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ABSTRACT

This paper describes a method for dynamic changing of colours and intensities of light sources in a
radiosity-lit environment. We introduce a fast radiosity sampling approach where energy is sorted with
respect to the emitting lights. The idea is to tag energy with a light source identifier in order to determine
from which light source energy is coming from, either directly or indirectly. Based on this information
the subsequent reconstruction allows for interactive changing of light source emissions, as long as the ge-
ometry in the environment remains static. We illustrate this concept by developing a modified progressive
refinement algorithm that performs efficient concurrent sampling of separate light source solutions. We
show that the result is useful for real-time animation of realistic lighting in virtual environments. Further-
more, we describe how the method can be adapted to handle near real-time animation of moving lights.

Keywords: Radiosity, relighting, progressive refinement, dynamic lighting.

1 INTRODUCTION

Radiosity is a popular method for illuminating envi-
ronments for use in interactive walkthroughs. How-
ever, because radiosity is computationally expensive,
such environments are traditionally inherently static.
Different methods have been developed for handling
dynamic environments, where radiosity solutions are
updated to match the changed environment. It is inef-
ficient to simply recompute a new radiosity solution.
Instead, the challenge is to use information already
calculated by taking advantage of scene and illumi-
nation coherence.

Previous work has mainly focused on methods for
repropagation of light in completely dynamic en-
vironments [Baum90, Chen90, Georg90, Puech90,
Dorse95a, Schof95]. However, such method can
be computationally expensive in environments where
only light source properties are dynamically changed.

This paper specifically explores the interactive chang-
ing of light source intensities and colours in a
radiosity-lit environment. That is, an environment
where the illumination is dynamically changed, but

where the geometry remains static. We present a sam-
pling approach that allows for efficent precomputa-
tion of illumination, and, during reconstruction, al-
lows for interactive lighting changes based on the pre-
computed solution. Although limited to static geome-
try, dynamic lighting is useful for updating diffuse il-
lumination when using hybrid rendering approaches,
e.g. where illumination of static and dynamic geom-
etry is handled differently, or simply to bring life to a
diffuse walkthrough.

1.1 Background Information

Dynamic radiosity methods, such as
[Chen90, Georg90, Puech90, Schof95], handle
lighting changes by shooting ”negative light”.
However, this is expensive if it affects a large part
of the scene [Chen90]. Other methods, such as
[Baum90, Besui98], assume that the animation
is given a priori, which makes them unsuitable
for interactive rendering. Lighting changes can
also be performed given a full matrix radiosity
solution. However, a full matrix solution is gen-
erally expensive in both time and space and is



normally not used in practice. Several authors
[Airey90, Cohen93, Devil94, Dorse95b, Paul95]
have also described how the contributions of differ-
ent light sources may be computed independently
and then linearly combined: Airey et al. [Airey90]
have demonstrated that this allows for interactive
brightening and dimming of lights. Similarly, Dorsey
et al. [Dorse95b] have simulated time-variant light-
ing using linear combinations of static images, each
representing a radiosity solution for a single bank of
light sources. However, in [Airey90, Dorse95b] each
solution was computed separately for each bank of
lights which is computationally expensive.

1.2 Our Contribution

We propose a faster radiosity sampling approach
where energy is sorted with respect to the emitting
light sources. We illustrate this concept by devel-
oping a modified progressive refinement algorithm.
However, the concept may just as well be adapted to
other radiosity methods (e.g. hierarchical radiosity).

Based on the precomputed solution, and the princi-
ples of [Airey90, Dorse95b], the subsequent recon-
struction allows for real-time re-illumination of static
scenes on low-end graphics hardware. We demon-
strate this, and also describe how the method can be
adapted to handle moving light sources.

We refer to the dynamic changing of light source
properties as radiosity relighting [Niels00]. In the
next section we describe our method in detail. Sec-
tion 3 discusses the results, and section 4 draws the
conclusion and points out directions of future work.

