 1999, IEEE
Visualization Conference 1999.

[Hafid98] Hafid, G.Bochmann and R. Dessouli,
“ QoS and Distributed Multimedia
Applications: A Review”, The Electronic
Journal on Networks and Distributed
Processing, issue 6, February 1998.

[Hoppe97] H. Hoppe, “ View-Dependent
Refinement of Progressive Meshes,”
Proceedings of SIGGRAPH 97, pages 189-
198, 1997.

[Hoppe98] H. Hoppe, “ Efficient Implementation
of Progressive Meshes,” Technical Report

MSR-TR-98-02, Microsoft Research, January
1998.

[Lafru98] G. Lafruit, T. Gijbels, A.
Scherpenberg, T. Huybrechtsa and J. Bormans,
“ Complexity analysis of OpenGL 3D
rendering for Computational Graceful
Degradation,”
ISO/IECJTC1/SC29/WG11/MPEG98/M4076,
Atlantic City, October 1998.

[Lafru00] G. Lafruit, L.Nachtergaele, K. Denolf
and J. Bormans, “3D Computational Graceful
Degradation”, ISCAS 2000 ISCAS - Workshop
and Exhibition on MPEG-4, Proceedings,
pages I11-547 - I11-550, May 28-31, 2000.

[Lee99] C. Lee, J. Lehoczky, D. Siewiorek, R.
Rajkumar, and J. Hansen, “A Scalable Solution
to the Multi-resource QoS Problem”,
Proceedings of IEEE RTSS’99, December
1999.

[Luebk97] D. Luebke, C. Erikson, “ View-
dependent Simplification = of Arbitrary
Polygonal Environments,” Proceedings of
SIGGRAPH 97, pages 199-208, 1997.

[Macie95] P. Maciel and P. Shirley, “Visual
Navigation of Large Environments Using
Textured Clusters”, In Proc. 1995 Symp.
Interactive 3D Graphics, pages 95--102, 1995.

[Pham00] N. Phamngoc, S. Himpe and R.
Lauwereins, "An Overview of QoS at End-
Systems: Problems, Solutions and Challenges
for Future Multimedia Applications", internal
report, ESAT/ACCA, KULeuven, 2000.

[Sande00] P.V. Sander, X. Gu, S.J. Gortler, H.
Hoppe and J. Snyder, “ Silhouette Clipping,”
Proceedings of SIGGRAPH 2000, pages 327-
334, 2000.

[Schma97a] D. Schmalstieg, “A Survey of
Advanced Interactive 3-D Graphics
Techniques”, Research paper, Institute of
Computer Graphics, Vienna University of
Technology, 1997.

[Schma97b] D. Schmalstieg and G. Schaufler,
Smooth Levels of Detail”, In Proc. of IEEE
1997 Virtual Reality Annual Intnl. Sym, pages
12—19, 1997.

	ABSTRACT
	1. INRODUCTION
	2. RELATED WORK
	Figure 1. QoS Architecture
	Figure 2. Frame rate control loop
	3.2 QoS model

