

CLASSIFICATION OF SY STEMS FOR SIMULATION
AND VISUALIZATION OF PHYSICAL PHENOMENA

Ji

�
í Chludil, Ji

�
í Žára

Department of Computer Science and Engineering,

Czech Technical University in Prague, Karlovo nám. 13, Prague 2
121 35

Czech Republic
{xchludil,zara}@fel.cvut.cz http://www.cgg.cvut.cz

ABSTRACT

The paper provides an overview and a comparison of several tools for visualization of physical simulations.
We concentrate on new visualization tools and architectures that have been developed during last years
(VRToolBox, VRML + Java, etc.). Classification of these approaches is presented together with practical
examples including authors’ subjective opinion. This overview has been prepared with respect to
visualization in three-dimensional virtual environments.

Keywords: Physical Simulation, Visualization, Virtual Environment

1 INTRODUCTION

Simulation programs and tools often offer
visualization of various parts – schemes, graphs,
models, etc. When simulating physical processes and
physical objects, the visualization performed in
three-dimensional space (3D) helps to better
understand various simulated phenomena. In many
cases, the simulation runs in real time, thus the real
time presentation in 3D is required, too. Here we can
see the tight relation between simulation and virtual
reality systems.

2 TOOLS FOR VISUALIZAT ION AND

SIMULATION

Simulation is a research method [Kinde80] based on
replacing a dynamic system by a simulator with the
behavior equ ivalent to the original system.
Experiments executed on such simulator should
bring new information about the examined system to
users. Several specific languages for simulation have
been developed. Some of them are specialized to
specific purposes, while the others are for general
use. Even universal programming languages like
Java or C can be used for the description of
a simulation process, although this usually represents
a complex and difficult task.

The following text contains a list of selected
tools and programs. They have been chosen by
commercial version availability (freeware, low
prices, licences at our university).

MATLAB [MATLA] integrates mathematical
computing, visualization, and a powerful language
providing a flexible environment for tech nical
computing. The open architecture makes it easy to
use MatLab and its companion products to explore
data, create algorithms and specialized custom tools.

SIMULINK [SIMUL] is an interactive tool for
modeling, simulating and analyzing dynamic
systems. It enables to build graphical block
diagrams, evaluate system performance and refine
the design. SIMULINK has been developed
simultaneously with MATLAB.

The Virtual Reality Toolbox [ToolB] extends the
capabilities of MATLAB and SIMULINK into the
virtual reality. Utilizing standard VRML technology,
it represents an open solution for rendering animated
3D scenes driven from the MATLAB/SIMULINK
environment. Results of the simulation can be
observed in virtual reality. The Virtual Reality
Toolbox interconnects MATLAB and SIMULINK
with arbitrary browser conformed to the ISO VRML
specification [VRML].

The Virtual Reality Modeling Language (VRML)
is an ISO standard [VRML] for the description of 3D
interactive scenes. A platform-independent textual
format allows not only define 3D objects, but also
dynamically change their properties using event
sending and processing. The VRML is widely
accepted for presentation, visualization and
simulation purposes. The VRML browsers are
available on many computing platforms.

VRML scene example
Figure 1

A standardized programming interface

called EAI [Exter] serves for communication
between a VRML scene and other programs. The
virtual scene can be controlled via external programs
or applets in the case of web browser hosting the
VRML browser. A typical web application consists
of VRML browser window and additional controls in
Java applet.

3 INTERFACE BETWEEN SI MULATION

AND VISUALIZATION PA RTS

The visualization part usually contains virtual
models that are controlled by values provided by the
simulation part. These values are sent through data
channels (see Fig. 2). Data sent from simulation part
represent computed values (variables v1, v2, and v3
in Fig. 2), while data received from the visualization
part typically repres ent a feedback from sensors
(variables v4 and v5 in Fig. 2).

Visualization part

Channels

v4

v5
Simulation system

v2
v3

v1

Connection between simulation and visualization
engines
Figure 2

 Computer environment

VisualizationSimulation

Shared variables

Channel implemented using shared variables

Figure 3

The channel can be implemented in various
ways, e.g. by means of shared variables (see Fig. 3),
or a network (see Fig. 4). We propose the following
parameters that characterize the type of
interconnection between both system parts:

Number of visualization channels (VC) –
represents quantity of variables that are visualized
and that control the visualization process. It is
supposed that one channel exists for each variable.