2 RADIOSITY RELIGHTING

Radiosity relighting is a simple approach for re-
illumination of a static radiosity scene in which prop-
erties of fixed light sources are dynamically changed.
In the following subsection we review the basic con-
cept of decomposing a radiosity solution into several
simpler solutions. In section 2.2 we describe how
these solutions can be obtained concurrently by us-
ing our new approach. Section 2.3 explains how the
solutions are combined to allow dynamic lighting. Fi-
nally, section 2.4 describes how the method can be
adapted for use in non-static environments.

2.1 Decomposing the Radiosity Solution

Assuming we have a radiosity solution with k con-
tributing light sources, it can be split into k indepen-
dent radiosity solutions, one for each light source.

+ + =

Figure 1: A radiosity solution composed of a set
of independent solutions for each contributing light
source. In this example, three contributing light
sources form the final solution.

Hence, by solving a set of radiosity solutions for the
contributing lights, we can linearly combine these
into the final solution [Airey90, Cohen93, Devil94,
Dorse95b, Paul95]. See Fig. 1. Presuming we have
computed k such solutions for a static environment
we can form the final solution. More importantly,
we can change any of these solutions independently,
without recomputing any of the other solutions. Be-
cause only one light source is active in each solu-
tion, it is possible to dim or change the colour of a
light source by directly modulating the calculated en-
ergies. A light source can be turned off by completely
disregarding its contribution.

By only solving the individual radiosity solutions
for bright white light (unit emission) [Cohen93], we
”pull” the colour and intensity of a light source out-
side the radiosity solution. This can then be applied
in the final reconstruction step, solely considering the
contribution from each light source. The resulting
radiosity solution can be thought of as element en-
ergies, that tell us in what way light is changed or
modulated as it propagates through the scene. In this
respect, the calculated energies are only a function
of reflectance and form factors, from which we de-
termine in what way light is altered, from it leaves a
light source, until it is received by an element.

Since radiosity is solved with unit emission, all lights
are assumed to be equally important. However, if this
is not the case, small emission values can be used for
less important light sources. Finally, it can be advan-
tageous to group several lights into a single contribu-
tion, or bank of light sources, to limit the number k
[Dorse95b].

2.2 Our Modified Radiosity Sampling Method

Solving a separate radiosity solution for each light
source is expensive compared to solving only one so-
lution, because more form factors consequently have
to be calculated. Instead of solving k radiosity so-
lutions independently, we want to find the solutions
concurrently. This avoids the complexity of han-
dling k independent radiosity solutions and reduces
the number of form factor calculations.



We observe that standard radiosity methods treat en-
ergies alike, and that there is no distinction as to from
where light originates. For example, by looking at an
element, we can see that it receives a fraction of en-
ergy, but we cannot determine which light sources the
energy is coming from, either directly or indirectly.
To solve this, we propose a scheme where energy is
tagged with a light source identifier. This informa-
tion enables us to sort received fractions of energy
for each element with respect to the light source from
which the energy originates, thereby solving k sepa-
rate radiosity solutions concurrently.

We illustrate this concept by developing a modified
version of the progressive refinement algorithm with
substructuring. Similar to a normal progressive re-
finement algorithm, we initialize emitters with max-
imum energy and receivers (non-emitters) with zero
energy. At the same time we tag emitters with a light
source id. During successive progressive refinement
iterations, light is shot from the patches with most
energy as usual. When distributing energy to the ele-
ments, fractions of energy are added separately with
respect to the light source id. The pseudo code for the
modified progressive refinement algorithm is shown
in Fig. 2. In a scene with k light sources, the al-
gorithm computes k separate radiosity solutions. A
non-substructured algorithm is shown for clarity.

The time-complexity for one shot in the algorithm is
O(n ∗ k), where n is the number of elements, as en-
ergy is distributed separately with respect to the orig-
inating light sources. Thus, compared to the time-
complexity of standard progressive refinement, O(n),
this is a factor of k more expensive. This is identical
to the time-complexity for solving each solution sep-
arately, O(n ∗ k), for one iteration. Hence, at the first
glance this does not seem like an improvement. How-
ever, when solving each solution separately, form fac-

for (each light source m ∈[1:k]) {
    for (each element i) {

if (i is light source m) Bi,m = 1 
else Bi,m = 0
Bunshot,i,m = Bi,m

}
}
while (not converged) {
    Pick i, so Σm Bunshot,i,m*Ai is largest
    Calculate all form factors Fij
    for (each light source m ∈[1:k]) {
        for (each element j) {

∆B = Bunshot,i,m*ρj*Fij
Bunshot,j,m += ∆B

            Bj,m += ∆B
        }
        Bunshot,i,m = 0
    }
}

Figure 2: Pseudo code for the modified progressive
refinement algorithm.

tors to every element in the scene are calculated k ∗ i
times, for i number of iterations. For the same num-
ber of shots, this is reduced to i times, regardless of k,
in the algorithm shown in Fig. 2. Since the determi-
nation of form factors is computationally expensive,
this can improve performance.

2.3 Reconstruction with Dynamic Lighting

After the progressive refinement has converged or
been terminated, the result is a scene where each ele-
ment has a list of energy amounts received directly
or indirectly from the k contributing light sources.
The final solution is computed by determining the
combined energy received by each element j in the
scene. This energy is found by summing the en-
ergy contributions from the k light sources multiplied
by the actual emitted energy from each light source
[Airey90, Cohen93, Devil94, Dorse95b, Paul95]:

Bj,combined =
k∑

i=1

Bj,iEi (1)

The time-complexity for computing the final solution
in a scene with n elements and k contributing light
sources is thus O(n ∗ k). Compared to a full ma-
trix solution, O(n2), it is therefore both faster and
less memory intensive, but also more limited in that
we can only change emission properties for selected
emitters instead of for arbitrary elements. Thus, the
method is only advantageous if the number of light
sources is small compared to the number of elements.

As in normal progressive refinement, an ambient con-
tribution can be added to the solution. This contri-
bution is calculated by summing k separate ambient
contributions, one for each light source solution, to
form the global ambient term. As with elements,
these terms can be modulated directly by the prop-
erties of the light sources.

The reevaluation and update of n elements can be
computationally expensive for interactive scenes of
moderate complexity. An alternative method is to
take advantage of radiosity textures [Myszk94] and
graphics hardware. As noted by Dorsey et al.
[Dorse95b], hardware-blending can be used for fast
scaling and accumulation of an image-based solu-
tion. By storing each of the k solutions in separate
sets of radiosity textures the final solution can be re-
constructed using texture mapping, and rendered in k
passes. The modulation of colours can be achieved by
using simple vertex shading. However, since graph-
ics hardware is used to store and combine element
colour contributions from individual light sources,
this method can suffer from quantization errors due to
the limited dynamic range of the graphics hardware,
especially in scenes with many lights.



2.4 Sampling and Reconstruction of Dynamic
Scenes

The sampling algorithm can be extended to catego-
rize energy with respect to direct/indirect illumina-
tion, storing these separately. This can be advanta-
geous for dynamic radiosity methods, e.g. where di-
rect light is changed while indirect light remains fixed
(as in [Dorse95a]).

The method can also be adapted to render radios-
ity scenes with moving light sources: By regarding
patches as light sources during sampling, we obtain a
solution in which the emitted energy from each patch
can be changed individually. During rendering, en-
ergy is shot from the moving lights into the scene, and
the emitted energy of each patch is adjusted to match
the reflected energy. The final radiosity solution is
then found as the sum of the direct illumination from
the moving lights and the relighted solution based on
the emitting patches. Although the method is fast
compared to a recomputation of radiosity, it can be
memory intensive for scenes with many patches.

Dynamic objects can also be inserted into the scene.
Although these will cast shadows, they will not trans-
mit or receive indirect illumination, nor cast shadows
due to the indirect illumination.