Number of sensor channels (SC) – represents
quantity of variables received by simulation part.
These variables are generated by sensors or control
elements in the visualization part.

Number of samples per second (NS) – represents
number of values that are sent/received by the
simulation system to/from visualization part.

Synchronous vs. Asynchronous c ommunication
(SY/AS). Synchronous method of communication is
based on sending values in regular time instances; if
the channel uses network protocol, it is more
efficient to cumulate the data into one packet. When
working asynchronously, a simulation system sends
values only when they are changed. Then the
parameter NS is determined as the average value.

Signal delay (SD) – a time period between sending
and receiving specific value.

Visualization precision (VP). If the visualization
process is highly comp utational demanding,
the whole system may not be able to present data
changes in real time. Two solutions are at hand:
either the entire simulation is slowed down (Full
visualization) or the simulation still runs in real-time,
but some changes are skipped (Fragmentary
visualization).

Net (IPX/SPX or TCP/IP)

Computer
environment 2

Computer
environment 1

VisualizationSimulation

Channel implemented using network protocol

Figure 4

4 LANGUAGES FOR SIMULA TION AND
VISUALIZATION

We suggest to divide programming languages into
the following three categories:

Graphic languages (GRA) like OpenGL or VRML
are used for data visualization very often. Such
languages contain special graphic functions
(NURBS, etc.). They also utilize functions for user
interaction with user interface (sensors, control
elements, etc.). This type of langua ges usually
requires support from general-purpose languages.

Simulation languages (SIM) like SIMULINK,
Simula, or MATLAB are used for simulation of
dynamic systems. These languages include special
simulation functions (process management, event
processing, mathematical, memory management
instructions, etc.). General -purpose languages
usually implement this type of languages.

General-purpose languages (GEN) like C, C++,
Java, or Pascal are used for general programming.
These languages usually support simple graphics
elements (line, rectangle, etc.). Language structure
can support multi-process environments (Java).

This classification is quite general and

a little simplified, but adequate for our purposes; this
will become clear in the next section.

5 ARCHIT ECTURES FOR

VISUALIZATION OF SIM ULATION

This section describes various visualization
architectures. The first name in the following titles
determines language that describes the simulation.
The second name determines language used for the
visualization. It should be stressed that pure
simulation languages are not used for the
visualization itself, thus the abbreviation SIM never
appears as the name in right part of the following
titles. Similarly, graphics languages are not suitable
for the implementation of simulation engine (except
VRML). That is why the combination GRA – GEN
is also not used in the following classification.

Each of the following paragraphs contains

a short description, main advantages and
disadvantages and finally an example of a typical
software tool that uses specified architecture.

SIM – GEN : Since the simulation language has to
communicate with the visualization part, a sort of
interface functions should be an integral part of the
simulation language (see Fig. 5). Such an interface
should be general enough to support general
programming languages. The data interchange can

Visualization environment
Interface

Simulation environment
Interface

General visualization and simulation architecture
Figure 5

be based both on shared variables and network
protocols like TCP/IP o r IPX/IP. The main
advantages are: Firstly, good support for simulation.
Secondly, the simulation and visualization processes
can be performed on different computers; in that
case they do not influence their loads. There are also
some disadvantages: An interface and data exchange
between both parts is required. Another disadvantage
is that when using two computers for both parts,
communication delay can occur. Finally, the
graphics output is mostly limited to the use of basic
primitives like lines, rectangl es and other simple
graphic elements. Advanced 3D graphics with
lighting and texturing is very rare. Typical example
of this architecture is MATLAB.

SIM – GRA: This combination seems to be optimal.
Both simulation and visualization part are
implemented using languages that are specific to the
target subsystem. We see two main advantages: The
first is a good support for simulation and
visualization. Secondly, the simulation and
visualization processes can be performed on
different computers. We can also fin d some
disadvantages: Interface and data exchange between
both parts (both languages have to implement
a communication interface). Finally, possible
communication delay when using two computers
running in parallel. Typical example of this
architecture is a combination of MATLAB, VR
ToolBox and VRML (see Fig. 6). The simulation
language here is SIMULINK, the layer between
simulation and visualization is implemented using
VR ToolBox and EAI for VRML. Similar approach
is used in applications like WorldToolKit.