3 RESULTS AND DISCUSSION

Results are split into two parts: We first conduct a
comparison of our modified progressive refinement
method to standard progressive refinement (sam-
pling). We then examine the results for interactive
rendering with dynamic lighting (reconstruction).

3.1 Sampling

Our modified algorithm is compared to a standard
progressive refinement method. Both use uniform
meshing and fixed substructuring, and the algorithms
are terminated after 100 shots. A 128×128 hemicube
was used for form factor computations. Fig. 3
shows the used test scenes. Without light sources
the test scenes consist of 12 polygons, meshed into
60 patches and 960 elements. For fast radiosity sam-
pling our implementation uses texture maps to dis-
cretize the scene using graphics hardware [Niels00].
All tests were conducted on an Intel Pentium III 450
MHz PC, with 128 MB RAM, equipped with an
Nvidia GeForce 256 graphics accelerator. The re-
sults are shown in Table 1. The sampling tests
show that our modified algorithm is slightly (4.07/3.2
= 27%) slower than standard progressive refinement
for a combined solution. This is due to the fact that

(a) (b) (c)

Figure 3: The test scenes with (a) 1, (b) 3 and (c) 8
light sources, shown after 100 shots.

Number of lights 1 3 8
(1) Standard P.R. (combined) 3.20s 3.20s 3.20s
(2) Standard P.R. (separate) 3.20s 9.62s 25.65s
(3) Modified P.R. (separate) 3.29s 3.54s 4.07s

Table 1: The table shows the measured runtimes for
obtaining each solution: (1) standard progressive re-
finement solved for one scene using all light sources.
(2) solving a progressive refinement solution for each
light source separately, combined by superposition-
ing the resulting images. (3) solutions found using
our modified progressive refinement algorithm.

the modified algorithm distributes energy for each of
the k contributing lights separately, that is, O(n ∗ k)
instead of O(n). Yet, the speed-difference is not very
large: 0.09s, 0.34s and 0.87s for each test scene,
which corresponds to the k dependence. Hence, it
is the total number of form factor calculations that
accounts for the majority of the computation time,
and these are exactly the same in the two methods.
The methods otherwise produce identical results. Our
modified algorithm produces a solution where each
light source contribution is stored separately. We
therefore also compare it to an equivalent method,
where a progressive refinement solution is found sep-
arately for each light source. Because an isolated so-
lution is found for each light source, the method is
expensive compared to our proposed alternative, e.g.
in the solution using 8 light sources, the modified al-
gorithm is up to (25.65/4.07) ≈ 6 times faster than the
standard method. This is a result of the form factor
calculations involved in 100*8 unsorted shots com-
pared to only 100 sorted shots.

3.2 Reconstruction

After sampling, the lighting can be changed interac-
tively during reconstruction. The reconstruction is
performed for each frame. The final solution is stored
in radiosity textures for fast rendering. The mea-
sured results are shown in Table 2 and different im-
ages from the scenes with changed lighting settings
are shown in Fig. 4 1. The images have been ver-
ified to match standard progressive refinement solu-

1Animated movie sequences can be downloaded from
http://www.imm.dtu.dk/∼khn/rrl/



Number of lights 1 3 8

Software Reconstruction:
Rec. time (1 frame) 1.0 ms 2.6 ms 7.3 ms
Frames per second 90 fps 78 fps 59 fps
Used memory 12 KB 35 KB 95 KB

Hardware Reconstruction (radiosity textures):
Rec. time (1 frame) 0.9 ms 2.6 ms 8.3 ms
Frames per second 142 fps 120 fps 66 fps
Used memory 12 KB 35 KB 95 KB

Table 2: The table shows the measured time used for
software- and hardware-based reconstruction, the av-
erage frame rate, and their memory consumption.

tions with identical lighting settings. The tests show
that the reconstruction time responds linearly to the
number of lights, i.e. the expected O(n ∗ k), where
n is the number of elements and k the number of
light sources. When using software reconstruction,
the reevaluation of n colours is expensive to perform
for each frame. A faster runtime is achieved by stor-
ing the k solutions in radiosity textures and utilizing
hardware texture mapping for reconstructing the so-
lution in k passes (see Table 2). This corresponds to
O(t ∗ k), where t is the number of radiosity textures.
We perform these passes in texture space rather than
screen space to minimize the number of drawn pixels.
Because our hardware uses a 24 bit texel representa-
tion, the method causes visible quantization artifacts
when using many lights, e.g. more than 10 lights in
the tested scenes. Yet, such artifacts can be dimin-
ished by using a larger texel representation if this is
supported by the hardware.