VRML world

EAI

Virtual Reality ToolBox

Matlab & Simulink

Java with EAI and MATLAB with VRToolBox

Figure 6

VRML world
EAI

External programming
language (Java, C)

Java with EAI and external programming language
Figure 7

GEN – GEN: The use of general languages for both
parts is a compromise between simulation and
visualization requirements. This architecture has one
main advantage: since both parts are implemented
using the same programming language, the
communication and data exchange is straightforward
without any additional overhead. There are also
some disadvantages: poor support for simulation (the
mathematical possibilities and process management
are very limited). General languages require
experienced programmers, because implementation
usually utilizes special methods and data structures.
We can find such approach in special simulation
applications such as [Linds].

GEN – GRA : This architecture is suitable for the
higher requirements on visualization. Advanced 3D
graphics with complex geometrical shapes, lighting
and texturing is available. Sound and e ven other
media can enrich the visual presentation. This
architecture has three main advantages. Firstly, good
support for visualization. Secondly, if both parts are
implemented using the same programming language,
the communication and data exchange is
straightforward without any additional overhead (C
and OpenGL). And finally, the simulation and
visualization processes can be performed on
different computers. The disadvantages are: poor
support for simulation (the mathematical possibilities
and process management are limited); if both parts
are implemented with different programming
languages, the same disadvantages apply as in SIM–
GRA paragraph. Typical example is our project
Nautilus [Chlud01]. It is an experimental system for
teaching and testing yacht captains. The simulation
and virtual environment has been built using VRML
and Java. The implemented training system utilizes
web environment where the virtual sea and various
kinds of ships are presented in VRML window,
while the movement of ships and their behavior are
controlled by a Java applet.

GRA – GRA: The implementation of simulation
using graphic languages is very unusual but it is
possible in simple cases. It is true mainly for
languages describing virtual reality like VRML. This
architecture has two main advantages. Firstly, good
support for visualization. Secondly, VRML has

event system with time -stamps supporting
simulation. Main disadvantages are: it is suitable
mainly for simple problems; support for
mathematical functions is poor. Typical examples of
this architecture are various VRML worlds [Paral].

6 CONCLUSION

Parameters characterizing the type of interconnection
between visualization and simulation system parts
have been described in this paper. These parameters
are useful for comparing various system
architectures, their capabilities, extensions etc.

Selected visualization architectures have

been presented. Comparing advantages and
disadvantages of the particular architectures one can
choose the architecture that is suitable for the
specific purpose, i.e. that gives the best results and
provides optimum performance.

7 ACKNOWLEDGMENT

This work has been supported by the Ministry of
Education, Youth and Sports of the Czech Republic
under the grant FRVS/1891/2001 (Education in
Virtual Environments).

REFERENCES

[MATLA] MATLAB, The MathWorks

http://www.mathworks.com/products/matlab/i
ndex.shtml

[SIMUL] SIMULINK, The MathWorks
http://www.mathworks.com/products/simulin
k/index.shtml

[ToolB] Virtual Reality ToolBox, Humusoft
 http://www.humusoft.cz/vr/index.htm

[VRML] The Virtual Reality Modeling Language.
International Standard ISO/IEC 14772-
1:1997.
http://www.web3d.org/technicalinfo/specifica
tions/vrml97/

[Exter] The VRML External Authoring Interface.
Draft International Standard ISO/IEC
14772-2,
http://www.vrml.org/WorkingGroups/vrml-
eai/Specification/

[Kindle80] Evžen Kindler: Simula� ní programovací
jazyky (in Czech), SNTL, 1980.

[Chlud01] Chludil, Žára: Yacht Captain Training
System in VRML, CATE - IDET, Brno,
Czech Republic, 2001.

[Linds] C. S. Lindsey: Physics simulation with Java,
http://www.particle.kth.se/~fmi/kurs/PhysicsS
imulation

[Paral] Parallel Graphics, VRML worlds selection,
http://www.parallelgraphics.com/products/cor
tona/best