Using our test system a user can move around in a
scene and change lighting settings in real-time. Fig.
5 shows relighting of more complex scenes. Finally,
we have also used the method to render simple ra-
diosity scenes with moving light sources. See Fig. 6.
Here, the scene is subdivided into 30 patches. Since
patches are regarded as light sources, the per frame
reconstruction performs a weighted blend of 30 ra-
diosity solutions for each element in the scene. We
observe that the method does allow for realistic light-
ing of simple environments in near real-time. Yet, the
method is expensive for scenes with many patches,
and rendering of more complex scenes will clearly
not be real-time.

4 CONCLUSION AND FUTURE WORK

We have shown that the proposed modified pro-
gressive refinement algorithm works as expected.
Compared to a standard progressive refinement, our
method executes illumination changes in fractions of
the time it takes to recompute a complete progressive
refinement solution, at the cost of a slightly slower
sampling time. Both runtimes depend linearly on the

number of light sources k, and uses O(n ∗ k) in both
time and memory. The method is therefore advanta-
geous for scenes with relatively few lights.

We have compared the method to an alternative ap-
proach, where a separate progressive refinement so-
lution is found for each light source. Our method can
be used to achieve the same results, but was found
to be up to 6 times faster than the alternative sam-
pling method. The reason for the increased speed is
simply that our method uses the same form factors
for distributing energy from k different light sources
for each iteration. This reduces the number of form
factor calculations, thereby improving performance.
We have shown that the method can be used for fast
reconstruction of scenes with changing lighting con-
ditions, and verified the expected runtimes. Finally,
we have shown that the method can be used for near
real-time rendering of radiosity scenes with moving
light sources.

The radiosity method is modified so that energy is
tagged and sorted according to the originating light
source. We have demonstrated that this can be in-
tegrated into a regular progressive refinement algo-
rithm. However, it should be possible to integrate
this concept into more advanced radiosity methods,
including dynamic radiosity methods. This should be
investigated in future work.

The time-complexity of both sampling and recon-
struction depends linearly on the number of light
sources. This makes real-time lighting changes pos-
sible, and is in our opinion advantageous compared
to alternative methods, since fast lighting changes are
achieved by an inexpensive recalculation of the en-
ergy distribution. This is done at the cost of a larger
memory consumption. Thus, if memory is not critical
but speed is, we believe that this approach is a useful
alternative to traditional dynamic radiosity methods.
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(a) (b) (c)

Figure 4: Images for interactive relighting of the scenes using (a) one, (b) three, and (c) eight light sources. Image
(a) is shown without bilinear texture filtering.

Figure 5: Images from interactive relighting sessions on two scenes: (left) The ”Venus” scene contains 3 light
sources and 3517 triangles meshed into 2306 patches and 6221 elements (300 KB). The solution (100 shots) was
found in 22 seconds, and relighting ran at 24 fps. (right) The ”Table” scene contains 5 light sources and 1111
triangles meshed into 1344 patches and 5874 elements (423 KB). The solution was found in 16 seconds, and
relighting ran at 15 fps.

(a) (b) (c)

Figure 6: Images for relighting of a test scene with moving light sources: (a) using one light source (5 fps),
(b) two lights (3 fps), and (c) one light with changing colors (5 fps). The images are rendered using software
reconstruction. The scene consists of 30 patches and 1920 elements, and the total memory consumption for the
30 solutions was 690 KB. The light sources themselves do not cast shadows.
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